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Abstract: The effect of inertia in three popular impulse experiments in shear flows
of viscoelastic liquids is considered. Dynamics of the flow is used to evaluate the
stress observables such as the shear stress and the first normal stress difference at
the walls. In particular we find that for many linear viscoelastic models with slowly
fading memory, the difference between experimental observables and a theory
based on the assumption of ignorable inertia could be quite substantial.
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Introduction

The limiting velocity distribution for start-up of
Couette flow between parallel plates is a linear shear. It
is common practice to assume that the real motion is
close to linear shear long before the stress approaches
its asymptotic steady state. When the linear shear is
assumed to hold from the initial instant, the evolution
of the wall shear stress is determined by material
functions, independent of deformation. These material
functions are then determined by experimental mea-
surements. We argue that in many cases only special
features of the material functions can be deter-
mined by this method because in all cases the early
time behavior of the motion is incorrectly given by a
linear shear. The assumption that the early part of the
stress response can be ignored is fallacious when the
dynamics shows the presence of a delta function
singularity in the wall shear stress at time =0 and at
subsequent discrete times of reflection off bounding
walls. This delta function contribution cannot be
ignored even if the steady state is achieved rapidly,
because typically the shear remembers the past defor-
mation gradient history at least over a length of time
comparable to a representative relaxation time of the
material. In fact, the early time behavior is crucial in
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the determination of the material functions and it can
be obtained from experiments only by using a correct
theory based on dynamics. When this is done, it is
possible to interpret data showing stress overshoot with
linear theories based on commonly used constitutive
equations and to interpret early oscillations in the
observed values of material functions in terms of
repeated reflections off bounding walls.

The foregoing critical remarks apply equally to the
interpretation of stress relaxation experiments and
other experiments involving impulse changes in veloc-
ity and displacement.

In this paper, we present the results of analysis of
linearized dynamics, particularly to results which give
the early time behavior of observables which depend
exclusively on the shear relaxation function G(s). We
give many new formulas for the observables in stan-
dard rheological tests which we think will be used for
the determination of the relaxation modulus in visco-
elastic fluids.

1. A summary of previous work on step jumps
of velocity and displacement

In our earlier work [12, 13, 14], we treated the
problems of step increase in velocity and displacement
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using a constitutive expression of the type:

T=—pl+pud,+[ji(s) G(s)ds (D
0

where

dG
;Z(s)EE and G:[0,0) = R*={x e R|x > 0}

is assumed to be (i) monotonically decreasing, (ii) con-
tinuous and piecewise continuously differentiable,
(iii) along with G’ of O (e™*') as s = oo for some 4 > 0
and hence lim G (s) = lim G’ (s) = 0.

§= 0 §— 00

Constitutive equations such as (1.1) may be justified
in various ways (see Saut and Joseph [17] and Renardy
[16]). We considered two singular problems in which
the velocity is assumed to be in the form V'=¢&,v (x,1)
in the semi-infinite space above a flat plate and

Q=[x,y,2;0<x<00,-0<y<00,—0<z<0].

At x =0, we imagine either a step-jump in velocity or
displacement, satisfying

% ! 0% Ov
ua?(x,f)JrgG(S)W(X,t—s)dS—Q—(X,t).

o )
v(x,0)=0,
v(x, ) is bounded as x, t — co.
And for step-increase in velocity at x =0
v(0,)=H(t—-0). (1.3)

For the step increase in displacement of the bottom
plate we have

v(0, 1) = 8(¢). (1.4)

1.1 Linearized simple fluids of Boltzmann type (1 = 0) *)

The solution of problem (1.2) and (1.3) is given in
§4-6of [12] as:

v, )=f(x,) H(t—ax)

where
1
c =5 VG(0)/o

and f(x,?) is defined in (5.10) of [12]. Here it will
suffice to note that (see [12, 5, 15])

*) This class of fluids (x4 =0) alone show an elastic re-
sponse. The term viscoelastic is probably not appropriate for
u*0.

