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Abstract

The equations governing the flow of viscoelastic liguids are classified according to

183134} L0 QLLOIGs 0

18]

the symbol of their differential operators. Propagation of singularities is discussed and
conditions for a change of type are investigated. The vorticity equation for steady flow
can change type when a critical condition involving speed and stresses is satisfied. This
leads to a partitioning of the field of flow into subcritical and supercritical regions, as

in

VOO0 B WN -

10.

the problem of transonic flow.
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1. Introduction

The equations of steady gas dynamics change type when the speed of the

fluid at some point exceeds the speed of sound. If this happens, then discon-
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tinuities can appear in the supersonic region. We are interested in the possibility
that many strange effects in the flow of viscoelastic liquids, as well as difficulties
in numerical simulation, are also associated with the appearance of real characte-
ristics and a change of type, analogous to the sonic transition.

For a physical interpretation, it is necessary to identify the variables which
may propagate and become discontinuous. In gas dynamics, there are compres-
sion waves and shock waves of compression. In the present paper, we deal with
incompressible materials, so compression is impossible. Instead, we can exhibit
cases where singular shear surfaces propagate along characteristics (Chapters 6, 7).
In steady flow, the vorticity is the variable which is affected by a change of type
and may become discontinuous (Chapters 8-11). The implications of hyper-
bolicity and change of type for the interpretation of experiments are not yet well
understood.

The organization of our paper is shown in the Table of Contents. In § 2, we
motivate our study by suggesting that one of the main unsolved practical problems
of computation of viscoelastic flow may be partly due to the problem of change
of type. We suggest that the solution of this problem is to be found in recently
developed switching algorithms of the type used in transonic flow. In § 3 we define
some basic concepts needed in our study, including elliptic, hyperbolic, charac-
teristic, symbol of an operator and Hadamard instability. We also give some appli-
cations of these concepts which arise in modeling phase changes and may be
relevant in analyzing some instabilities in the extrusion of polymers from capillary
tubes. Chapter 4 discusses characteristics and classification of type for first order
quasilinear systems.

In Chapter 5, we look at constitutive equations for viscoelastic fluids from the
point of view of classification of type. For this, we have to maintain a distinction
between fluids with and without Newtonian viscosity. In Oldroyd models, the
term with Newtonian viscosity is the one associated with a retardation time.
The addition of even small amounts of Newtonian viscosity can smooth discon-
tinuities, replacing sharp fronts by thin layers and thus masking the underlying
dynamics. To emphasize the effect of hyperbolicity, we confine our attention to
models without Newtonian viscosity. In particular, we focus on a three-parameter
family of nonlinear Oldroyd models containing the upper and lower convected
and corotational Maxwell models. The occurrence of instabilities of the Hadamard
type for these models is discussed. These models also form the basis for the discus-
sion of steady flows in Chapters 9-11. We also discuss more general models of
integral type. It is shown that the principal part of the linearization at any given
motion has the form of a rate equation not involving integrals, provided that the
integral kernels have sufficient smoothness. Thus the discussion of change of
type does not necessarily require a special constitutive model.

Chapter 6 discusses the linear system of equations for motion perturbing rest.

The wave speed along characteristics is given by VG(O)/Q, where G(0) is the in-
stantaneous value of the relaxation modulus G(s) and g is the density. We review
recent results on the propagation of slip surfaces for velocity and displacement,
which show in particular the crucial dependence on the nature of the kernel G(s).
In particular, consideration is given to the possibility that G(0) or G'(0) may be
infinite. In Chapter 7, we discuss the formation and propagation of slip surfaces
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in nonlinear shearing problems treated by COLEMAN & GURTIN [6], [7] and SLEMROD
[43], [44]. We discuss the application of their results to melt fracture.

In Chapter 8 we take up the analysis of change of type in steady problems.
This is a natural question from a mathematical point of view, but the first studies
of it in the theory of viscoelastic fluids seem to be in the work of RUTKEVICH [40,
pp. 44-45], who analyzed the two dimensional equations for an upper convected
Maxwell model. ULTMAN & DENN [49] and LuskiN [27] classified the linearized
equations perturbing uniform flow with velocity U of an upper convected
Maxwell fluid. Our analysis in Chapter 8 generalizes the results of ULTMAN &
DenN and LUSKIN to a wider class of constitutive laws. There is a change of type
leading to real characteristics when the viscoelastic Mach number

M=Ule, c=VGO)e

exceeds one. The vorticity is identified as the variable which can become disconti-
nuous along these characteristics. We shall, somewhat loosely, say that “the vor-
ticity changes type”. In Chapter 9, we give a complete classification of the quasi-
linear system describing the upper convected Maxwell model in arbitrary steady
two-dimensional motions. The streamlines are double characteristics. The vorticity
changes its type when the speeds are great enough. In the supercritical (hyperbolic)
case, there are two families of real characteristics for the vorticity, but the formula
for the characteristics depends on the solution. There are also complex roots
to the characteristic equation associated with the elliptic equation giving the
vorticity as the Laplacian of the stream function. In Chapter 10, we discuss a
number of specific flows for an upper convected Maxwell fluid. These flows include
plane parallel shear flow, steady extensional flow, sink flow in the plane and shear
flow outside a rotating cylinder. We discuss characteristics for motions perturbing
those flows and characterize the regions of flow where the vorticity equation is
hyperbolic. In Chapter 11, we extend our results to a three parameter family of
Oldroyd models which contains the upper and lower convected and corotational
Maxwell models as special cases. The vorticity is again identified as the variable
which changes its type. We compute the characteristic directions for the nonlinear
problem without approximation. We exhibit special cases which show that the
partitioning of the flow into sub- and supercritical regions is model sensitive.
It is therefore desirable to develop this type of theory on a high level of generality,
suppressing models. We take some steps in that direction in Chapter 12, where
we study fading memory fluids of Coleman-Noll type.

2. Numerical Simulation of Steady Flows of Changing Type

There are some unsolved problems of numerical simulation of the flow of
viscoelastic fluids. One problem is that the equations cannot be integrated when
the relaxation time is large. Though relaxation times appear expiicitly only in
very special models, the concept of a relaxation time is a useful one which can be
expressed mathematically in a general context (e.g., C. TRUESDELL [52]). A large
relaxation time means that the elastic response of the fluid is persistent; the fluid
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can be said to have a long memory. The simulation problem associated with
highiy elastic viscoelastic fiuids is sometimes calied ““the high Weissenberg number
problem”. Different dimensionless ratios are called “Weissenberg numbers” by
different authors. Some authors call the ratio of the first normal stress to the
shear stress a “Weissenberg number”. This definition leads to a dimensionless
function of the rate of shear. Other authors define a different “Weissenberg
number” as the ratio of the relaxation time of the fluid to an externally given
time which is usually expressed as d/U, where U and d are a typical velocity and
length in the flow.

The “high Weissenberg number problem’ refers to the failure of numerical
simulations when the second of the two “Weissenberg numbers” is large. The
problem occurs with different constitutive models and different methods of
numerical integration. Maybe there are some underlying mathematical reasons.

Our study here is not framed in terms of a “Weissenberg number”. The
quantities of interest in our study are values of velocity and stress which in
steady flow may lead to a change of type as in the problem of transonic flow.
The criterion for change of type may be framed in terms of a viscoelastic. Mach
number defined as the pointwise ratio of some speed to a characteristic wave
speed. If all other quantities are fixed, this “Mach number” increases with the
relaxation time, but our “Mach number” and the “Weissenberg number” are in
principle independent. It is probable however that some numerical problems at
high “Weissenberg numbers” are actually associated with a change of type, like
the transition from subsonic flow to supersonic flow, and that the solution of
the problem is to be sought in various hyperbolic algorithms, especially those
recently introduced for transonic flow.

To compute subscnic flow you use some central differences. To compute
supersonic flow you use the method of characteristics. It would be a disaster to
try to do supersonic flow by central differencing of the type used for Laplace’s
equation.

In the flow over a bump, say an airfoil with the free stream slightly less
than M =1,

IS5=EM<1,

we get a supersonic bubble with unknown boundaries (see Fig. 1).

