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Summary 

The problem of extrudate swell of a viscoelastic fluid from a round pipe is 
studied by the method of domain perturbations. The perturbation problems 
are solved by a finite-element method through second-order in the flow rate 
parameter e for small flow rates. The analysis extends the work of Sturges on 
swelling in two-dimensional channels to round capillary tubes. In perturba- 
tion studies for small e, the rheology of the fluid may be expressed by three 
parameters, the viscosity and the two constants (Y, and (Y* appearing at order 
two in the expansion of the extra stress around zero shear. Surface tension 
has an important influence on the shape of the jet at low speeds. The shape 
of the surface on a round jet depends on CX, and CQ, in the plane jet only on 
(Y,. The analysis predicts that no matter what the constitutive equation may 
be, the jet will first contract if the radius of the pipe is sufficiently small. The 
contraction takes place in a length less than l/10 the diameter of the jet and 
is followed by a swell. The contraction is usually small and may be hard to 
observe. There are five different contributions to the jet shape at second-order 
but only the viscoelastic ones persist as the pipe radius goes to zero. 

1. Introduction and conclusion 

An incompressible fluid tends to deform its free boundary laterally 
outward as it exits from a conduit at low Reynolds numbers. This so called 
extrudate swell phenomenon has been a controversial topic and has attracted 
the attention of many rheologists. Theoretically, one may analyse the prob- 
lem by either numerical simulations or analytical methods. Due to the 
complex nature of the problem (e.g., mixed boundary data), much of the 
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research effort has relied on numerical methods. A complete survey on these 
numerical analysis is, however, outside the scope of this paper. Readers 
interested in this domain of the subject are referred to a recent paper by 
Crochet and Keunings [ 11, in which the authors assumed zero surface tension 
and an upper convected Maxwell model for the fluid, and were able to 
obtain swell ratio as high as 100%. On the other hand, analytical approaches 
to the problem are centered about either overall conservation laws (e.g., 
Joseph [3]) or perturbation methods. Applications of the latter have been 
recently illustrated through second order in the plane jet (Sturges [2]), and in 
the linearized problem of the round jet (Trogdon and Joseph [4,5]). 

Our analysis is very close to the one by Sturges [2]. He studied the 
problem of extrudate swell of a plane jet using the method of domain 
perturbations and calculated solutions through second-order analytically, 
using biorthogonal series. Here, we study the round jet and use finite 
elements to compute the perturbation solutions through second order. The 
perturbation method can be more or less general than numerical studies 
using explicit rheological models. It is less general because it applies only to 
problems which in some sense perturb a state of rest. It is more general 
because the rheology of the fluid at low shears can be characterized by a few 
constants, no matter how complicated the underlying constitutive equation 
may be supposed to be. 

Our results, like our methods, are close to the ones exhibited by Sturges 
except that in the axisymmetric case we get an extra term, zero in the plane, 
which involves not only the zero shear limit -2a, of the first normal stress 
difference coefficient but also the zero shear limit 2a, + (Ye of the second 
normal stress difference. Another way to say the foregoing is that the swell at 
second order in plane flow depends on non-Newtonian contributions of the 
form 

lim N1(x) -= 
2 

-2a 

x-0 x 
1’ 

Terms which prevent the proof of Tanner’s theorem in the axisymmetric case 
bring extra terms proportional to (Ye into the expressions for the motion and 
the free surface. 

In this paper, we shall give the equations which we solved by finite 
elements. We shall discuss the shape of the free surface. Detailed graphs of 
pressure and velocity distributions of the perturbation problems can be 
found in Tieu’s Thesis [7]. We tried to compare our solution with experi- 
ments but we failed because there are no systematic experiments showing the 
dependence of the jet shape at low speeds under conditions in which the 
controlling parameters and the (important) pipe radius are varied systemati- 
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tally. There are many photographs of extrudate swell in the published 
literature but they are all casual. 

We now complete the introduction by stating the main results of our 
analysis and computations. 