G(s) vix,1)

G'(0)=-

S t
(a) (b)

Fig. 1.1. Propagating smooth solutions (b) occur when G(s),
satisfying (i), is as sketched in (a). Smooth solutions of this
type have been computed by Buchen and Mainardi [3], for a
special kernel with the property that G’(s) is proportional to
—s2as5 >0

a() ¥ f(x, a x*) = exp (ax G’ (0)/2G(0)), Vx =0,

9J—r(x, axt)=—oxexp (%(,O()O))

ot
[3(¢O) 1 6O
{?(G(O)) 2760 } Va0
o

= (x,axN)=af(x,ax"?)
0x

" (15)

[£0 e frlse)- 15y
2G(0) 8 \G(0) 2 GOy |
If Vx=0.
Gis)=ke™,
then

3OV 160 1,

?(G(O)) "0 24

The solution of step-displacement problem (1.2) and
(1.4) is given as (see in (10.7) of [12])
of (1.6)

v(x,1) =3 (x, ) H(t — ax) + f(x,axT) 6(t — ax)

where f(x, ) is the same as in (1.5).

1.2 Special kernels for fluids of the Maxwell type (u=0)
There are two special cases (G’ (0)=- 0, G’ (0)=0):
(i) G0)=—o and 0<G(0) < co.

In this case the amplitude a(x) of the shock (given in
(1.5)) is zero. Thus the discontinuity of the data is
removed but the support of the solution propagates
with the speed ¢ = 1/0.

In fact, Renardy [15] has shown that for a kernel

(used in certain molecular models)
o
G (s)=— 2, exp(—n®s), a>1l,
n=1 © :
G0)=-0w, GO)=2, prt

o
n=1

the solution is C® smooth at the support (see Fig. 1.1).
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Some form of continuity of solution on kernels possess-
ing nearly identical features globally might be expect-
ed. For example, we may construct kernels with
G'(0) =— o0 and even with C® contact at the vertical
axis whose graphs are indistinguishable from kernels
for which G’(0) is finite in all neighborhoods bounded
away from s= 0. This may lead to smooth, shock-like
solutions (see Fig. 1.1). Such problems are in some
sense like the ones which are perturbed with a small
viscosity p. We shall remark in § 1.3, that the small
viscosity leads to a transition layer of size x4 which
collapses onto a shock as u — 0. For small u the
solution is smooth, but shock-like (see Figs. 1.1, 1.3).
The heuristic argument for the equivalence of prob-
lems for kernels of type (i) with those perturbed by a
small viscosity is as follows. We are given G(s), s > 0
such that G(0) is finite, G'(s) <0, s> 0, and G’ (0)
=—o00. Now we implement the construction of a
comparison kernel of Maxwell type. First choose a
small time e Then, at G(¢) draw the tangent G’ (e).
This tangent pierces s =0 at the value G,/(0). Define
Gu(s)*)

|G (@) s+ Gy(0), s=¢
G =169 s> e
We may write
! 0%
gG(s)W(x, t—5)ds
! 0%
=£GM(S)W()C,Z—S) ds

+fG ) Ll -5 d
0( (S) M(s)) axz ()C,[ S) S.

Using the mean value theorem the last integral may be

written as
2

e[G () — GM(§)]% (x,t—3), 0<3<e.

Then with ¢ — 0 we get §(¢) — 0 and we approximate
the perturbing term with

02
2[G(0) ~ Gu(®)] 53 (x.1).

The approximating problem is like one perturbed by a
small viscosity i = &[G (0) — Gp(0)].

The reader may notice that the heuristic argument
just given applies to any two kernels which coincide for
s > & The implication is that an approximation to the
solution corresponding to one kernel may be obtained

*) Another type of comparison kernel is used in the Ph.D.
thesis (University of Minnesota, 1983) of A. Narain for precise
arguments leading to the result shown in Fig, 1.1.

by solving a problem with the other kernel, perturbed
by a viscous term with a suitable selected viscosity
coefficient.

In the second special case we have

(i) G (@©0)=0.

In this case, a(x) = 1, and
a_f(x,w+)= +ax |G (0) }
ot 2 G(0)

It is necessary that G”(0) =0 if G is to be strictly
monotonically decreasing in (0, o). For the case in
which G”(0) < 0 there will be a velocity under-shoot
in the neighborhood of 1 = ax at all x.

1.3 Viscosity and transition layers

Consider the problem of a step increase of velocity
for Newtonian fluids (4 >0, g(s)=0 in (1.1)). The
classical solution of this problem ((1.2, 1.3)) is given
by:

v(x,f)y=erfc(x/}4vt) (1.7)

where v=yu/p and erfc is the complementary error
function.