Fig. 1
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To solve this problem you have to find the sonic line, the position and strength
of the shock wave. This is a very hard free boundary problem. It wasn’t solved
until 1971 when MURMAN & CoLE [32] realized that upwind differencing was
necessary in the supersonic part of the flow. In central differencing the nodal
point is at the center. In upwind differencing, the information at a nodal point
is determined only by the flow upstream (see Fig. 2).

o o
o o o o o o
o o
Central differencing Upwind differencing
Fig. 2

MuRMAN & Corz studied the small disturbance equations. They derived a switch-
ing scheme of numerical analysis which tells the computer to use central differencing
if the flow is subsonic and upwind differencing if the flow is supersonic. Their
upwind differencing equation can be interpreted as approximating a differential
equation with an artificial viscosity proportional to the mesh size [31].

MURMAN & CoLE’s method was the first success. But this method is too simple
for the full nonlinear potential. This more complicated problem was successfully
attacked by the artificial viscosity method of JAMESON [19], [20], whose work makes
transonic computation possible in a practical sense.

People doing flow computations for viscoelastic fluids are also able to go to
higher Weissenberg numbers when they have constitutive equations with more
Newtonian viscosity. This procedure masks the problem of dealing with change
of type instead of solving it.

3. Concepts and Some Applications of Change of Type

This paper deals with equations which undergo a change of type. To make
our notions precise we shall need some classical definitions related to the type of
a partial differential equation.

Consider the linear differential operator

3.1 tha d 0
(‘) ? ’8t’ax11"’35x: )

where

& = (xy, X3,...,X%,) and ¢
are space and time coordinates. We define the

(3.2) Symbol of P = P(x, 1, i&y, ity ..., i&y),
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o 0

where = V:T To form the symbol we replace the arguments A
A1

Tx of P with the Fourier variables ié,, i&,, ..., ¥, In this way we obtain

n

a polynomial in the real variables & The symbol of the Laplace operator —A
2 n

" 0
is § £%; the symbol of the wave operator P Ais —& + 21 &%; the symbol

8 n
of the heat operatora—t — A is i& + D) &. The symbol for a system of equations
i=1

is defined in a similar fashion and is a matrix with polynomial entries.

Characteristic curves are lines along which discontinuous data may propagate.
In dimensions higher than two we may speak of characteristic surfaces. Let m
be the highest order of the derivatives in P. Then

P= 3 af%1)0 + 3 a(%1)7",

lol=m o] <m
where o« = (xq, %1, ..., %,) is a multi-index, |x|=2w; and

olol

= —
o™ oxyt ... ox,"

The equation

3.3) Y, af%,t)0* =0, o= (00,...,0y),

lo| =m
0" = oy ...q,"
is called the characteristic equation for P. Only the principal part of P, the terms
of highest order, appears in (3.3).
A surface S in (#, ¢) space is characteristic for P at a point s¢€ § if the normal
vector to S at s satisfies the characteristic equation. If ¢ = (0, ..., 0,) is a unit
normal vector at s, S is characteristic for P if and only if

G4 doz=1 and ) a(x)c*=0.
0

|lej=m

n n
The characteristic equation for Laplace’s equation Y, 8%u/ox2 = Ois Y, o2 =0.
k=1 k=1
There are no real characteristics because (3.4); is not satisfied. More generally,
the operators P for which, at every point (¥ ,¢) the equation (3.4), has no nontrivial
real zeroes are called elliptic. For systems, ellipticity means that the only real
zeroes of the determinant of the matrix symbol A(x, &, ..., &,) are (§1,&4,...,&,)
=(0,0,...,0).
Elliptic problems have existence, uniqueness and continuous dependence on
data (are well posed) as boundary value problems [1], [26].
The initial value problem, the Cauchy problem, is not well posed for elliptic
equations. For example, a Cauchy problem for Laplace’s equation in the domain
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D={xy;x>0,—co<y<oo) is}
Au=0 in D,
(3.5) u(o, y) = Os

ou 0 U .
7= 0.5 = U0,
where

1
Uiy = n—P-sin ny, p>0.
The solution of (3.5) is

1
u(x, yy = TP sin ny sinh nx.

ou . . .
The mapping (u, 8_x) —u for x>0 is not continuous since U(y) is small
x=0

when 7 is large and u(x, y) is very big. Small data at x = 0 lead to larger and
larger oscillations for x > 0. This lack of continuous dependence is called
Hadamard instability. 1t can be shown that (3.5) has no solution if U(‘) is not
analytic.

The initial value problem, or mixed initial-boundary value problems are well-
posed for hyperbolic equations like the wave equations. For example, the char-
acteristic equation (3.4),

satisfies the characteristic equation (3.4); when ¢, = :i:c/l/c2 + 1. Therefore
a surface is characteristic for the wave equation if and only if its normal makes

an angle f, cosff = c/l/c2 + 1, with the ¢ axis. For the one-dimensional wave
equation A = 9?/ox?, this implies that the family of lines x 4= ¢f = const
are characteristic.

The operator P of (3.1) is called strictly hyperbolic if all the roots &, of the
principal part of its symbol (3.2) are real and distinct for all (¢4, ...,§,)cR”\ 0.
The Cauchy problem is well posed and the boundary value problem is ill posed for
hyperbolic equations. The backward Cauchy problem where ¢ is replaced with
—1 is also well-posed for hyperbolic equations.

The Cauchy problem is well posed for parabolic problems but the backward
Cauchy problem is ill posed. The classic example of a parabolic equation is the
heat equation, ou/dt = Au. The characteristic equation (3.4), is

Y=o
I=1
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Hence, from (3.4);, o3 =1 and the characteristic surfaces are the hyperplanes
t = const. The Cauchy problem is not well posed for the backward heat equation

ou ou
P —Au. Operators of the form % + Lu, where L, like —A, is a positive

definite elliptic operator, are parabolic. These operators are strongly dissipative
and lead to diffusion rather than to propagation. Unlike hyperbolic operators,
parabolic operators will smooth initially discontinuous Cauchy data.

Two homogeneous scalar operators are said to be of the same type, if up to a
transformation of the independent variables, their symbols have the same asym-
ptotic behavior at infinity. If the asymptotic behavior of the symbol changes, then
we say that the equation changes type. For example, the Tricomi equation

*u  *u

Vo T =0

is hyperbolic when y < 0 and elliptic when y > 0. Another example is the quasi-
linear system

ou  do(v)

&t ox &% P ov
3.6 — = )=
6 v ou (or or*  ox (G © Bx))

o ox’

which is hyperbolic for ¢'(v) > 0 and elliptic for ¢’(v) < 0. These problems all
involve a change in the sign of the symbol and Hadamard instabilities, which occur
if the solution of the Cauchy problem with initial data in the hyperbolic region
enters the elliptic region.

Problems of the form (3.6) suggest models for theories of phase changes in
solids and fluids. The van der Waals gas is a well-known classical example. In
solid mechanics, ideas of this type were introduced by J. L. ERICKSEN [12] in
his study of elastic bars. We may suppose that the graph of o(v) is as shown in

Fig. 3.
Hysteresis loop /

~ Hyperbolic
N
N\ Elliptic
~

S

Hyperbolic

v

Fig. 3. The system (3.6) is hyperbolic when ¢’(v) > 0. The elliptic branch is unstable
in the sense of Hadamard
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The solid lines, where ¢'(v) > 0, lead to a hyperbolic equation and the dashed
line leads to an elliptic equation. The elliptic portion is rejected because it will
exhibit Hadamard instabilities; and actual solutions are required to operate only
on the hyperbolic parts of the curve. This leads to spatially segregated solutions,
separated by lines of diccontinuity, each part operating on a different hyperbolic
branch of the curve. There is hysteresis and abrupt transitions in the response of
such models. These features are all present in the recent study of HUNTER & SLEM-
ROD [17], which attempts to explain some observations of TORDELLA [47] of a
type of melt fracture called ripple. This phenomenon shows hysteresis loops,
double-valued shear rates at certain stresses and spatially segregated flow regimes.
Similar ideas have also been used to explain to phenomenon of necking occurring
in cold drawing of polymers [8].

REGIRER & RUTKEVICH [36] have considered fluids of the Reiner-Rivlin type
which exhibit change of type. Their constitutive law is

where D = 1(Vu -+ (Vu)"), II = tr D2. Written in terms of a stream function
u = (u,v) = (,, — ¥,), the equation governing steady two-dimensional flows
is as follows.

def 641/1 641/) 841/’ 62 azw azw
37N Ly=a [5)7%-5}?] +2az'axz—ayz+4asm(ay—z—ég) = H(y),

where H(yp) is a nonlinear third order operator and the coefficients @ are nonlinear
functions of the second derivatives of y. The characteristic curves y(x) are solu-
tions of

(3.8) ays + dasyl + 24,2 — dazy, + a; = 0.