We have derived the following expression for the shape of the jet 

(1.1) 

where (see Fig. 1): R = x/a, and h(x), a, ii denote the jet shape, the pipe 
radius and the average velocity of the flow respectively, p and u are the 
density and the surface tension of the fluid, p and (Y,, (Y* the viscosity and 
viscoelastic material constants which appear in expression (2.4) of the extra 
stress in a second grade fluid. The functions 6 ,( a) and hzi( a) with i = 0, 1, 
2, 3, are parameter-free functions determined as solutions of the boundary 
value problems in Section 2. The graphs of the functions are displayed in 
Figs. 2-6. We note that the functions h,(a), h2i(a), i = 0, 1, 2, already attain 
at 2 = 2 their corresponding asymptotic values at X? = + cc, whereas L23(2) is 
about 10% less in magnitude than its asymptotic value. Our solution (1.1) is 
therefore completely explicit with regard to its dependence on the parame- 
ters and it gives the shape of the jet, as well as its final radius. 

For very small capillary tubes, (1.1) reduces to 

h(x)=a+ “b”2 [ J;2p] ; “b”2 [ h22;y + o(a). (1.2) 

This shows how the effects of viscoelasticity are amplified in small tubes. 
The solution (1.1) can be compared with the expression 

y= 1+92/;,,(P)] +$[4hm1;(P)] +$74h,&)] 

+ $ 2[4h,,(a)] + o(hq, 
i 1 

Fig. 1. Extrudate swell. 

(1.3) 
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Fig. 2. Surface shape correction at first order, determined from problem (2.29-36). Results 
computed on Meshes I-IV are essentially the same. Mesh I 0; Mesh II x ; Mesh III 0; Mesh 
IV A. 

given by Sturges for the plane jet. (The numerical coefficients in the brackets 
of ( 1.3) are different from those in ( 1.1) because the perturbation parameter E 
in Sturges’ analysis is not the same as ours (2.13)). The viscoelastic contribu- 
tion to the plane jet has no term proportional to (Y*. 

It is well known that (Ye is a parameter associated with nonlinear viscous 

Fig. 3. Surface shape correction at second order due to Reynolds number, determined from 
problem (2.56.A-B). See legend of Fig. 2. Results computed on Meshes I-IV are very close 
together. 
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0.6 

Fig. 4. Surface shape correction at second order due to (Y,, determined from problem 
(2.57.A-B). See legend of Fig. 2. 

fluids which do not exhibit elastic behavior (Reiner-Rivlin fluids). The 
dependence of the jet radius on (Ye therefore contradicts the notion that the 
jet swell is determined by elastic recovery and returns a little to the original 
conjectures of Reiner about the normal stress contribution to the swell (see 
Truesdell and No11 [S]). 

It is generally assumed that polymeric fluids will climb rods (Weissenberg 
effect). This implies that 3q + 2a, > 0 (Joseph and Fosdick [9]). On the 
other hand, the polymeric fluids for which values of the second normal stress 
difference have been reported are such that 2a, + (Y* < 0. It then follows 
(Saut and Joseph [lo]) that there is a C E [ 1, $1 such that for each climbing 
fluid with a limiting negative second normal stress difference 2a, + Ca, = 0. 

0.6 

Fig. 5. Surface shape correction at second order due to a*, determined from problem 
(2.58.A-B). See legend of Fig. 2. 



Fig. 6. Surface shape correction at second order, determined from problem (2.59.A-B). See 
legend of Fig. 2. 

Using this relation, we may rewrite (1.1): 

We may also introduce dimensionless parameters 

cw,u R ~ 2pafi 
we=-%' e ~ 3 

Ksw 
a . 