If 4 > 0 is small and G has the assumed properties, it
can be shown (see § 18 of [12]) that there is a transition
layer around the shock solution with g =0. This
smooth transition layer exists in a small bounded
domain of {(x,£)|x= 0 and r= 0} and its thickness
scales with p.

G(s)1G'(0)=0 v(x,t) Fixed x

S t

Fig. 1.2. Shock profile for the case G’ (0) =0

Fixed x

Vix,1)

Fig. 1.3. Transition layers when x > 0 is small. Solutions with
small x4 can be obtained from graphs given by Tanner [18] in
his analysis of the dynamics of Oldroyd fluid of the type A.
The reader should compare this Fig.1.3 with Fig. 1.1 The two
cases are slightly different in that the support of the solution
in Fig. 1.1 propagates. Such propagation is compatible with
C™ smoothness but not with the analytic smoothness associat-
ed with small viscosity as in Fig. 1.3. The case G(0) finite,
G’ (0) = — oo is intermediate between fluids of Boltzmann type
and those with viscosity



Narain and Joseph, Remarks about the interpretation of impulse experiments in shear flows of viscoelastic liquids 531

2. Some formulas for the experimental determination
of relaxation functions valid at large times

Many experimental measurements of relaxation

functions are based on the incorrect aqcnmr\hnn that a

linear velocity profile can be achieved impulsively.
This assumption is valid when the density o of the
fluid is zero. In this case, the solution of the problem
(1.2) with boundary conditions

v(0,)=UH®), v(,)=0
is a linear shear (Fig. 2.1)

U
v(x,t)=7(l—x)H(t). 2.1
Similar remarks apply in the problem of step
increase in displacement of the boundary at x=0. In
this case the velocity v (x,¢) =0y (x,1)/0t satisfies
(1.2) with o=0 and

00, )=Ys®), v(l,)=0

The displacement field is given by a motion p:
X, Y,2) » (X, Y+y(X,0),Z). 1t follows easily that
for the step increase in displacement (Fig. 2.2)
Y
yon=—FU-x)H(@). (2.2)
The same considerations hold in the case of sudden

cessation of shear flow (Fig.2.3). In this case we
derive

U
v(x,0= (=) [1-HE)]. (2.3)

N

y Fluid at rest vix,t)= - (4-x),
for t<O t>0

Fig. 2.1. Step increase in velocity for a fluid with density =0

1 g
y y(x,1)=0 yix, 1) =7Y—(.l-x),
for t<0O for t >0

Fig. 2.2. Step increase in displacement for a fluid without
inertia; v (0, 1) = Yd(¢)

— —T7
L |1
y V—(X,H = %(.l- x), l\mon suddenly

for t< stopped
0 v=0fort>0

Fig. 2.3. Sudden cessation of shear in a fluid without inertia

The true solutions of these dynamical problems with
impulsive data and ¢+ 0 do not even resemble the
solutions (2.1, 2.2, 2.3) at early times 0 < ¢ < r*. The
time

x=0(l/c)y=0()/G(0))

for a few reflections is such that for z < ¢* the right and
left sides of (1.2) are both finite. If [v, ¢, G, x] are scaled
with [T, r*, G(0), /] then the left and right sides of (1.2)
are dimensionless and parameter free for ¢* satisfying

U U

—[—z—[u—l-t* G(O)]=Qt—*. 24
For =0, (2.4) also gives t* = O (I//¢).

For large values of ¢ > ¢* the transients die away and
the difference between the solutions (2.1, 2.2, 2.3) and
the true ones tend to zero. This gives these elementary
solutions status as asymptotic solutions valid for ¢ > ¢*.

The asymptotic solutions (2.1, 2.2, 2.3) are valuable
for the experimental determination of the Newtonian
viscosity ¢ and the relaxation modulus

[(s) = dG(s)/ds 2.5)

for large s. These solutions should rot be used to deter-
mine values of the relaxation modulus for small s.