There are three cases:

@) f+4 21 f" > 0 (no real roots, elliptic),
(ii) f+ 2IIf’ = 0 (parabolic),
(iii) £+ 2111’ < 0 (four real roots, hyperbolic).

The hyperbolic regions are those where the stress decreases as a function of shear
rate, and the elliptic regions are those where it increases. The unsteady problem
corresponding to (3.7) is

P
05 (Ay) = Ly) — H(y).

When the right side is elliptic, this problem is parabolic and evolutionary (see
GELFAND [14]). When the right-hand side changes type, the problem is neither
parabolic nor evolutionary and Hadamard instability occurs. Changes of type and
Hadamard instabilities can occur in rheological problems which are not one-
dimensional and they need not be associated with non-monotone constitutive
equations. An interesting case of this type arises in a stability analysis of plane
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Couette flow by AKBAY, BECKER, KROZER & SPONAGEL [3]. In order to obtain a
mnmaganthla Aciiafs s st~ A thn “olinet mrnamaary anmseavimeatian®? Thig
1uaua§cau1€ Uquauuu, I.llUy 1uuuuubc (991w S1IVIL lllCll.lUl.y appluzuulauuu o AL1ID
means that, in the memory integrals occurring in the equation for the disturbances,
only terms of first order in the relaxation time of the fluid are kept. Proceeding
thus, they find the following linearized equatlon for the stream function in two

dimensions:

7 0 \ ( , N, 2 , oty
(39 ol—+ux,—Ap=IN, ——) ——Ly +7L*p + — ——
\ot 0x,) \ % ] 0x, 0Xx, ® 0X{0X5
oy
w——;c-;——O at x, =0, x, =
2 2
Here L denotes the operator pr e The problem is posed in the strip
2 1

— oo << x; <00, 0 < x, << h. xis the shear rate of the basic Couette flow and
T(x), N(x) are the shear stress and the first normal stress difference as functions
of the rate of shear. AKBAY er al. find that (3.9) admits exponentially growing

I Y.
SO1uuons 11
N\’
—} ¥
*?
We=—o>4

VL §
»

It was pointed out by AHRENS, JOSEPH, RENARDY & RENARDY [2] that this in-
stability is associated with a change of type. If we consider the symbol of the differ-

0 0
= —_——gx, — =1 then th
o, o in, o ip, en the

(3.10)

ential operator, i.e. if we formally set

left-hand side of (3.9) becomes
(3.11) o(o + xx,ix) (—o% — p?),

and the right-hand side becomes

0
ot

., N 4z
@1y = (M=) 62— B e = e

This homogeneous polynomials of is fourth degree positive definite for We < 4,
but indefinite for We > 4. For We > 4, one thus expects short-wave instabilities
of a catastrophic nature, i.e. Re ¢ becomes arbitrarily large as the wave length
tends to zero. This type of instability seems to occur in some types of melt fracture
(see [2] for a more complete discussion).

4. Quasilinear Systems

The analysis of the equations of viscoelastic flow will be framed in terms of
systems of equations of first order. We consider linear systems and quasilinear
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systems. We write the quasilinear system as

7 u
(4-1) Z Alax —fa X = (t X1s X25 ey xn)

where @ = (uy, u,, ..., ) is a k vector and A; are k X k matrices which like f
may depend on x; and on the components of u. If A, is independent of u, and
f=B-u, then (3.7) is a linear system.

The following definitions apply to both linear and quasilinear systems. A sur-
face S defined by the equation ¢(z, x4, ..., x,) = 0, is characteristic with respect
to 4.1) at *=(t, x,, ..., x,) if

4.2) det (5_‘, A,a )(x) =0.
If ¢ = Xp —f(xO: cees xn—l)a then

n—1 3]‘
4.3) det (A,, — g,) A,E;l) = 0.

Any one of the n + 1 quantities 8¢/0x; in (4.2) may be regarded as an eigenvalue.
We shall say (4.1) is hyperbolic if A = A, is non-singular and for any choice of
the real parameters (4,/=0,1,...,5; /= u), the roots & of

4.4 det (ocA - A,A,> =0
1o

are real and are associated with k linearly independent characteristic vectors v

4.5) xAv = Y LAp.
o
First-order systems can be of mixed type with real and complex eigenvalues,

neither totally elliptic or totally hyperbolic.
We are interested in two-dimensional quasilinear problems of the form

4.6 A u gl _
46 o R

We consider one-dimensional evolutionary problems in which € = 0 and steady
problems in which A = 0. For evolutionary problems we suppose that A is not
singular and write

47 au B ou

C%) B =1

The characteristic surface is ¢(x, 1) = 0 and (4.2) becomes

4.9) det (% 14+ B 8¢) 0.
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On ¢(x,t) =0, we have

o o
d¢ —~adx +8_tdt =0.
Hence, (4.8) may be written
dx \
. B——1} =
4.9 det ( 7 1) 0,

where dx/dt is the slope of the characteristic.

A linear system of the form (4.7) is said to be of evolutionary type if B has only
real eigenvalues, Ayperbolic if of evolutionary type and if B can be made diagonal,
strictly hyperbolic if B has simple real eigenvalues.

If the Cauchy problem for (4.7) with f = 0 is well-posed, then (4.7) must be
of evolutionary type. Solutions of the form u(x, ) = Be™*+*¥ are bounded for
large |¢| if and only if the eigenvalues —A/u of B are real (GELFAND [14]).

Suppose u(x, t) is given on a curve ¢(x,t) = 0. If this line is characteristic,
then the equation

duéau dt  oudx
ds  otds ' oxds’

where #(s), x(s) is a parametric representation for the curve ¢ = 0, and the
quasilinear equation (4.7) cannot be uniquely solved for the 2k derivatives ou/ot
and ou/ox. This special condition requires that the determinant of the coefficients
of the derivatives vanish

1 B dx dt
det [ldt ldx} :det[IE—Bg] = 0.

The same considerations apply for the quasilinear steady problem

ou ou

Such problems are frequently associated with a change of type, like transonic
flow, in which some regions of flow are subcritical and some supercritical. A typical
example is Tricomi’s equation. Other, more applicable examples are derived in
§§ 8-11.

It is not always possible to assign a definite type to a system of quasilinear
equations. There can be both real and complex eigenvalues. Nonlinear problems
of mixed type have not been thoroughly studied by mathematicians. Some special
results have been given by Mock [30]. Here it is perhaps useful to give some simple
examples from hydrodynamics.

Consider first the Euler equations for the flow of inviscid, incompressible fluids
in two dimensions

(4.10) ow - VYu+Vp=f divu=0.
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Let (#, v) be the components of u with respect to x and y. Then we can write (4.10)
as

(411) Al qx+A2 qy::f’
where

9qg  0q
q=(u,v,p), qx=§;’ qy‘:g

f (fl!fZa 0),

[u 0 1fp
A =10 u 0],
¢ 0 0]
v 0 0]
A, =10 v 1o
0 ¢ 0]

The characteristic equation for (4.11) is

det [dy Ay — AJ (v —;u) ( Q)ZJF 1) B

ux
Hence
dy v } . .
it streamlines are characteristic, and
dy .
— = 4.
dx +

The presence of imaginary roots means that (4.11) is not hyperbolic. It is not elliptic

beause the determinant of the matrix symbol of (4.11)

[ 1
uk; + v, 0 -Q_ &,

' — 2 2
det 0 uE, + &, _;-52 = — (ué; + v&) (§1 + &)

0&, 0> 0

vanishes for wu&, -+ v&, = 0.

Another example is from the theory of irrotational water waves. In this case
the velocity potential is elliptic but the height function is governed by a hyperbolic
equation giving rise to water waves.

5. Constitutive Equations
A constitutive equation relates stress to deformation. The stress in viscoelastic

fluids depends on the history of the deformation. Usually the history is defined on
some strain measure. The stress in Newtonian fluids depends on the instantaneous
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value of the velocity gradient, not on the prior history of the deformation. Visco-
elastic fluids have instantaneous elasticity. Elasticity is present also in inviscid
compressible fluids. For unsteady problems elasticity is associated with hyperbolic,
rather than parabolic response. It is necessary to be more precise about the differ-
ence between elastic and viscous responses.

Many constitutive models have been proposed. Each one leads to different
answers for the same problem though some groups have similar qualitative
properties. In problems of changing type the linearized part is of primary import-
ance. The linear part may be of three types:

1) Constitutive equations with some viscosity. The viscosity which we have
in mind is that which rheologists sometimes associate with a retardation time.