In terms of these dimensionless parameters, (1.4) can be written as 

h(x) -= 
a 

The viscoelastic effects on the jet shape are exhibited by the functions 

(1.5) 

The viscoelastic contributions are therefore bounded between two limiting 
cases C = 1 and 4/3, which are shown in Fig. 7. We note in this figure that 
A,,( 2) attains its minimum at Z2, = 0.06 and hNN( 9,) = - 0.1. The condition 
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Fig. 7. Surface shape correction at second order due to viscoelasticity in a fluid. 

h(x)/a > 0 is violated when W, > 10/K. Our solution therefore has limita- 
tions going beyond those involved in the perturbation. Our results here are 
purely formal and lack rigor. 

A formula for the ratio of the final radius of the jet to the pipe radius can 
be obtained by substituting 2 = cc in (1.5). Thus 

h/ a = 1 + ~[0.126 + 0.008 R, + @IV,] - 0.159 K2 + O(l171~), (1.6) 

where 0.272 -C + < 0.331. The first two terms on the right-hand side of 
expression (1.6) are very close to the results 

h/u= 1 +0.123K+O(U2) (1.7) 

obtained analytically by Trogdon and Joseph [4] for the linearized “stick-slip” 
problem. Trogdon and Joseph [5] also show that (1.7) is a good approxima- 
tion when K < 0.1. Thus we can reasonably expect our results to be valid for 
a slightly different range of K. The exact validity domain for this work, 
however, remains an open question. 

2. Mathematical formulation 

We consider an axisymmetric extrudate swell problem, illustrated by Fig. 
1, in which the lengths L,, L, are extended to infinity. The free surface of the 

jet is described by the function h( x;E); and the fluid-filled space is defined 
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by: 

u((~,e,X):TE[O,h(x;~)],eE[0,2~],x~0}, (2.1) 

where E is a perturbation parameter defined by (2.13). The governing 
equations of the fluid flow are 

V * U(r; c) = 0 (2.2) 

and 

pU* VU= div T, forxE V,, (2.3) 

where T = -pl + S. 
T is the stress and S is the extra stress. Our analysis is based on a 
perturbation of rest state (E = 0) and is carried to order two in C. To this 
order it suffices, without losing generality in the choice of a constitutive 
equation, to assume the second-order perturbation of the stress for slow 
steady flow. Thus 

s = #LL4, + “,A* + “*A;, (24 

where 

A, = vu+ (vU)T, 

A, = U. VA, + A,. VU+ (A, * vZI)~. (2.5) 

The boundary conditions associated with (2.2-3) are as follows: 
(i) There is no-slip along the rigid wall (r = a, x ,< 0), 

U(a,x; <)=O. (2.6) 

(ii) The free surface is a stream line (r = h( x; c), x > 0), 

w(h, x; E) -h’u(h, x; E) = 0, (2.7) 

where w and u are the radial and axial velocity components, respectively. 
(iii) On the free surface (Y = h(x; E), x > 0), the shear stress component 

T,, vanishes: 

h’( T,, - T,,) - h’*c, + T,, = 0, (2.8) 

and the normal stress component T,, is balanced by surface tension 

T,, - h’Txr - 
oh” 

(1 +h,2)B/2 + h(l +;,2)1/2 =‘- 
(2.9) 

The primes in (2.7-9) are derivatives with respect to x at a fixed E; that is, 

(-)‘(x; +-&-). (2.10) 
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(iv) At the exit plane, the free surface joins the exit lip, so that 

h(O;e)=a. (2.11) 

(v) Far downstream, the flow in the jet is uniform; and the slope of the 
free surface is flat: 

h’(x; 6) = 0 as x --) co. (2.12) 

The perturbation parameter z is chosen to be proportional to the volume 
flow rate Q: 

(2.13) 

When E = 0, the above problem has a unique solution (see [6]): 

[UP, 4 = [o, o/a, 4, (2.14) 

and V, = V, is an infinite straight tube of radius a. 
When c * 0, we seek the coefficients through order C’ of the formal series 

representation of solutions 

E 
n=l I 

UyR,X) 

E” p’“‘(R, x) 

hyR, x) 

(2.15) 