The viscosity and relaxation modulus are the only
material properties which appear in small amplitude
expansions of the stress (see [6] and [17]). The shear
stress is approximated up to terms of cubic order

O(]| (s |7) by
av (x f)

TV (x, 1) ~ + [ 1 (s) A(s) ds
0
— av(x 1) ]? o (x,t—35) ds (2.6)
0 ox
where
=3
() = oy (x,1—5) B oy(x, 1) _ Oov (x, 0) da2.7)
Ox Ox : Ox

The first normal-stress difference

Ni(x, 1) = TP — 760

is approximated up to terms of quartic order by

[ve]

Ni(x,t) ~— gﬁ(s) A3(s) ds. (2.8)

We may compute the large ¢ values of the stress
using these expressions and the asymptotic solutions.
These expressions are for quantities which can be
measured in experiments and it is therefore desirable
to know when they may be used.

Clearly it is necessary that > ¢*, so that the de-
formation field will have very nearly attained its
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asymptotic steady value. However, we must also know
how the early time deformation enters into the memory
of the fluid. The expression (1.1) for the shear stress
may be written as

(x 1) ov v (x,7) r)
Ox

T (x, ) = p—p == +IG( -
Suppose, for simp11c1ty, that when t > 1> t*
vx7 U
ox I

Now consider a false stress

Fo(x, 1) = g LD or (x t) fG( 6v 0 (x, 1) d
Ox
where
or(x,7) U
> H(7).
Then for ¢ > £, we have
T (x, 6) — TCW(x, 1)
=)1G{t—1) %[v (x,7)—8(x,7)]dr

Oty Ot

— (G- )[av(a);r) 6v§; 7)
+iG(t—r) [avg;, i aﬁg)’:’ ’)] dr.

Therefore, if G(t — f) is small enough then, for large ¢,

T (x, 1) = T (x, 1) (2.9)
and since G(s) — 0 as s — o0, there is always a ¢ > *
large enough so that (2.9) holds. Given 7, the smallest

t > t > r* for which (2.9) holds is given by

1>+ A=0(@1*+4) (2.10)

where 1 is a typical relaxation time for G(s). If the
stress relaxes slowly it may remember transients from
early times for a long time. A material which is already
in a homogeneous state of deformation may experience
a stress which remembers a nonhomogeneous deforma-
tion.

Formulae giving the large time expressions for the
shear stress and the first normal stress in the three
problems sketched in Figs. 2.1, 2.2, 2.3 are listed below.

U 1
TP (x, 1) ~—— {y + G ds} ,
! 0 step increase
2 ¢ in velocity

Nt ~— gszG’(s)ds, 2.11)

-Y
T<xy>(x, 1 ~——G(),
! step increase in

+Yy? displacement (2.12)
Nix, 9 ~ G,
—-U ©
T (x, 1) ~—— (G ds,
!
2 sudden cessa-
Ni(x, 1) (5)(t — 5)*>ds | tion of shear
207 [ °°
=~ |15G)ds—1[G(s) ds| 2.13)
t t

The formulae (2.11, 2.12, 2.13) are suitable for deter-
mination of the viscosity and the relaxation function at
large times (z > t*+ 1) from experiments with small
strains. We turn now to the general linearized problem
which governs these impulsive experiments.

3. Some formulae for the experimental determination
of relaxation functions valid at small times

Now we are going to evaluate the shear stress and
the first normal stress for the impulsive problems of
Figs. 2.1, 2.2, 2.3 from the exact solutions of the
linearized problem when the viscosity x=0. The
theory for this is given in [12], though other works,
treating special models may be useful. Solutions for the
step increase in velocity between parallel plates can be
found in the book of Bohme [2] and in the papers of
Denn [7] and Kazakia and Rivlin [9]. These authors
consider Maxwell models with a single relaxation time.
Christensen [4] has discussed this problem for Maxwell
models with many relaxation times. Christensen [4] and
Bohme [2] computed the shear stress at the driving wall
for the step increase in velocity for a Maxwell model
with a single relaxation time.

3.1 Step increase in velocity

To obtain expressions for the shear stress at the wall
we consider the unsteady solution given in § 8 of [10]
for the step increase in velocity (see Fig. 2.1). In that
solution the moving plate is at x = 0 and the stationary
plate is at x = /. For the case in which the moving plate
is at x = 0 we ultimately have simple shear U(1-(x//))

0 U
as t — oo with shear rate L Po=— T The solu-
tion of this problem is:

U(X, t) = U[f(x’ t) H(t_ (XX)

+{f(x+2L0) H(t—a(x+2)) 3.1

—fQRI-x,0H@—aQI-x)}+{..}+...].
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The stress at the wall x = 0 and x = /is given by:

TN (0, 1) = f G(s) o 0,1—5)ds (3.2)
0 Ox
and ‘
TN, £) = 'If G(s) o (I,t—s) ds. (3.3)
s Ox

If we assume an instantaneous deformation as in
Fig. 2.1, then (2.6) implies that

T (x, )= — % jG(s) ds, xe€[0,/]. (3.4)
0
However (3.1) implies that
o 0,0n=U { {g (0, 1) H(t-0)—o £(0, 1) 5(1—0)}
Ox Ox

+2 {% @140 Hi-Qah)-ofQL1) 6(1—(2a1))|

+20.0+...1, 3.5)

and

6—U(l,t)=2U[ﬂ(l,t)H(t—ocl)—ocf(l,t)é(t—ocl)
Ox Ox

+ ’% BGLyH(—Cal)-af(3l 1) 5(;—(30”))]

+{.+. . (3.6)

Combining (3.5) and (3.2), we find that in the time
interval 0 < ¢ < a(2/), the stress at the driving plate is

(0, 1)
_ UG- s)% ,5) ds— UaG(z) f(0,0%), G
0

but eq. (1.5) implies that
Uf(0,0%)=0v(0,0")=U.

Hence,

—T$2(0,0M = UVe G(0). (3.8)
Combining (3.3) and (3.6) we get

TP =0 for 0<r<ual, (3.9)

! G'(0)

— TP (Lal*)=2U Vo G(0) exp (T(O)) (3.10)

In general, for t> (2nal); n=1,2,..., we find by
combining (3.5) and (3.6) with (3.2) and (3.3) that

—T(0,£) = {—_&G(t—s)—;:% 0,s)ds+«a G(t)}
: 0

!
- G(r—s)ﬁ(zz,s) ds
Qal) 0x

+G(@t—Qal))exp (ZG(;((OO)) 20 1)]

+2[.]+.

+2

3.11)
and

— T (1)

= ZU[ocG(t—al)f(l, al*)— j G(t—s)Faxf— s ds}
ol

+2U|aG(t—(Bal) f(3L,Badh

- i G(t—s)g@l,s) ds
Gal) Ox

+2[..]+.... (3.12)

In order to understand (3.11) and (3.12), we need to

know some features of the functions E?—f(Zn I, t) for
X

n=0,1,2,.... For a Maxwell fluid G(s) = K e™#* and
(see (7.3) of [13])

o ]/e_ﬁza_fm
o BO=TUY T e & D

where

(3.13)

1 i e‘a/Z 1

ST | — — 292

2)]; —— 11(2 Vo x)da |
Q210 g2 (] 1]/ 2%y 1 (1

+x—_[ c { 1z Vo x)——I’l(EVGZ—)%Z)}dG.

230D [ (@2- 2

We also recall that when a steady state
U(l—x)

v(x, OO)=#

is approached we have

lim T'(x, 1) __v [G(s)ds, xel0,1]. (3.14)
=00 l 0
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There are two cases to consider:

G) VYGO)o> rlTG(s) ds
0

and
() JGO)o <!/ [ G(s) ds.
0

In the first case the initial value of the stress larger
than the final value (overshoot). A typical graph is
sketched in Fig. 3.1(i). In the second case there is a
jump of stress less than the steady state value. This case
is sketched in Fig. 3.1(ii). Of course the amplitude of
jumps in Fig. 3.1(i), (i) ultimately tend to zero. More-
over in the two special cases G’ (0) = — o0 or x> 0 and
small we will have essentially the same response as in
Figs. 3.1 with smooth bumps replacing jumps. In any
experiment the jumps (for z = 0) would not be vertical
because step changes at the boundary are discon-
tinuous idealizations of smooth rapid changes and if
v(0,7) is a continuous functions close to UH (t—0),
then 7¢%(0, 0%) = 0 but T<(0, &) = U /G (0) ¢ and
ol G'(0) )
2G(0)

for some ¢;, &; > 0 and small. This observation follows
as a consequence of the continuous dependence of the

solution on the data [12] and our solution for arbitrary
initial data [14]. "

T (Lol+e) = 2U)G(0) o exp (

\ i

*
—O(¢
T o) O(t™+X)

V/G(0)p

@O
—Ju—j; G(s)ds

(i) Overshoot !

_ (xy)
T O ok n—

U r® 2
.l_f(; G(s)ds //

(i1) Undershoot !