2) Constitutive equations without “viscosity”. Constitutive equations of inte-
gral type with smooth kernels, and various types of rate equations in the class
called Maxwell models are of this type. These kind of equations allow propagation
of rather than smoothing of discontinuities. In some nonlinear models [16],
[28], [43], [44], [51] discontinuities may arise, as do shocks in gas dynamics, from
smooth data.

3) Constitutive equations of integral type with singular kernels. These are in a
sense intermediate between 1) and 2). Depending on the type of the singularity,
the wave speeds may be finite or infinite. However, even if they are finite, i.e.
real characteristics exist, there is no propagation of discontinuities (see Chapter 6).

The stress in an incompressible fluid is given by

.1 T=—pl+=,

where 7, the determinate stress [50], p. 176 (sometimes called the extra stress [48]),
may be related to the deformation, whilst p, the reaction pressure, is determined
only through the equations of motion. An example of = in the class 1) of constitutive
equation with some viscosity is the Jeffreys model with two time constants, a
relaxation time A, and a retardation time A,. This model may be written in rate
form

ot 0A
(5.2) T+ A=A+

ot’
where % is a constant, called the zero shear-rate viscosity, A = Vu - VuT,
u = u(w, t), or in integral form

A AN T
(53) 7= %A[u(x, ] + {— (1 — Z) _{o Alu(x, 7)] exp (_%_1_1)) dr.

The constant 94,/4, is a second viscosity which is equal to the zero shear-rate vis-
cosity when 4, = A;. Itis this viscosity that we have in mind when we talk about
“with” or “without” viscosity. In § 6 we show that (5.2) and (5.3) enjoy a certain
general status when they are regarded as holding only in motions which perturb a
state of rest.

The Maxwell model arises from (5.2) and (5.3) when 4, is put equal to zero.
In § 6 we note that the Maxwell model permits propagation of waves with a finite
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velocity of propagation, but such propagation cannot occur for Jeffreys models;
more precisely the viscosity term A,7/4; smooths discontinuities in the same way
that viscosity smooths the discontinuities of solutions of Euler’s equations for an
inviscid fluid.

Nonlinear models can be classified according to the type of their linearization.
Popular models of the rate type include those due to OLDROYD [34], LeoNov
[25], Giesekus [15]. These models generalize both Maxwell and Jeffreys type fluids,
i.e. some have “‘viscosity”, some do not. Popular models of integral type include
K-BKZ single integral models [4], [22] which may be of type 2) or 3) depending
on the nature of the kernel, and the model of CURTISS & BIRD [11], which contains
a viscosity term.

We shall do some work with rate equations of Oldroyd type depending upon
three constants:

Dz
G4 }“E“l‘f:’?/‘-

Here D/Dt is an invariant time derivative

55 Dr o v Q— Qv —aDr + D
(5.5) Dt_3t+(u Yr + Q2 — Qv — a(Dv + D),
where —1 <a<1, D =1(Vu + Vu'), @ = 3(Vu — Vu"). The upper con-

vected Maxwell model has ¢ =1 and

Dr ot r

(5.6) E—gt—+(u Vit — Vur — ¢ Vu?,

where (Vu); = ou;/0x;. The lower convected Maxwell model has @ = —1 and
Dr or T

5.7 D——t—é-t-+(u-V)t+rVu—{~Vu T.

The corotational Maxwell model has a = 0. The integral model

(59) v b [ e [=( — DA (G ) — 11 dr

is an alternative form of the upper convected Maxwell model (¢ = 1). The rate
form (5.4, 6) may be obtained by differentiating (5.8) partially with respect to ¢,
holding » fixed. The expression

(59) — 5 Jexp[—( =D 1 - G e

is equivalent to (5.4, 7) with @ = —1, in the same way.

RuUTKEVICH [40], [41] studies differential constitutive models (5.4) of Oldroyd
type. He linearizes these equations and the equations of motion at a state of no
motion (u = 0) and constant stress. He finds that a change of type leading to
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imaginary wave speeds and a instability of Hadamard type occur if the principal
values of 7 satisfy certain inequalities. If we denote these principal values by

T, =T, g T3, then RUTKEVICH s instability criterion reads as follows.

7
T3 < - a=1,
8 10 -~ \l ~r— -1
\J.l\l} l«l/ 2’ . “w — 14
2
TI 13 >T/’7: =0

In order to assess the significance of these results, it is necessary to look also
at the inteoral models (5.8) and (5.9) corresnondine tn (5 A\. Since n Laond C

TV UOVEIL AL IUUNIS (V.U AUl (V. IVOpPULIGLILE @ iy

are positive definite matrices, we find that 75 > — a for a=1 and 7, < %

>

for a —1. Thus Rutkevich’s 1nefnh1|1fv criterion cannot be achieved on solution

S Ui A AUV LRIV L3028

and must be considered unphysical. Th1s was also noticed by CrRocHET [10] who

Cﬂ

proved directly from the differential equation that 7; > — Z or, respectively,

A

T < % for all time, if this is the case initially.

M. RENARDY [38, 39] did two independent studies, related in part to our
joint work. He has shown that the upper and lower convected Maxwell models
are always evolutionary. These two models are special cases of the Kaye-BKZ
model [22], [4], which has the form

(5.11) v = fta(t—s) (zW ~1(5) — W ,(s)) ds.

-0

Here a is a positive kernel and the “‘strain energy” W is a scalar function of
I, = tr C;!(s) and I, = tr C(s). The initial value problem is always well posed,
i.e. instability of Hadamard type cannot occur, if W satisfies a strong ellipticity
condition of the same form as in nonlinear elasticity. This condition is satisfied

if W is monotone in both arguments and a convex function of 1/11 and 1/12. This
obviously includes the cases W =1,, W =1,, corresponding to (5.8), (5.9).
No such objections can be raised in the corotational case, a = 0. In fact, we
need only restrict attention to motions where £ = 0, and = and D are spatially
homogeneous, to see that (5.4) allows 7; — 753 to reach any value. The instability
in this case is therefore genuine.

It is instructive to look at special flow geometries. For time-dependent simple
shear-flow, we have [21]

t t
- [ —won — 2 N ds’
= :0/0‘ T ¢ %(s) cos <l/1 a sfx(t ) dt )ds
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Differentiating this with respect to ¢, we find

T = x(t) [% - f %e_(’_”” #(s) VY1 — a?sin (l/l — a? f x(t") dt') ds}

s

-+ terms of lower order.

A change of type occurs when the expression in brackets changes sign. For |a| < 1,
it is possible to construct histories for the shear rate x(s) such that this is the case.
For steady shear flows, » =x,, the expression in brackets is positive and there
is no change of type, even though the shear stress-shear rate law for a == 4-1
is not monotone. The case of simple elongation was considered by RENARDY [38].
He finds that a change of type can occur for —1 < a << 1. Although RUTKEVICH’S
instability for @ = 4-1 is unphysical it is nevertheless relevant for numerical calcu-
lations (see CROCHET [10]). The reason is that at high Weissenberg numbers the
eigenvalues of 7 can be arbitrarily close to the stability boundary -4-%/A. Numerical
errors can push them beyond this limit, with disastrous results.

Most of the constitutive equations which have been proposed, all the ones
considered here, are simple fluids in which the stress is determined by the history
of the relative gradient of the deformation

Fyx,1) = Vy(s,1),
where

u(xr(x9 T)a T) = aXr/ET

is the velocity of the particle & = (¥, t) at times = =< ¢. The constitutive equa-
tion satisfying material frame-indifference may be expressed by a functional
[48, p. 80]

(5.12) (%, 1) = _p" [C#, 7)]

on the history of the relative Cauchy strain
C(%,7) = FIF,.

In order to give a precise meaning to an expression such as (5.12), it is necessary
to specify the set of arguments on which F is defined, called the domain of F
or dom F. SAUT & JOSEPH [42], extending ideas of COLEMAN & NoLL [9], have
proposed a classification of constitutive laws according to the choice of this domain.
Roughly, this associates the nature of the stress-strain relation with the deforma-
tions which are allowed. In the linearized case the stresses which are allowed are
functionals in the topological dual of dom F. The smaller dom F is, the larger
is the dual, i.e. the more constitutive laws are allowed. To be more precise, let
C)(x) be some given history and ¢(z) = ¢(x,# — 7) be a small perturbation.
The linearization of F relative to CY(r) can formally be written as an integral

(5.13) F, [c?t(r) ]c(t)] = ft K (C?t(r’), t— 'r) c(z) dr,

T=—00 —o0 '=—00
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where K is a function of ¢ — v and functional of the history of C? whose values
are tensors of fourth order. The class of admissible kernels K depends on which
deformations c(z) are allowed. If, following CoLEMAN & NOLL, c is restricted to
a weighted L2-space, then K must also be in a weighted L2-space. If ¢ is restricted
to a Sobolev space, then Dirac measures and derivatives of Dirac measures can
be included in K, thus admitting Jeffreys type models.