The coefficients of the series are defined on V,. The domain V, can be 
determined from the map V, + V,: 

e=e, 
x = x. (2.16) 

The mapping function (and its series representation) is a to-be-determined 
unknown of the problem. The coefficients (.)t”l( R, X) of e” in (2.15) are 
defined as follows: 

Another type of coefficients (e)(“)( R, X), which is useful for the analysis 
(see Joseph and Fosdick [9]) is defined in terms of partial derivatives of z 

Relations between the above coefficients can be established using the chain 
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rule 

(.)[“l(R; x)=2 $+$;)“(.)(Cx; +=a , 
( x=x 

(2.17) 

where dr/dr = I?[‘]( X) = h(‘)(X) at R = a. 

2.1. The first-order problem 

At first order, we obtain a Stokes flow problem defined by: 

V~U(‘)(X) = 0, 

- vpy x) + q7wy x) = 0, forXE V,. 

The (“stick-slip”) boundary conditions on R = a are: 

atx<O: wo) = u(t) = 0; 

atx>O: WC’) = 0, 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Equations (2.18-19, 20-22) are derived from 2.2-3, 6-Q respectively. 
The choice of c in (2.13) leads us to the following conditions at x = + 00: 

AsX-, -cc, 
/ 

%(‘)R dR = 1; (2.23) 
0 

andasX+ cc, u(‘) = (2/a2)ex. (2.24) 

The first-order correction h(‘)(X) is determined by the differential equa- 
tion 

h(‘)(X) =_1_ h(‘)“(X) + a2 
llW(') 

u 
-p(‘)(a,X)+2~~ , (2.25) 

subject to the boundary conditions: 

h(‘)(O) = 0. (2.26) 

h(‘)(_ = 0. (2.27) 

The dimensions of [E, p, u ] are [ L3/S, M/LS, M/S2]. We use these scales 
to form the following dimensionless quantities: 

R =X/a, 

i = R/a, 

,. a a 
v =av =ei,+ep,+eLa 

a~ ar i av 



213 

p,(r,m)=p(R,X), 
ti,(,<i, 2) = a2U(‘)(z?, x). (2.28) 

We also let 6 = {(!#,a): i E [O,l], 8 E [0,27r], - 00 < LC < cc}. The first- 
order problem, defined by (2.18-27), can be written in dimensionless form, 
using (2.28). The resulting dimensionless equations are listed below: 

V * 47, =o, (2.29) 

-Vfi,+ V2U,=0,in &. (2.30) 

For.?<O: t;,(l,~Z)=ti,(l,Z)=O; (2.31) 

J 

1 
as?- -cc, ti,idi= 1. (2.32) 

0 
A 

For_?>>: +,(l,i)=$(l.Z)+ !$(l,x)=O; (2.33) 

as R + + cc, ti, + 2. (2.34) 

The dimensionless free surface correction t$ ,( 2) at first order is given by the 
solution of 

” 

4;’ + S;, = -J?, + 2% for 2 > 0, 

satisfying h,(O) = &].C_m = 0. 

(2.35) 

(2.36) 

2.2 The second-order problem 

The governing equations at second order are 

V . u(2) = 0, (2.37) 

&‘). vu(‘) = - vp C2) +/.Lv2u(2) + TJ . {a,A,[U(‘q +a2A,[U(‘q2}, 

(2.38) 

for X E Vo. Moreover, since 

VP (‘)=/iv *A,[W], 

it follows from a theorem of Giesekus [ 121 that 
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The equation (2.38) then becomes 

puW. vL/(‘) = v 
1 

_pw + ; UC’) . v,(‘)+~T~{A,[U(‘)]~}) + 

+E”v2U2)+ (a, +a2)v -{.4,[U(‘q2}. (2.39) 

The governing equation (2.37, 39) satisfy the following bpundary condi- 
tions: 

(i) In the tube, XG 0, 

W(2)(a, x) = U(2)(a, X) = 0. (2.40) 