Fig. 3.1. Stress development at the lower wall for a fluid with
G(0) and G’(0) finite and x=0 under a step change in
velocity. Graphs of this type with kernels of exponential type
with one relaxation time have been computed by Béhme [2]
and Christensen [4]. The smooth lines correspond to the solu-
tion (3.4)

30 ] T T T T
hio =17.0 s
:;’29__ Yo = 1.7 571 ]
5
=
= 1.0
75 = 0.017 s~
0 /4 | ! | | |
0

50 100 150 200 250
t(s)

Fig. 3.2. Representations of stress development in experiments
under a step change of velocity

The aforementioned results may be applied to the
interpretation of experiments by Meissner [11], Hupp-
ler et al. [8], among others. They plot

TE20,0) et 77 (1)
TE2(0, 00) Mo

where

def U <
T 0,02 ~jon' () == '@, m=]G()ds

Our analysis shows that at the driving plate
709 _1YGO)e
(o9}

o [ G(s) ds
0

where 7t (0)/no=1.
The stress response at the stationary wall is given by

TP alh) gl

TP, 0) 7
210G 0) %[ G'(0)
= *P\26(0)
{G(s)ds
0

where 5 (0)/5o= 1.

Typical representations of experimental results of
various authors are represented schematically in
Fig. 3.2 (cf. Bird, Armstrong and Hassager, [1] Fig.
A4-9).

The experimental results represented in Fig. 3.2 do
not exhibit the stress jumps, at small rates of shear,
(70 <0.17s™"), which are required by linearized dy-
namics. It is possible that the conditions of the experi-
ments were such as to make the initial jumps in stress
small relative to asymptotic (rt = c0) levels of stress.
However, stress overshoot could possibly occur even in
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the realm of linear theory. We cannot know whether or
not overshoots do occur without reliable estimates of
G (0). The methods which are presently used to deter-
mine G(0) are inadequate because they do not apply at
small times.

It is perhaps also possible to explain the oscillations
at small times in the stress observed by Meissner [11] in
terms of larger amplitudes of stress which are generat-
ed by reflections off bounding walls for fluids of the
type which support shocks or near shocks (fluids with
G(0) <00, —G’(0) = oo with or without a small vis-
cosity). Nonlinearity also participates in the results
observed at high shears. For example, the narrowing
of the width of peak region in the graphs shown in
Fig. 3.2 may not be entirely explained by linear theory.

The limiting small amplitude value of the first
normal stress may be computed from (2.8), which may
be written as

o] -5 2
N,(x,t)~-IG'(s)[[ Mda] ds
0 ' Ox

=— [G@-1) [i}v(x,o)]zdr. (3.15)
“e Ox

To compute N;(0,7) and N;(/,7) we substitute for
v(x,t) from (3.1). This leads to expressions for N, at
the driving plate at t = 0,

N{(0,0%) = oU? (3.16)
and at the time of first reflection
1 G’ (0)
Ny o l") = 4o Ulexp |l 3.17
1(hal™)y=4¢ eXp[ G(O)} (3.17)
and asymptotically for# = co,and 0 = x =/,
U\* %
Ni(x,00)=+2 (T) {5 G(s)ds
0
U\??
=(T) g—sz G'(s)ds. (3.18)

A sketch of the time development of the first normal
stress N, (0, #) is given in Fig. 3.3.

3.2 Step increase in displacement

The solution of the dynamical problem for the step
increase in displacement (see Fig. 2.2) is given in terms
of the velocity

v(x, )= Y“%; (x,t) Hit—oax) + f(x,1) 6 (t—ax)

- lg—’:(zl—x, NH({-al-x))
+1(21=x,1) (1 — a(zl—x))}
+{...}—...]. (3.19)

We recall that the shear stress is given by:

T (x, )= [ G’ (s) A'(s) ds
0

=[{G@e-1 {i }v(x, o) da} drt (3.20)
“® Ox

and the first normal stress is given by

Ni(x, ) =— .g G'(s) (A'(s)* ds

t T 2
=~¥LG’(t— 7) {%!v(x, ) da} dr (3.21)

where
t=s

O

t

Now we substitute (3.19) in (3.20) and (3.21) to

evaluate the result for ax < ¢ < a(2/— x). Taking the
limit for x = 0 and r — 0 we find that

% (x,0) do.