To see the effects of hvnprhnhmfv rlparlv we exclude these cases and adgpt

(5.13) with a smooth kernel as the ba51s for our study of change of type.
It will be useful in what follows to specify the quantities in (5.13) more precisely.
Let

(514) Zr(x, 17) = §O(x’ T) + 5(’”5 T)
be the particle path for

¥ =x(%,1)= §0(x, 1),

where §° is the position of & in some given motion and &(x, 7) is a perturbation
with §(#, ) = 0. Quadratic and terms of higher-order are neglected. To this order
of approximation
(5.15) C(x,7) = C¥x,7) + c(#,7),
where

C?(x, T) = (v§0) TV§0: Cto(x1 t) =1,

(5.16) c(x,7) = (VEOT V& - (VETVE, c(x,1) = 0.

Let the perturbed extra stress be denoted by = and the unperturbed extra stress by
7,. The total extra stress is 7, + 7, where

To = F [Co(x 7)),

(5.17)
T= f K[C°(x,r) t — 1] c(x, 7) dr.

We assume that K is a smooth function of v and find that

4

(5.18) (8%4— u°-V)z= fK(a%+ u°-V)c(x,'r)dr

-+ terms of lower differential order,

in which u° pertains to the unperturbed motion. The position at time 7 of any
given particle is independent of the reference time ¢.

g, _ oxx7)

(5-19) dr ot

+ u(x, 1) - V,x(x,7) = 0.
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Hence
20

0
S | ud(x, 1)V, 8 =0,

at

(5.20)

w0V, £+ o(w0) Y, 8 0.
This yields
0 0
(5+@ W) o= (5 + @ V) @27V + vEVE)
0 0 T
=ver |G e ) ) (v (GG we-v) e v
-+ terms of lower order

— —VET. V(v VE) — (V(v- VE))T VE

= —(VE)T Vv VE° + transpose + terms of lower order.

By inserting this in (5.18), we find that the principal part of the constitutive equa-
tion is given by

0
(5.21) [8—1 + u, - V] 7 = M(w, 1) Vu(s, 1),
where
y tK aCe oC?
ijmn = _f ijkla_xk ox, T

Equations like (5.21) can also be derived in general, without linearization (§ 12).

6. Slip Surface Propagation in Problems Perturbing Rest

In problems which perturb rest we have £° =&, 7°=0 and
t
(6.1 = [ Gt —7)A,u()]d.

A Newtonian part of the stress arises when

G(s) = p o(s) + 8(),

where d(s) is a Dirac measure and g(s) is a smooth kernel. Thus

6.2) v = pA([u(x, )] + _f 8t — ) Aq[u(x, 7)) dv.
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In the special case when g(s) is in exponential form (6.2) reduces to the model
(5.3) of Jeffreys with » — m2 /2.. We introduce u# here and elsewhere rmlv to

[Eg SRV IR A= R B A ), 4 YYivii V3 ATOVRLL o B2GAL AL LW AALAL L4

not1ce that if x is small the underlying dynamics is close to =0 dynamlcs
When g =0, the dynamics is governed by

6.3) 88—: = G(0) A [u(x, )] + . {: G'(t — 1) Ay [u(x, 7)] dv,
and

6.3), Q-%l; +Vp—dive =0,

where

6.3)3 divu = 0.

Equations (6.3) are a first-order system, linear in the derivatives of p and the
components of # and 7. If G(t — 7) = const exp {—(# — 7)/A}, then the last
term in (6.3), reduces to —=/A. In the analysis of characteristics using the Maxwell
model the term /A is of lower order and it does not enter into the analysis of char-

ctarigtics Tn a4
aCteristcs. in 5\.11\,1(4}, for smooth G N in {6 3) the mt"g""' is of order —1 in ¢ and

—+1 in x, hence of order 0 as an operator in x and ¢, and is thus also of lower order.
This shows that we can analyze first-order systems for general kernels; we do
not need special models.

The case of one-dimensional shearing motion can be used to discuss the effects
of viscosity, wave speed, wave amplitude and classify the kernels. In this case (6.3)
reduces to

F=Om+ [u—0T T,
6.4
64 ou ot
S ot ox’
We may write (6.4) as
0 0
6.5 Tiptis=o,
where
u
a=|1].
0 1/o
B=- [G(O) 0 ]
0
f= f Gt — )6u(x, 1)

The eigenvalues

(6.6) C =+ VGO)e
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of B are the wave speeds along the characteristics
X -~ ¢t = const.

It is instructive to review the results of analysis of the following problem,
known as Stokes’ or Rayleigh’s problem, for a viscoelastic fluid. A fluid occupying
a half space is at rest for # < 0. At times 7 = 0, the boundary of the fluid at
x =0 is made to move forward with a constant speed. The problem may be
described by the following equations

ou o%u u(x T)

Qa_ﬂ8x2+_fg(t_ 7) dr,
6.7) ulx,1)=0, =0,
u(x, t) is bounded for positive values of x and ¢,
0, <0
u(0, t):H(t)={1’ £ 0

This problem has been studied by NARAIN & JosepH [33] when u =40 and
# =0 and by RENARDY [37] for u = 0 and singular kernels. Other authors,
TANNER [46], STRAUB [45], BOHME [5], KAZAKIA & RIvLIN [24] have studied the
problem for special constitutive models. TANNER used an Oldroyd model B,
which contains a contribution due to Newtonian viscosity. This model does not
require linearization; it automatically leads to a linear problem. All authors solve
the problem using a Laplace transform with respect to the time.

In the context of the present paper, the most interesting issue is the qualitative
behavior of solutions in relation to properties of the kernel g. In particular, wave
speeds and the presence or absence of discontinuities are of interest. These ques-
tions were addressed in [33], [37]. Not surprisingly, the crucial factor is the asym-
ptotic behavior of the Laplace transform of g at infinity or in other words, the
symbol of the operator in (6.7). The qualitative nature of solutions is thus deter-
mined by the type of the equation. With #(x, w) denoting the Laplace transform
of u(x, t), equation (6.7) becomes

1

(6.8) 00’ = 0G(®) iy, ilx=0) =—,

where é(m) is the Laplace transform of G:

Gw) = [ G(t) e~ dr.
0
One finds that

6 =22+ 50 o).

if G” is integrable. Since the character of solutions is determined by the symbol,
we should look at the problem

R R 1 R
0020 = G(0) iy, + —G'(0) .
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Since
1 1 1 G'(0)

GO + % O GO0)  » G(O)

an equivalent statement is

gw® . 00G'0). .
GO) "~ TG “ T

This corresponds to the equation

2, o
G(O) 1t G(o)z t XX

Hence the singularity may be expected to propagate at the wave speed ¢ = VG(O) /o
and to decay with an amplitude factor exp (¢G’(0)/2G(0)).

CoLEMAN & GURTIN [6], [7] proved that if the acceleration was discontinuous,
then its wave speed and amplitude had to be given by these expressions. In [33]
and [37] it is shown that these expressions for the speed and amplitude could be
derived for the problem (5.7) without assuming discontinuities of acceleration.
The demonstration of propagation in [33] applies to propagating steps in displace-
ment (propagating delta functions) as well as steps in velocity.

If a Newtonian term is included in the constitutive law, G contains a contri-

bution u 6(0), and é(w) at oo behaves like O(1). The equation becomes parabolic,
and smooth (analytic) solutions are obtained. As x — 0, a boundary layer forms
around the shock front. This was shown numerically in [46]. An analysis of this
boundary layer is given by NARAIN & JOSEPH [33].

RENARDY [37] studied the case where G does not contain a d-function, but some
weaker singularity. Specifically, he considers the kernels

6.9) —GO)= e, a>1.

1

1Ms

For « > 1, G(0) is finite, but G'(0) is not. The asymptotic behavior of é(w) is
given by
- G(0

(6.10) G(w) = % 4 O(w 271,
As one expects, there is a finite wave speed ¢ = VG(O)/Q. Solutions are zero in
front of the wave and not zero behind it. Across the wave, however, they are of
class C*, If « << 1, G(0) is infinite, and the asymptotic behaviour of G(w) is
dominated by a term O(w'*2) or O(In w/w) in the limiting case « = 1. The
wave speed is infinite and the solution becomes analytic everywhere except at
t=0.

