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Abstract

An isotropic, incompressible linear viscoelastic solid subjected to a step shear displacement fails if the
relaxation function G(s) is such that 0 < G(0) <o0 and — o0 < G(0) < 0. In this case, the discontinuity in
displacement propagates into the interior of the body. The discontinuity will not propagate however if
G(0)=00 or G'(0)= — 0. In the former case there is a diffusion-like smoothening of discontinuous data
characteristic of parabolic equations. The case G(0) = oo may be achieved by composing the kernel as a sum
of a smooth kernel and a delta function at the origin times a viscosity coefficient. If the viscosity is small, the
smoothing will take place in a propagating layer which scales with the small viscosity. The case of
G'(0) = — <o is interesting in the sense that the solution is C® smooth but the boundary of the support of the
solution propagates at a constant wave speed. If 0 <G(0) <oo and —oo <(G’'(0) <0, then the material
accomodates stress waves under step traction leading to an elastic steady state.

§1. Introduction

Let the position of a particle P of a solid in its natural configuration be X at ¢ =0 and x
at a later time r. Let the motion be given by x: E> X R — E* such that

x=x(X,1).
def
letu=x-X,

def
2E'= grad yu(X, 1) +(grad yu(X, 1))"

Then the Cauchy stress T for an isotropic, incompressible linear viscoelastic solid [1,4]
is given by:

T= —pl+2pE(t)+2fwg%{E(t—s)—E(t)}ds

dG(s)E(t 5)ds. (1.1)

= —p1+2(,u.+G(0+))E(t)+2f
Equation (1.1) also follows as the first order linearized Cauchy-stress [1,2] for an
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arbitrary isotropic incompressible simple solid in the weighted L, (0, o) fading memory
space of Coleman and Noll [1].

The parameter p is the shear modulus or the second Lamé constant in the theory of
linear elasticity. The relaxation function G: [0, c0) > R * is assumed to have the
following reasonable properties:

(i) G & C[0, )N PC'(0, o0); that is, G is continuous and piecewise continuously
differentiable.

(ii) G is monotonically decreasing and lim G(s)=0,G 0" = G(0).

(ii)) G(s) and G'(s) are O(e™)ass ' % for some X > 0.

§2. Propagation of discontinuous shearing displacements

Let a viscoelastic solid at rest occupy the region 0 < x < 00, —00 <y <00, —00 <z <
. The bottom plane is given a step displacement in the y-direction. The resulting
displacement field is in a form

x=X, y=Y+v(x,1), z=Z (2.1)
which automatically satisfies the incompressibility condition. Using (1.1) and the
momentum equation we find that

9% % +dG, | 0%
v (n+ G(O))g;g + OF;(S)—T(XM—S)ds,

ax
_ {1 fort>0,
"(O’t)'{o fort<0,

lim v(x,1)=0,

X — 0

o(x,0)= 32 (x,0)=0,

(2.2)

v(x, t) is bounded for x > 0 and 1 > 0.

In deriving (2.2) we assumed that the material was initially at rest; hence dv/91(x, 0*)
=9v/d1(x,07)=0. We solve (2.2) using Laplace transforms following Narain and

Joseph [5].
Let .
7(x, u)d:fa° e “v(x, s)ds

0

_ def o0 YueC2Reu>0.
G(u)=f e G (s)ds
0

Then the transform of (2.2) yields

_ 1 _ )
 uy=—e M [ ———m"7. 2.3
=y V (»+uG (u)) @3)
The properties of G (u) are specified in §4 of [5]. Here we note that
lim 4G (u)=G(0), (2.4)
Ju|—
larg u|< 37
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Reu>0 and Imu=0=ReG(u)>0 and Im G (u) =0,

Reu>0 and Imu>0=ReG(u)>0 and Im G (u) <0, (2.5)
Reu>0 and Imu<0=ReG(u)>0 and Im G (u)>0.

