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ABSTRACT. The equations governing the flow of viscoelastic fluids are
classified according to the symbol of their differential gperators.
Conditions for a change of type in steady two-dimensional flows are derived
for a three-constant Oldroyd model. We find a change of type in the vorticity
equation when a critical condition involving speeds and stresses is satisfied.
We also sketch how change of type can be discussed for more general models.

I. INTRODUCTION. An important dimensionless quantity characterizing the
flow of viscoelastic fluids is the Weissenberg or Deborah number. The exact
definition of this quantity varies with the constitutive model and the flow
under consideration, but, roughly speaking, it measures the ratio of elastic
to viscous forces, or, alternatively, of a time characteristic of the fluid to
a time characteristic of the flow.

Numerical calculations of steady flows in viscoelastic fluids typically
fail if this Weissenberg number is high or even moderate. It is not well
understood why and the reason is probably not always the same. Experimentally,
qualitative changes in the flow behaviour are often observed at high Weissenberg
numbers. '

In a recent paper [6)], we advance the idea that some of these effects are
related to a change of type in the governing equations. We discuss change of
type in detail for a three-constant Oldroyd model, but also sketch an analysis
for more general models. This study extends earlier work of Rutkevich [10],
Ultman and Denn [11], and Luskin [7]. When discussing change of type we have
to distinguish between two cases: ‘

1. There is a change of type for the equations governing steady flow as well
as for the time-dependent equations. This leads to Hadamard instability
and ill-posedness of the initial value problem. . This kind of situation is
familiar from the theory of phase transitions. '

2. There. is a change of type in the steady equations, but not in the unsteady
equations. This happens when the speed of the fluid exceeds a wave propa-
gation speed as in a sonic transition in gas dynamics. There is no
Hadamard instability associated with this.
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Several papers in the literature have attempted to link experimental
observations to change of type. Hunter and Slemrod [4), and, on the basis of
a different model, Becker and his coworkers [2] have tried to explain melt
fracture by a change of type leading to Hadamard instability (see [1] for a
detailed and critical discussion of Becker's theory). Ultman and Denn [11]
refer to an observation of James [5] on heat transfer in flows past a
cylinder. It appears that there is a discontinuity in slope when heat
transfer coefficient is plotted against the speed of the fluid. Ultman and
Denn suggest that a sonic transition occurs at the speed ﬁhere the slope is
discontinuous. Recently, Yoo, Ahrens and Joseph [12] have discussed experi-
ments by Metzner, Uebler and Fong {8] on tube entry flows from a conical
region. At high Weissenberg number, the flow partitions into an interior
cone, where the streamlines are approximately straight towards the sink, and
an outer region of recirculation. The boundary between these regions seems to
be rather sharp, and there is an apparent discontinuity in the vorticity (see
Fig. 11 in [8]). Yoo, Ahrens and. Joseph relate this observation to our .
analysis of Oldroyd models. 211 these studies are rather tentative, and at
present not enough is known either experimentally or theoretically to make
strong claims.

In section 2, we give basic definitions relating to change of type in
first order systems of partial differential equations. These are applied in
gection 3 to the study of two-dimensional steady flows for a class of three-
constant Oldroyd models [9]. A criterion for criticality is given, and the
vorticity is identified as the variable associated with the change of type.

In section 4 we demonstrate how similar ideas can be extended to general
fluids with fading memory. However, it is in general not possible to decouple
the characteristic equation and isolate a vorticity equation as in the case of
the three-constant Oldroyd model. '

2. BASIC DEFINITIONS. The equations for viscoelastic flow discussed
below have the form of quasilinear first order systems. In this section, we
give some definitions relating to characteristics and change of type in such
systems (see e.g. [3]). We are concerned with eguations of the form
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where u is a k-vector and the él are k x k-matrices. The term "quasi-

linear" means that él and f may depend on X and u, but not on

derivatives of u, 4i.e. the highest order derivatives occur in the equations
in a linear way:—-For every choice of x and u, we define characteristic
surfaces as follows: A surface given by an equation ¢(t,x1,...,xn) =0 is
characteristic if

n
(2.2) det{ ) 3, %;%—-) =0 .

£=0 L
The system is called elliptic if there are no real characteristic surfaces.
Hyperbolic systems are characterized as the opposite extreme, namely, there is
a maximal number of real characteristics. More precisely, a system is called
hyperbolic, if one of the matrices A = éu is non-singular and, for every

choice of real parameters (kz, £ = 0,1,400,n; £ # u), the roots a of the
eigenvalue problem
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are real and semisimple. The equations of viscoelastiticity are neither
elliptic nor hyperbolic. However, we will encounter situations where the
number of real characteristic surfaces changes. In this case, we say there is
a change of type.

The phenomenon of Hadamard instability is closely related to this. It is
evident that, if (2.3) has complex roots, then Im (a) can be made arbitrari-

ly large by making the Az large. If we choose u = 0 and interpret the

first coordinate x4 = t as time, then this means that the linearization of

(2.1) will have rapidly growing solutions when the initial data are very
oscillatory. This kind of catastrophic instability is referred to as
"Hadamard instability”.