Similar studies can be done for small perturbations of rigid motions; see the
work of Kazakia [23].
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7. Slip Surface Propagation in Nonlinear Shearing Problems

COLEMAN & GURTIN [6], [7] studied simple shear flows of a viscoelastic liquid,
which involve a surface across which the acceleration is discontinuous. They
showed that in a material with a smooth memory function (no Newtonian

viscosity), acceleration discontinuities propagate at the speed ¢ = VG(O)/Q.
If the amplitude is smaller than a critical amplitude, it decays with a factor
exp (1G'(0)/2G(0)), if the amplitude is larger than the critical amplitude, it will
reach infinity in a finite time (“blow-up”). This blow-up of acceleration waves
might be interpreted as development of a slip surface for the velocity. No such
result has been proven.

SLEMROD [44], MALEK-MADANI & NOHEL [28], GRIPENBERG [51] and HaT-
TORI [16] have studied simple nonlinear models. They show by contradiction
using Riemann invariants and the method of characteristics that, for suitably
chosen initial data, a global C*-solution for the equation of motion cannot exist.
This may mean the formation of a slip surface for the velocity [28]. Numerical
evidence for the development of such discontinuities was found by MARKOVICH
& RENARDY [29].

SLEMROD [43], following a suggestion of COLEMAN & GURTIN [7], uses his result
to explain some of the various instabilities of shear flows collectively called melt
fracture. Melt fracture is an instability of flow of molten polymers or polymeric
solutions down capillaries. In the experiments (TORDELLA [47]), the polymer is
forced down the capillary by high pressure. Extrudates leaving the capillary which
at lower shear rates are smooth and continuous, become rough (shark skin effect),
irregular and ultimately disintegrate. There are different explanations of the
different types of instability which can occur. These are reviewed in the paper of
PeETRIE & DENN [35]. None of the explanations can be regarded as established.
The mechanism proposed by SLEMROD has some possibilities when fracture is
associated with a stick-slip phenomenon. There is some controversy about the
presence or absence of slip in experiments. If it does occur periodically, as it
might in SLEMROD’s theory, it would be a candidate for the explanation of the wavy
surfaces shown in the pictures of TORDELLA [47]. It should be noted that the theory
of HUNTER & SLEMROD [17] requires an entirely different type of shear stress to
explain the type of hysteretic melt fracture which TORDELLA calls ripple.

It would be interesting to have the conditions under which slip surfaces for the
velocity might develop from weaker slip surfaces or from smooth data.

8. Classification of Equations for Flows Perturbing Uniform Motion

ULTMAN & DENN [49] consider the equations for two-dimensional steady
flow of an upper convected Maxwell fluid. They linearize at a motion with uni-
form velocity and zero stress, and they show that these linearized equations change
type when a viscoelastic “Mach” number

U

(8.1) M=—
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exceeds one. Here U is the velocity of the unperturbed uniform flow, and c is the

T

wave speed for propagation of singularities as considered in § 6: ¢ = VG(0)/o =
Vni(oh).

ULTMAN & DENN attempted to correlate some experimental observations of
D. F. James [18] with this change of type. JAMES observes a sudden change in the
slope of the heat transfer curve as a function of velocity. This happens at a critical
velocity, which, for the polyox solution used by JAMES, was about 1 cm/sec.
1t is not clear from the graphs how abrupt this change in slope is, but there is a
change of slope. ULTMAN & DENN also suggest that the transition from subcritical
to supercritical flow might explain abrupt changes in the drag coefficient observed
by A. FABULA [13]. Again, the idea is that the critical velocity at transition is the
wave speed c. They make an estimate of ¢ from a molecular theory and correlate
this prediction with the data of JAMES. Of course any such estimate can be expected
to give at best an order of magnitude, since the fluids used in experiments are not
really Maxwell fluids.

M. LuskIN [27] studies the equations of ULTMAN & DENN as a first order system.
He reduces them to canonical form and investigates characteristics. The stream-
line is a double characteristic, two characteristics are always complex, and the
remaining two are complex for M << 1 and real for M > 1. Each characteristic
has associated with it a canonical variable, which is a linear combination of the
two velocity components, the three components of the extra stress and the pres-
sure. This means that two of these variables can be discontinuous across stream-
lines, and two others can be discontinuous only for M > 1.

We shall now show how results similar to those of ULTMAN & DENN apply
to general constitutive models without “viscosity”. In linearization at uniform
motion, the extra stress is given by

(8.2) r= ft G(t — 1) Alu(C, 7)) dr,
where - v
_(xi— Ui —1)
6= ( X2 )

We assume G is smooth, positive and monotone decreasing. By differentiating
(8.2) with respect to ¢, holding » flxed, we find

or or !
(8.3) FTR Ua,—x1 = G(0) Afu(x, )] + _f G'(t — 7) A[u(S, v)] dv,

where the last term is of lower differential order. The leading term is the same as
for the Maxwell model, if G(0) is replaced by #/A.

It can be shown that the change of type is primarily associated with the be-
havior of the vorticity. Since we study motions in the plane, the vorticity curl u
has only one component, which we denote by . We take the curl of the equation
of motion, apply the operation curl div to (8.3) and combine the two. In steady
flow this leads to
(8.4) - 22

. o2

ox3

ft G'(t — 7) Ax(?) dr.
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The right side is again of lower order. The left hand side is elliptic when M < 1
and hyperbolic when M > 1. The elliptic roots found by LUSKIN [27] correspond
to the elliptic equatlon & = —Ay expressing the vorticity in terms of the stream
function.

9. Classification of the Quasilinear System kof Equations Governing
the Steady Flow of an Upper Convected Maxwell Fluid

The flow of an upper convected Maxwell fluid is governed by the following
system of equations

du . .
QE-—{—Vp—dwr:O, divu =0,
0.1

d e
v -{—}.[-‘-i;—Vur—rVuT] :nAd:f,ulA.

We consider two-dimensional flows. In view of the applications in Chapter 10,
we want to write the equations in both Cartesian and polar coordinates. In carte-
sian coordinates, we set

A 1
9.2 u=Wv), = [‘r y] .
We then obtain the equations
o; 4 uo, + vo, — 20u, — 2vu, — 2uu, = —o/A,

T, + ut, + vt, — yu, — ov, — u(u, + v,) = —7/2,
©.3) Vet uy + vy, — 2m0, — 2yv, — 2uv, = —v/4,
o(u, + uu, + vu)) + p, — 06, —1,=0,
oo, +uwv, +wvv)) +p, — 1, —7,=0,
u, +v,=0.

The subscripts denote differentiation. In polar coordinates, we denote by u# and v
the radial and azimuthal velocities and by ¢, 7, » the components of the stress in
polar coordinates. We then obtain the following system

U0, ag
©.4) 0+ U, + =2 — 20u, — 222y = — —,
r r A
CovTy yug ug\ T ov pv
T’+ur'+r——r_av’_#(v'+_r')—_l_r—r’
VYo Vg vo  y  2or  2u
Vt+uyr+ r _'ZTUr_2y r —2,“ r - 2 - ¥ + r(y—l_/'t)’

Uy T
e(u,+uu,+v7)+pr—0r——r—=e—+ ,
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Ubg Do Yo ouw 2t
9(”t+"”r+7\| t— =4 ——==——"+—,
\ ry ¥ F ¥ F
0 u
U+ — = ——
r r
The terms on the right of (9.3) and (9.4) are of lower order and do not enter into
the analysis of characteristics. The systems on the left are identical if we make the
R B o 1 0
identifications — ~— and — ~— —.
ox or ay r of

We consider steady solutions of (9.3) and (9.4). Thus we put the time derivati-
ves equal to zero and introduce q = (u, v, 0, 7,9, p). Equations (9.3) and (9.4)
are of the respective forms

and

d
©.7 det (Eyc' A(g) — B(q)) —0.

d
With o = — —l, this leads to
dx

98 (au+ 0?1 + o) 207 — p(ou + v)* + a0 +y + (1 + &P u] = 0.
Hence the streamlines

dy
(99) au —v=0

are double characteristics. There are two imaginary roots & = --i. Finally, the
last bracket yields

(9.10)
dy  ow—7
dx  u-+o—ou?