(ii) As X+ -00, 
J 

‘uc2)R dR = 0. (2.41) 
0 

(iii) In the jet, X> 0, 

W(2) + A(‘> dW(') - - h(‘>‘U(‘) = 0, 

dR 

a~(*) + awc2) aw(‘) au(‘) 

aR ax 
+ h(l)_ - a au(l) + awQ) 

i aR aR ax - +2/z(‘)’ F-ax 
i ( i 

+‘A 
P 

(2.42) 

(2.43) 

(iv) As 

x+ +co, (1(Z) = - 4h(‘, 
a3 (mJex- (2.44) 

The asymptotic conditions (2.41 and 2.44) at X= f cc arise from the choice 
of c in (11.13), while the conditions (2.40, 42, 43) arise from (2.6-g), 
respectively. 

At positions far upstream from the exit (X -=z 0), the velocity at first order 
is essentially that of Poiseuille flow: 

U”)(R,X)= U*(‘)(R)=4(1 -R2)e,. 

The convective term pU*(‘) . VU*(‘) vanishes. Equation (2.39) is of the form 

- VP(*) + /_w*U(*) = vy( R), (2.45) 

where y(R) = 64[a,(3R2 - 1) + $a,R*]. The asymptotic problem at X +C 0, 
is therefore defined by (2.37, 45), subject to the no-slip condition (2.40) and 
the constraint (2.41). The solution of this problem is 

u*(2) = 0 (2.46) 

and p *c2) = y(R) + constant. 
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For simplicity, we will use the asymptotic boundary condition (2.46.a) 

when X --) - 00, instead of the constraint (2.41), in solving the second order 
problem defined by (2.37, 39) and the boundary conditions (2.40-44). 

The free surface correction h (2)(X) at second order can be found by 
solving the ordinary differential equation 

h(2)” + ho = _p(2) + zpg 
a2 1 + ‘Y’A2RR + ~2b43RR + 

3 (2.47) 

Subject to boundary conditions 

hc2)(0) = 0, 

and 

(2.48) 

h(2)‘(x_a, = 0. (2.49) 

Equations (2.47-49) are derived from (2.9, 11 and 12). 
Some simplifications may be made on the undisturbed jet surface. Since 

the following boundary condition at first order, 

aw(l) w(1) = - + au(l) 
ax aRzo~ 

holds at R = a and X > 0, it can be shown that terms proportional to {A 2}XR 

and <4>, 
awcl) 

in eqn. (2.43) vanish. The term h(‘)‘p( - 
+ ad’) 

- aR ax > in eqn’ 

(2.47) also vanishes. Furthermore, in this equation we may express the 
partial derivative ap(‘)/aR using (2.19) as follows: 

&I(‘> i aw(l) w(‘) 

i i 

a2w(l) 

aR2 +~~-~ =p ap 
+ 1 aw(‘) 

- a aR ’ 

We have therefore the equivalence 

awcl) 
-p(l) + 2~~ ?$i-ii!&?)_ 

a aR 

To form dimensionless equations at second order we use (2.28) and intro- 
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duce the following dimensionless variables and parameters: 

A,(R) = - a362 /p>(X), 

P2 

The dimensionless problem at second order is therefore in the form: 

6. e2=o, 

(2.50) 

(2.5 1) 

(2.52) 

a2 _+A$= _ [4!!5+!.%)+24(!p)], 
aa 

wheni= 1 andR>O; > (2.52.cont.) 

ci;=G2=0,wheni= 1 andzZ<0; 

fi21_$,_ _-x, = 0; and 

iTzI.u”~+oo = -4&e,. 