3. CHANGE OF TYPE IN TWO-DIMENSIONAL STEADY FLOWS OF THREE=~CONSTANT
OLDROYD FLUID. We consider differential models with a constitutive law of the
form '
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where D/Dt denotes a frame invariant time derivative expressed as
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Here we have split the velocity gradient V u with components (v E)ij =
auilaxj into its symmetric part R = 1/2 (Vu + (V E)T) and its anti-

symmetric part Q= 1/2 (Vu-(V E)T)- The special cases a =1, a = -1 and
a =0 are known as the upper convected, lower convected and corotational
Maxwell model, respectively.

In steady two-dimensional flows, we denote velocity components by u
and v, and the extra stress tensor is written in the form
¢ )
T Y
The constitutive law (3.1), together with the equation of motion and the
incompressibility condition leads to the following quasilinear first order
system
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We can apply the definitions of section 2 to this system. This leads to the

following equation for the slope a = dy/dx of characteristic lines.

. ‘
(3.5) (1+a%) (~autv)2{p(~autv)? + (1-5“9-)(0;2-1) + 21a - (a2+1)(-;l+ a(l;—o-))} =0 .

We see that the stream lines are double characteristics, and that two charac-

teristic values are always complex. The interesting factor is the last one.
The roots of this factor change from complex to real when the sign of
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changes from negative to positive.

The reason why (3.5) decouples into gquadratic factors becomes evident in
a streamfunction-vorticity formulation. When the equations are rewritten in
this way, one can see that the roots a = +i are associated with the equation
expressing the vorticity as the laplacian of the stream function. The third
factor is associated with an equation which involves a linear combination of
second derivatives of the vorticity and only contains lower order terms other-
wise. It is therefore the vorticity which is associated with the change of:
type. It is interesting in this context that the experiments of Metzner,
Uebler and Fong [8) can be interpreted as suggesting a discontinuity in the
vorticity. '

One can also derive a time dependent vorticity equation, which leads to a
criterion for Hadamard instability. Hadamard instability occurs if one of the
following conditions is violated

(3.7) 3212 - [n- x(—% (1~a) - % (1+a))]1[n - A (-g- (1-a) -% (1+a))] < 0
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Note that (3.7) agrees exactly with (3.6) for zero speeds. Changes of type in
steady flow which do not involve Hadamrd instability must therefore require a
non-zero speed of the fluid. 1In fact, the criterion is that the speed of the
£luid is faster than a viscoelastic wave speed. 1In particular, if the
stresses vanish, a change of type occurs when the fluid speed exceeds the wave
speed of linear viscoelasticity. Since this requires a finite (but not large)
Reynolds number, such changes of type are more likely to be found in dilute
polymer solutions rather than in melts.

In discussing the criteria (3.6) or (3.7), (3.8), it must be kept in mind
that the values of the extra stresses are not arbitrary. The constitutive law
(3.1) can be regarded as an evolution problem for the stress with given defor-
mation. However, in the discussion of materials with fading memory, we are
not interested in arbitrary solutions of this evolution problem, but only in
those that behave reasonably as time tends to -==. This imposes restrictions
on the values of the extra stresses, which can be shown to preclude Hadamard

instability if a = t1t.

For a discussion of particular flow geometries we refer to (6] and [12].



4. CHANGE OF TYPE 1IN FLUIDS WITH FADING MEMORY. The extra stress [ in
a simple fluid is given by an isotropic functional of the history of the

relative Cauchy strain G(s) = gz(t-s)gt(t-s) -1, i.e.

(4.1) T =ElGsN, o -

By taking the material derivative of (4.1), we obtain
dt a6
(4.2) w-helm -

Following Coleman and Noll, we assume that the Fréchet derivative Ei of the
functional E can be represented in the form

4G - aG(s)
(4.3) el =/, K(s,8) — as .

Here K(s,G) is a fourth order tensor depending on S and the values

{g(o),go < 0 ¢ »}, For the following, we assume that X and its first
derivative with respect to s are integrable.

The material derivative of ¢ is given by

& 4 ag
- — T - -y - G - —
(4.0) =~ LS L g

where L = v u is the present value of the velocity gradient. Hence we find
4aG
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The last term can be integrated by parts and treated as a perturbation of
ljower differential order. With

(4.6) Mygyp = = Joigng ¥ Figun'Cpe (5798
we can therefore write the equations of viscoelastic fluid motion in the form
dti 3du
=M N
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This again has the form of a quasilinear first order system, and the
definitions of characteristics and change of type apply. 1In general, however,
it is not possible to decouple this system as in section 3 and isolate a
vorticity equation. In two~dimensional steady flow, we would still find the
stream lines as double characteristics, but the remaining characteristic
values would be determined by a fourth order equation, which cannot easily be



factored. In [6], we identify a class of constitutive models which hes
certain structural similarities with the Oldroyd models above and permits the
derivation of a vorticity equation.
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