" {12 — 20tuv — (1 + ) (u + 0) + ov*(u + o) + ou*(p + 7)}%
(4 + 0 — ou?)? ’

These characteristics are real or complex depending on whether the argument
of the square root is positive or negative. This argument of course depends on
the solution. It should be kept in mind here that the integral form of the Maxwell
model imposes certain restrictions on the stresses (see Chapter 5). These roots
are the ones which exhibit a change of type.
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o dy . e
The imaginary roots e - arise from the identity

.11) {=—Viy,

where { is the vorticity and y is the stream function. It is easy to show that

9.12)

2

0%¢ 0*C
w+o— Quz)ﬁ + @ty — gvz)a)-z— + 2(v — puv) = lower order.

ox 0y

This shows that the interesting characteristic roots (9.10) which can change type
are associated with the vorticity. Using (9.11), we find that the quantity on left
of (9.12) with y replacing £, is harmonic to within terms of lower order. In
polar coordinates, the equation for characteristics becomes

db
(9.13) —re= the right-hand side of (9.10),

with u, v, 7, y, o interpreted as the physical components of velocity and stress in
polar coordinates.

10. Change of Type in Shear Flow, Extensional Flow, Sink Flow
and Circular Couette Flow of an Upper Convected Maxwell Fluid

In this section we consider the problem of hyperbolicity of the linear equations
perturbing some special solutions of (9.1). The characteristics equations (9.10)
and (9.13) are useful for this. To compute the characteristics of the perturbation
we need only to replace the u, v, 7, ¢, » in these formulas with the special values
that (9.1) requires for special flows.

(i) First, we again conider the uniform flows discussed in §8; u= U, v =
T =1y =0 =0. For these we find from (9.10) that

3 T
( ') dx_:I: Mz_l,

G
where M? = U?/C?, C* =yflp (: %) is the wave speed. The characteristics

are straight lines which start as lines perpendicular to the flow at M = 1 and tiit
more toward the free stream as M > 1 is increased.

(ii) Our second application is to shear flow. We find, using (9.3), that

(10.2) u=uwny, T=mnx; o¢=2n% y=0v=0,
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where the shear rate x is a constant. Inserting the fields (10.2) into (9.10), we find

Thnt
idtu

-+
£

— / %2y2 an 9 1
d n o A
A 2,2 2,272
1+ 2022 22 [1+222n2— f]
4 4

(10.3)

_ _ .
Mi]/”{ — 22—
C

The vorticity is hyperbolic outside a strip defined by
#2y

62

2

(10.4) > 222 + 1.

(iii) In extensional flow, we find, using (9.3), that
(10.5) u=sx,v=—sy, =0, o=2ms/(1 —258), y=—2ns/(1+22s),

where 0 <C s <C 1/2A. The stretch rate s is a positive constant, small enough to
keep ¢ bounded and positive. The unbounded ¢ at s = 1/(24) is one of the many
undesirable properties the upper-convected Maxwell model. Inserting the field
(10.5) into (9.10), we find that

dy 0s%xy p {xz »? }%
10.6 —_—= -+ = +5-—1;,
( ) dx u _ QSZXZ Vl — 4)22 a? b2
1—24s
where
2 fud 2 fad

@ = os3(1 — 24s)’ b* = os3(1 + 24s)°
We get real characteristics, obeying (10.6), outside the ellipse
x2 y2
pel + Vs >1.

(iv) Our fourth application is to sink flow. Here we must work with the polar
equations (9.4) and (9.13). For sink flow

(10.7) u= —Q/r, Q>0 is the sink strength,
v=1=0.
From (9.4), we find that

do 20 ro  2u 0
a7 0 Tr=0
We find that
(10.8) o = 290/r?.
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From (9.4);, we find that

We next introduce ¢ through the change of variables ¥ = —u + ud/AQ, where

do 2 r —0
E—¢[7+E] +r=0.

We require that ¢ be bounded as r*— 0 and find

—r2j2.Q

e
2,03 22Q
(10.9) o= —reie [

dr,

where the last factor is an indefinite integral. For small r, we find that
¢~ —r2logr>0.

Obviously ¢ is positive at every stationary point. The only stationary point is
at r = oo and ¢ increases monotonically from zero to AQ.

Turning next to (9.13), using (10.7-9), we find that real characteristics exist and
are given by (9.13) when

: ué [QQ2 — 270

1010) 9 [Zr @+ o] =52 [ESTE ] >0

The condition for hyperbolicity is satisfied if

0Q > 2n;

that is, when the flow rate is large. In this case the flow is hyperbolic in the circle

0Q? — 230

10.11 r<
(10.11) 7

The differential equations for the net of characteristics covering the hyperbolic
circle at the origin is

/| udliQo
_ iV pty _# .
ou® — (u + 0) Q* —mQ
-z ©
(v) Our fifth application is to Couette flow outside a rotating circular cylinder
of radius a. We suppose that the fluid sticks to the rod, and the rod rotates with

an angular frequency £2. We assume that v = v(r), u = ¢ = 0. Then using (9.4);
and (9.4), we find that

v = Qad%r,

T = —2a’yQJr?,
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and from (9.4);

y = 2v%/u.
From (9.13), we find that

241505

To have real characteristics it is necessary and sufficient

cat Q) 422
27(2)‘1_”z (1——L)—1>0.

r2
Moreover, 2(c0) = —1, and
dX  a*Q? [81%¢?
a2 ot | 2 —1].

2 first increases, then decreases, with a single maximum at r? = 842¢2 given by

a*?
2, = 2(8A%*c?) = T -1,
which is positive when
16A2¢*
(10.12) @ >
If (10.12) holds then there are two values
812c?
lzt]/ 16/‘{2c4
at which Z(r3 = 0. If
CZ
a? > 42%c? + orL

then 2(a*) > 0 and the vorticity is hyperbolic with real characteristics given by
(9.13) in the annulus
842¢?

16A2¢*
L= y1—G

2 2,2 cz
a <4lc +E’

QN
[IA
A

If (10.12) holds and

then X(a®) < 0 and the vorticity is hyperbolic with real characteristics given by
(9.13) in the annulus

2,2 2,2
8A%¢ <= 8A%¢

>=r
1622¢* 164%c*
SRl S )
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(vi) M. W. JOHNSON (private communication) has studied the flow of an upper
convected Maxwell fluid between eccentric rotating cylinders. He assumes a small
gap and uses the lubrication approximation. His analysis shows that change of
type occurs.

11. Classification of the Quasilinear System of Equations
Governing Steady Flows of a Class of Oldroyd Models

The Oldroyd models under discussion are given by (5.4) and (5.5). When a = 1,
this model reduces to the upper convected Maxwell model which we studied in

§9 and §10.
We have
_( U Fu, + vx))
3w, + v,) v, [/
_ ( 0 %(uy - vx)
\30, — uy) 0 )'

This gives rise to the following quasilinear system

uoy + vo, + (v, — u,) — al2ou, + t(u, + v,)] — 2uu, = —a/i,

Ty + 07, 30 — )ty — 0) — 56 + ) (4 + 0,) — plty + 0 = /2,

(ALY uy, -+ vy, + 10y — v,) — al2pv, + 1, + 0] — 2uv, — — %
o(uu, + vu)) +p, — o, —1,=0,
oo, +vv) +p, — 7, —17,=0,
U, +v,=0.
The analysis of characteristics follows the one used in § 9 exactly. We find
characteristic directions, « = —dy/dx from the equation

(11.2)

(1 + o?) (ous + v)? {Q(ocu + v)? + (E—G) (* — 1) — 2r6— (% + 1)

g

corresponding to (9.8). We can prove that the vorticity changes type from elliptic
to hyperbolic when the sign of

(11.3)
o+ S —0—Fa+a— [0+ 0%+ @-nFtu—or]
+ (ouv — 7)*

changes from negative to positive.
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For shear flows, we find using (11.1) that

_ 7 def N
T 14 #2201 —a*) D’

u=xy, v=0, T

o = Mla + 1)‘1,
vy =M(a — 1) 7,

where % > 0 is the shear rate.
Condition (11.3) now reads

(11.4)

22 #2nh %20l a —1
Dt [orr S @ 1 = + @2 ] [w T >0,

ie.
—n2x? x2nA %2nA
24,2 e 2 2
e e (e |
aef(@® —1) , 7
where B= D xnl—{—,u—3.

If a is in the range —1 < a = 1, B is always positive, and (11.4) describes the
exterior of a strip in the x,y-plane (it is easy to see that the quantity on the right
of the last inequality is always positive).