It follows from (2.5) that
Re u > 0 => Re(uG (u))>0. (2:6)

From (2.6) it follows that 5(x, u) given in (2.3) is analytic in the half-plane Re u>0.
v(x, t) is then given by the inverse Laplace transform

1 y+ico eul—uxn(u)

= 0
v(x, 1) 577 ), ” du, v>
where
et [P (2.7)
)= Gerue ()
Let,
(2.8)

d:f_l_d_e'f P
=TTV r+G00)

Using (2.4) and the analyticity. of o(x, u) for Re u> 0, we can invert (2.7) arguing
along lines given in §5 of [5] to show that

t<ax=v(x,1)=0, (29)
def
t>ax=v(x,t)=f(x,1)
1 1 ,>1 o 1 . _
==—+—] —exp|—x cos (ﬂ—r(y))) sin( yt —8(y))dy,
2 Wfo y p( Vel 7
where
def [ . )
0(y)=x sin 3 (7= r(y)), (2.10)
- def .
Cp+iG () =a(y) . (2.11)
Now (2.5), implies that for Re 4 =0, Im u> 0
arg (uG (u)) = arg(i¥G (iy)) € (0, +37),
and since
p>0, r(»)e(0 in), (212)
it follows from (2.12) that (2.10) converges uniformly for ¢ > ax.
Equations (2.9) and (2.10) together imply that
o(x, 1) =f(x, )H(t — ax),
def [ 1 for£>0, 213
H(g)“{o for£<0. ( )

Now we show that a discontinuity in the displacement field (failure) propagates into



22 A. Narain and D.D. Joseph

the interior. For 'this, it is enough to show that f(x, ax*)=e* ' ©/2Ar+GO 5 g for
0<G@0)<oo and —oo < G'(0)<0. Assuming that G(s) is regular to justify the
following calculation, we note that

6l0) , 5O o[ 1)

u
(For weaker assumptions on G see Renardy [6].) Then, using (2.14) we rewrite (2.7) as
follows:

G (u)= (2.14)

1 fy+ice® )
v(x,1)=z— — exp| —xu d
2771[7-@ 7 \/#+G(0)+-—————Gl(0) +0(i) ’
. ” g
_ G'(0) 1 1
_ L v+f-we""{“’ [l n+c(0))(ﬂ)+°(l?>]}
27y o u du
_ ax G'(O) ‘—1_ y+ico ¥ TaxY 1
°"p[ 2 (,HG(O))L,,-L_M (vl Jou
_ axG'(0)
exp 2n+ G(0) H(t—ax)

1 [y+ico axG'(0) e v (1
+ — —_
2771'.[ io exp[ 2(p,+G(0))] u O(u)du'

y-

(2.15)

The second term in (2.15) is continuous for x, t&R* because it is uniformly
convergent for all positive x, t. Comparing (2.15) with (2.13) we get:

f(x, ax*) = exp(axG’(0)/2p + 2G(0)). (2.16)

Equation (2.16) establishes that viscoelastic solids with kernels satisfying 0 < G(0) < o
and — oo < G’(0) < 0 fail under step displacement data on the boundary. The case
G’(0) = 0 implies an undamped discontinuity.

§3. Kernel functions for which the material does not fail under step displacement

[()] Let, 0 < G(0)< o0 and G'(0)= —o0.

Then f(x, ax*)= 0. But the boundary of the support of v(x, ¢) disturbing the initial
state of rest propages with a constant wave speed C = [+ G(0)] /p. The solution
v(x, t) is smooth.

[(ii)(a)] G(0) = oo. In this case we again have smooth solutions and the discontinuity at
the boundary is instantly smoothed as in parabolic problems.

[
(

- — - — —
—~ - — T~ - e e S——
~

[(ii)(b)] Let T be allowed to have distributions in its kernel as in the Theory of Saut and .

Joseph {7]. For example,

G(s)=ad(s)+g(s), (3.1)

a>0
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where g(s) has the properties (i)-(iii) of §1. In this case we have to solve the problem:

FE) % % t 3%
= (u+2(0))— +a— + (s)—(x, t—s)ds,
peg = (48O 5 +ag oo+ [2() 5 (i =s)
_ {1 fort>0,
U(O’l)_{O for 1 <0.
lim v(x,1)=0, (3:2)
X —r o0
o(x.0)= S (x,0)=0,

v(x, t) is bounded for x > 0 and ¢ > 0.

There is a viscous term “a(3’v)/(8x23t)” in Eqn. (3.2). The solution of problem

(3.2) is given by:
1 y+ico 1 o
2mi )y o U exp[ut uxv w+au+ ug(u) ]du.

Following the argument given in §18 [5], it can be shown that (3.3) yields smooth C*
solutions for a > a, > 0 for any a,. Also, following §18 [S], we can establish that for
small values of viscosity a, v(x, ¢, a) has a transition layer around the discontinuous
solution given by (2.13) and (2.16). This smooth transition layer propagates with the
discontinuous solution for bounded x and 7 and scales with the small viscosity a.