The dimensionless jet shape correction h 2 (a), at second order, is determined 
from the solution of the differential equation 

h;l + /r2 = -g2 + 2$VC2 + C,{$}, + c,a,p; \ 

+A, $.+__?_~~V -#2-h;), ) 
i r I 

for 9 > 0, subject to the boundary conditions 

A2(o) = 0, and xii,,, = 0. / 

(2.53) 
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Since the problems (2.52) and (2.53) are linear, we have the following 

decomposition 

(2.54) 

where the coefficient ci, i = 0, 1, 2, are defined by (2.51), and 

c3 = 1. (2.55) 

The four sets of components [ fi2;, a2,, hzi], i = 0, 1, 2, 3, can then be 
obtained by solving four sets of problems which arise from (2.52, 53), when 
terms with coefficients cO, c,, c2, and unity are collected. These four sets of 
problems, listed below, are in parameter free form. 

0 . fi2() = 0, 

O’ir,, - op,, = c(l). e&C’), in to; 

A 
az2,, acJ20 

w20 =-+-=Oalongi= 1 and.?>>, 
ai aa 

1 1 
w20 = u20 =Oalongi= 1 andZ<O, 

~201/r^,+m = 0; 

&y. + hzo = -j20 + 2$G2, along i = 1 and 2 > 0, 

such that hzo(0) = &20]x^_+oo = 0. i 

(2.56.~) 

(2.56.~) 

+ * ir,, = 0, 
\ 

e2ti2, - ep2, = - e{fi,. e@, +iTr{$}} - 6 .{a:}, in PO; 

,. ati2, aG2r 
w21 =a,+ aa -=Oalongi= 1 and?<<, ) (2.57.A) 

,. 1 
w21 = u21 =Oalongi= 1 and_z?<O, 

&I,+, = 0; I 

&‘+h2,= -~2,+2~~2,+{~2}RalongP=land~~0, 

i 

(2.57.B) 

such that i2,(0) = &,]a_m = 0. 
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1 al& ab& 
W22 =-+-=Oalongi= 1 andf=O, 1 

ai aa 
” ,. 

w22 = *22 =Oalongi= 1 andi<O, 

(j221,x^,_m = 0; I 

&‘2 + h22 = -p22 + 2$+22 + {a:},along i = 1 and 2 > 0, 

such that h22(0) = 1;$2(P+m = 0. 

$ . fi2j = 0, 1 

+2fi2j - +p,, = 0, in I$; 

ati,, aa2i;, 
- -= -[$$($+~)+2l;;($$)], 

ai: + as 
L 1 

w2,= - 
aa, 

) 
-- h, ap A;$, 7 

I 
alongi= 1 andi>>, 

G23 = li,, = 0 along i = 1 and J? 4 0, 

ir,,L, = -4/;,,e,, and c2Xi231E__W = 0; 
I 

a2 a _$,_,$, - /I+@ 
ai ar I 

[ 

for 2 > 0, such that h,,(O) = &31p_oo = 0. 

(2.58.~) 

(2.58.~) 

(2.59.A) 

1 
i 

(2.59.B) 

In summary, we have derived fiv_e sets of equations and boundary condi- 
tions which are to be satisfied by (U,, b,, h,) and ( Ij2,, p2;, h2,), i = 0,. . . ,3. 
The stick-slip problem defined by (2.39-34), is the first to be solved; and the 
free surface cor:ection A,( 2) at first order is next determined from (2.35-36). 
Once (ti,, $,, h,) are known, they are substituted into problems (2.56-59) 
which are in turn to be solved for (ti,;, p2,, h,,), i = 0, 1, 2, 3. The numerical 
methods used in computing these solutions will be described in the next 
section. 
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3. Numerical solutions 

3. I. Velocity and pressure fields 

The governing equations for the velocity and pressure fields at first- and 
second-order problems may be written in the form: 

v*f=f, (3.1) 

V. U=O, in &, (3.2) 

where 

F= -pl+ (vu+ (VzqT) (3.3) 

and 

p(r, x) =P(r, x) -C, 00) 

=p(r, x) -p,. (3.4) 

We want to obtain an approximate solution for U = we, + ue, and p( r, x) in 
the form 

U(T, x) = u* + f @Jr, x)u;, 
r=l 

w(r, x) = w* + f Qj(r, X)W/, 

.I= 1 

and 

Ph 4 = i h(r, 4Pk 
k=l 

(3.5a-c) 

u*, w* are particular solutions satisfying essential boundary conditions (e.g. 
prescribed velocity data). The Qi( Y, x) are trial functions expressed in global 
coordinates (r, x) E pO; they form a basis in which the velocity components 
u, w can be interpolated. A function Qi attaint unity at its corresponding 
nodal point ( ri, xi) and vanishes at any other nodal points. It then follows 
that 

w(Y,, xi) = wj and u(T,, xi) = ui. 