In extensional flow, we find using (11.1) that

2ys —2us

u=shov=o9h T=00 STy VT T 2a

where 0 << 5 << 1/(2al) for 1 >a>0 or 0<<s<<1/(—2ak) for —1=<a<0
(no restriction if a = 0).
Condition (11.3) is now evaluated as

2nps(2a*is — 1) 2s(l + 2a%4s)
2.2 . 7 2,2
957X [‘u + 1 — 4a%12s2 ] + 0%y I:;u + 1 — 4222252 ]

2ns(1 + 2a21s)] [ 2ns(2a’is — 1)
= [ 1 — 44?4252 1 — 4424252

(1L.5)

Let us distinguish two cases

. 2s(2a?is — 1) L.
O p+ T — 4227257 > 0 (this is the case for a = 4-1).
Then the region (11.5) is the exterior of the ellipse

x2 y2
T E= 1,
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where
29s2a’is + 1)
) diflu 1 — 4a?A%s?
os? ’
2ysQRa*ls — 1)
) d_ef‘u 1 — 4a%4%s*

os?

A

B

i QI =D Then (11.5) yield
(i) p + [ — 402252 < 0. en (11.5) yields

x2 y2
R 2R
where
29s(1 + 2a*4s)
K 1 — 4421252
A =
os* ’
2nsQaAs — 1)
pt 1 — 4a%2s?

B? = —
os?

Equation of the vorticity, steady case

One easily finds the equation satisfied by the vorticity { = —Ay, where p
is the stream function given by v, =u, v = —y,:
(11.6)  [—e* +p+ 301 +a) + dy(@— D]l + 2A—ouww +7) ,,
+ [—ov* 4+ pu + 30(a — 1) + $y(a + 1] ¢, + terms of lower order

def

= ACx_x —I— 2Bny + Cny-

This is a mixed elliptic-hyperbolic second-order equation. It is hyperbolic for
A= B?>— AC >0, ie., when (11.3) holds (see the previous discussion).

Equation for vorticity in the unsteady case

In unsteady planar flow the equation for vorticity is
(L7 e (%‘I‘ (u-V) C) + 2 [@ZZTEJr 20(u - V)%
ot —u—ga+a+3a-a) o+ 2w — r)aj’;“y
+@M—u+§«rﬂo*%w+1ﬂgﬂ=uwm
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The term in brackets on the right-hand side is of lower order and does not involve
any time derivative. The first term on the left-hand side is irrelevant for the analysis
of the type of equation (11.7), but it shows how (11.7) reduces to the unsteady
Newtonian case when A =0 (recall that u = %/4).

Equation (11.7) is of evolution type (hyperbolic) when

(11.8)
2% — [ — Ayl — @) — Jo(l + a))] - [y — MZo(l — a) — 3y(1 + a))] <O
(11.9) Ay — @) — Lo(1 + a)] — 5 < 0.

12. Quasilinear Systems for Simple Fluids with Fading Memory
of the Coleman-Noll Type

The determinate stress = in a simple fluid is given by an isotropic functional
of the history of the relative Cauchy strain G(s) = F/(t— 5) F,(t — s) — 1,
ie.

(12.1) QzQT=F [3 G(s) QT}
§=0

for all constant orthogonal tensors Q. By taking the material derivative of (12.1),
we obtain

dr
(12.2) o QT =F, [OGOT! o OT]
where F; denotes the first functional derivative of F. We have already noted in
§ 5 that different choices for the domain of the linear functional FI[OGQT| ‘]

lead to different representations of F,. If, following COLEMAN & NOLL, we assume
that the functional is defined on a weighted L?-space, we obtain an integral

(12.3) F, [G

—G] joK(s G)Jd

Here K(s, G) is a fourth-order tensor depending on s and on the values
{G(0), 0 < 0 << o0}. For the following, we assume that K and its first derivative
(as function of s) are integrable. In particular, it follows that K is uniformly
bounded in s.

The isotropy condition can be written as

(12.4) Kii(s, G) = 0,040 0K ssea(s, QOGOT).

This consequence of isotropy does not appear to lead easily to very explicit re-
presentations for K in situations where G is not confined to special motions. Of
course K is symmetric in the first two indices, and only the symmetric part in the
last two indices enters into (12.3).
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We next note that the material derivative of G is given by

d d, oo )
(12.5) = G(s) = (F () F'(t — 5) F(t — 5) F(1))

— —F () F0) G(5) — GOFO F'1) — - 6

dG(s)

= —LTG(s) — G(s) L — T

where L(x,t) = Vu(x, t) is the present value of the velocity gradient. Hence, we
find

dG (s)
(12.6) f Kyuls, ©)—7— f (Ko + Ky Gpi() dls - Ly (2)
F dG(s)
— [ Kyus, A ds.
0
It follows that
dvy
(127) —dt— = thp(x t) k(x t) + ij(xa t)a
where
(12.8) M (%, 1) = — of (-Kijkl + Kiyi) Gps) ds,
and
(12.9)
dGy(s )

o o d o
N, 0= [ Ky 660) 2= — [ 69 55 Kaa . 660) as.
0 0 $'=0
The coefficients My, of L, and the terms N;(¥) are of lower order and Ny(«, #)
does not enter into analysis of problems of change of type.
We may write (12.9) as

dr;

(12.10) —

Stlkp ka + Aukp‘Qkp + N, ij»

where
M, = Sy + Aiinps

and § is symmetric and A is skew symmetric in k and p. D and £ denote the
symmetric and skew symmetric part of L.

In its general form, (12.10) and the equations of motion are a quasilinear
system of first order in the derivatives of p, u, *. We could write out conditions
for evolutionary character or for change of type in steady flow as before. However,
we cannot in general isolate an equation for the vorticity, as we did for the Oldroyd
models.
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We can identify a class of models which is more special than the completely
sanaral aguation (12 10) hut much more seneral than the three-constant (')Idrnvd

ECICTa1 CYuUdiUIl (14.1VU), ULl 1HuLil 1UIT gULLIGL LUGL LUV LRILLTURISEt W=s

model. Let us assume that
(1211) Sukp - Z(alk jp + kP1p + 61}; jk + lk)’

where P is any second order tensor, expressib]e by integrals of the type (12.8).
We need no assumptions at all on the anti-symmetric part A, Using (12.11)
we may reduce (12.10) to

dr;;
dt _PlkaJ+ kat+Al]kPQkP+NU’
(12.12)
d
% _ PD + DP” 4 (A2 + (A@)) + N,

where Ay, is symmetric in ij and skew symmetric in kp.
The Oldroyd model with three constants arises from (12.12) with special choices
for the tensors A, P and N:

2Aukl - 51krjl + iTit — éllrk] — O0jTkis

(12.13) Py = avy + ‘;7—5170
1
Nij = — TTU.

We now demonstrate that the quasilinear system associated with (12.12) is
expressible in terms of the vorticity § = curl u. The equations of motion are

du . .
(12.14) e = —Vp+dive, divu=0.
d
We apply the operations curl and —- T to (12.14), and find that to leading order
12.15 @ b curldivE
(12.15) @775 =cur 1vdt+....

The question is now whether the right side of (12.15) is expressible in terms of &,
to leading order. Clearly €2 is expressible in terms of §, and so we need no re-
strictions on A. Then, working the part with tensor P, we calculate

€451 0501(Pix Dy + P Dii) = €ail Pite 90;Dyj + Py 059Dyl + ..

P, V22 P Lt
= Zeabl ik 3 + zsabt Jjk 3xb3xj8xk
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Noting now that

V2u = —curl &,
we get

= —3ei Py 0 (curl O)p + 3 Py 0,0,L, +

It follows now that to leading order (12.15) is a second order quasilinear system of
equations for the components of the vorticity.

Acknowledgement. The authors thank M. LuskiIN for useful discussions on the sub-
ject of this paper. Josera’s work was sponsored by The United States Army under
Contract No. DAAG?29-82-K0051 and by the Fluid Mechanics Branch of the National
Science Foundation; RENARDY’S, by the United States Army under Contract No.
DAAG29-80-C-0041, using material based upon work supported by the National Science
Foundation under Grant Nos. MCS-7927062, Mod. 2, MCS-8210950 and MCS-8215064.

Note added in proof: BERNARD COLEMAN, in an unpublished work, has shown that
our equation (12.10) can be consistent with his thermodynamics only if S;;, = Sy
This implies that the second order tensor P in (12.11) is symmetric.
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