(3.3)

v(x,1,a)=

§4. On stress-waves and their reflections due to step-traction data on the boundary for
0<G0)<cc and —c0 <G'(0)<0

In this section we consider a problem in which the solid occupies the region0<x </,
— 00 <y < o0, —00 <2z < 00. A step shear traction is applied at x = 0 and the boundary
at x=2¢is held fixed. The resulting shearing motion is of the type (2.1) and the
displacement field v(x, ) is governed by:

% 3% (dG , | 3%
pog = (GO + [ )5z (et =s)ds,
v(¢,8)=0 V>0,

(r(-71=[(e GO B0+ [ 42 () 320,000

-

v(x,0)=%(x,0)=0 Vx>0,

v(x, t) is bounded for x > 0 and ¢ > 0.

(4.1)
t>0,
10,

for
for

Now solving (4.1) by the Laplace transform, using the notation introduced in §2, we
find that :
n(u) y sinh un(u)(£— x)

u? cosh un(u)¢

v(x,u)=
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where
def P
wWu)=,/——, UECDReu>0. (4.2)
+ uG
Y G+ uG(w))
From (4.2) we see that
s dp 1 cosh un{u)(£— x)
. —TxY = L av -
(x, u) 7 dx U=y cosh un(u)¢
. 1 —un(u)x -2 HX{-X)‘ ..._.____.—l
=3 e [] 4 g7 2™ | 0= o ] . (4.3)
Using (2.14), we write
un(u) = u EORNE
(}L+G(0))+( +0(——))
u u2
p 1 G(0) (l)
= - +0|—). .
“YVur6@® " 2wre@ \u 44

If we choose Re u = v sufficiently large (say larger than y*) then, since G'(0) <0, we
have '

Re(un(u))> 0. (4.5)
From (4.5) it follows that
Reu=7y> y* =g~ 2¥1W)| = g7 2/Retunli) < (4.6)

Then we can write

______1_____ — —~2un(u) ~dun(u)l —6un(u)l
1+e‘2""“‘)"—1—e ME g dunu)l _ g Oumtu)f g . 4.7)
The right hand side of (4.7) is absolutely uniformly convergent, and (4.7) and (4.3) give

- T<"-’>(x, u) = %[e—uﬂ(u)x + {e—un(u)(Zl—x)_ e—un(u)(2!+x)}

- {e—un(u)(4(~x)_e—un(u)(4!+x)} + ,]

(4.8)

The right hand side of (4.8) is absolutely uniformly convergent for Re u > v*. Thus
using (2.7) with y > y*, we can invert (4.8) term by term. Using (2.13), we find that

171 eoerto] = (6, )11 - a0). (49)
Using (4.9) in the inversion of (4.8), we get
T (x, 1) =[f(x, 1) H(t = ax) + { f(2¢— x, 1) H(t = a(2£— X))
—f@¢+x, ) H(1 - a(2¢+ x))} £ ...]. (4.10)

Equations (4.10) and (2.16) imply the existence of damped stress-waves which reflect
repeatedly from the bounding walls. This is a generalization of Hunter’s {3} result for
exponential kernels. The characteristic lines along which the stress waves are reflected
are shown in Fig. 4.1.

-
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¢
kd
' T
L t= a(2/+x)
—t= a(2/-x)
—t= ax
0 { X
Figure 1.
Using (4.2) we observe that the asymptotic steady displacement is given by:
lim o(x,t)= lim ud(x, u)
t— oo u—0"
- lim n(u) sinh un(u)(£—x)
u—0* Up cosh un(u)’
) £—x)
=] 2 X (
lim 7 (u) >
=({—x)/p. (4.11)

The displacement (4.11) is same as the displacement of an elastic material due to unit
shear stress at the boundary x = 0.

Conclusion

Kernels which are commonly used to describe viscoelastic solids lead to failure under
step shear displacement. (The same remark holds for elastic solids.) This failure can be
avoided by adding a small “ Newtonian” viscous term to the constitutive equation or by
some other choices of kernels G(s) which have G'(0) = — .
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Note added in proof

(a) The amplitude derived in (2.16) is the same as the one derived by Coleman and
Gurtin (Arch. Rational Mech. Anal.,, Vol. 19, pp. 239-265, 1965) as a necessary
condition for the amplitude of acceleration waves.

(b) The precise arguments leading to the assertion (i) in §3 of this paper can be found
in the Ph.D. thesis of A. Narain (Univ. of Minnesota, 1983).
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