The trial functions Gk( r, x) for the pressure p can be formed in a similar 
fashion. 

We solve (3.1-2) by the Galerkin method. A detailed description for the 
Galerkin method can be found in [7,13,14]. In our work, the domain & is 
discretized by Lagrangian rectangular elements with 9 nodes for velocities 
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and 4 nodes for pressure. The velocity trial functions are biquadratic 
Lagrangian polynomials, and pressure trial functions are bilinear. When the 

velocities and pressures are known, we compute the forcing functions on the 
right sides of the surface equations (2.25, 2.56-59, B). Solutions of these 
equations are given in the following section. 

3.2. Residual pressures and surface shape corrections 

The ordinary differential equations in (2.25, 2.56-59, B) together with 
their boundary conditions are of the form: 

d2 
-Y(x)+ Y(x)=9(x)+Gw, 
dx2 

Y(X) = 0, at x = 0, 

-&Y=O,asx+cc, 

(3.6) 

(3.7) 

(3.8) 

where 

F(x)=O,asx-, co. 

Given the differential operator on the left of (3.6) together with the boundary 
conditions (3.7), (3.Q one cannot choose %_ independent of the variation 
T(x). To prove this we note that the general solution of (3.6) is 

Y(x)=A sinx+Bcosx+ /, ( XF (0 + Gm) sin(x - .$)dt. (3.9) 

Condition (3.7) requires B = 0. 
Differentiating (3.9) with respect to x, we get 

Y’(x)=A cosx+ /, ( XF (5) + Ta) cos(x - 4) dt. 

Using the identity cos( x - 5) = cos x cos < + sin x sin 5 in the above 
equation, we obtain 

Y(x) = (A + so’s(S) cos~d<)cosx+(UT,+JUX$(<)sinEd~)sinx. 

To satisfy (3.8), one must have 

$ =- co J %E) sin 5 dt, (3.10) 
0 

and 

A=- mw cos 5 dt. 
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The general solution is thus reduced to 

Y(x) = Gm - lmg(5) sin(x - <) dt. 
.\’ 

(3.11) 

Since for sufficiently large x*, g(x) = 0 for x > x*, it is possible to obtain 
a numerical estimate for GW and Y(x) from the relations 

c& = - 
J 

.‘*$?( c) sin 5 dt, (3.12) 
0 

Y(x) = Cm - /“*%( [) sin( x - 4) dt. (3.13) 
.v 

Computations are essentially carried out for four meshes which are drawn 
to scale in Fig. 8. The pipe and jet lengths in these meshes are roughly 
L, = L, = 2. Results obtained with these four meshes are stable as the grid is 
refined at the exit lip. Computations with other meshes where larger pipe 
and jet lengths L,, L, are used, show that all of the surface shape correc- 
tions, except hlJ(.?2), nearly attain at 2 = 2 their asymptotic values (at 
A? = 00). For example, using mesh V which is just mesh I with extra elements 
added to increase L, to 3.6, we find that h,,(i = 3.6) = 2.54 compared with 
Iz,, (f = 2) = 2.25 a s suggested by meshes I-IV. The variations of the 
asymptotic values of the surface shape corrections with the mesh are de- 
picted in Fig. 9. 

Fig. 8. The meshes used in computations of solutions for perturbation problems. 
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Fig. 9. Variations of final surface shape corrections with the mesh. 

h, x; 62, 0; h,, 0; &z v; i23 0. 
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