Y 0
- T, 0 =— |/ —— (- G'(0 3.22
(0,0%) > GO (—G"(0) (3.22)
N1(0,'r)1
Y e 0o(t*+ )
2(%)2 sG(slds|— — — —=
pu?
0 t

Fig. 3.3. Sketch of development of the first normal stress at the

U\z®
wall x = 0 when o U2 < 2(7) [sG(s) ds
0

%0, 1
oit*+ )

_Y g
2 aG'(0)

Y
1 G(0)

0 Tt
Fig. 3.4. Sketch of development of shear stress for sudden

2G'(0) Y
5> GO

displacement when — Y
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N,(0, 1)
pY26(0)2
~46(0) N

v2 O(t™+X)
I_ZG(O)
0 : "t
Fig. 3.5. Sketch of the first normal-stress difference at the wall
ZG 0 2
x = 0 for shearing displacement when—(z) — G(0)
4G(0)

T 1

{+]
% fG(s)ds
o

0¥+ )

% (S)ds U PG(O \'\\'\l\‘»

Flg 3.6. Sketch of shear stress at x = 0 when
— j G(s)ds— U)o G(0) >0 insudden cessation of flow

t

N, (0, 1)

b—— O(t*+))
N,(0,0%)

2 @©
2U
=% | G(s)ds
.tzj; )

i

0 t

Fig. 3.7. Sketch gf First normal-stress difference at x = 0 when
a0

2U . .
N (0,0%) > = [G) ds in sudden cessation of flow
0

and
0 Y2 G’ (0)2

Nl (0’ 0+) = 4G(0)2

(3.23)

To compute the shear stress and the first normal-
stress difference on the stationary wall at x =/ at the
time of first reflection let ¢t — o /*. This gives:

T al) (3.24)

_ Yloc G’ (0) exp(alG’(O) f(l al?)

2G(0) ) 22G(0)

and

Nl(l,aﬁ)=4gY2exp(%)
[ (3 (¢} ¢ 6O ]
[“'{8 (G(O)) _20(0)]+2G(0)} - 329)

3.3 Sudden cessation of flow

The dynamical problem for sudden cessation of flow
(see Fig. 2.3) is given by:

! 2
—a"——jG(s) O (x, t—5) ds,
e

v(x, 0= —[ll (I-x) Vi<, (3.26)
v(0,)=U[l-H(—-0)],

v (x, f) is bounded.

It is easy to see that the solution of (3.26) is:

v(x, t)=%(l—x) —-5(x, 1) 3.27)

where §(x, ) is the same as v (x, f) in (3.1). Now sub-
stituting (3.27) in (3.20) and (3.21) we get:

— TR0, 0%) = + % 1G5y ds— UYeG©), (3.28)
0

2® 2
[sG(s)ds+oU?~
0

2U @
Ny (0,0%) == x Oj G(s) ds

and

— T (I, al™)

=%?G(s) ds—2U)eG(0) exp(
0

(3.29)
o 10’(0))
2G(0) /)

Nyt =2 och'(O))

Ur®e )
N gsG(s)ds+ 40U exp( G0

_4U% (am'm)

/ 2G(0) )w()ds

4. Summary

Exact formulae for the shear stress and the first
normal stress in the linearized approximation are given
in § 3. These formulas apply at every instant ¢ > 0 and
every place x, 0 = x =/ The major interest in these
formulae are at the driving plate at x =0 which is in
motion and at the stationary plate at x =/ where the
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stresses are measured. In fact, the experiments are
nearly always conducted with cone and plate rheom-
eters, and the relation between parallel plate theories
and the cone and plate data should be made more
precise. Presumably one uses average / in the cone and
plate where the recording instruments are mounted.
The formulas in § 3 are complicated. In this summary
we shall list the values of the stress at the driving plate
at the instant ¢ =07 after the motion is started and at
the recording plate at x =/ at the instant r=o /"
(o= 1/c, c =} G(0)/o) after first reflection. For com-
pleteness we also repeat the asymptotic formulas for
t > [+ / which are given in § 2. We have not comput-
ed the stresses for impulsive motions in fluids with
viscosity ¢ # 0. All the formulas appearing below have
u=0. We have already mentioned that there is con-
tinuity of the solution with ¢ — 0, so that the formulas
we give are good approximations to the formulas when
4 1s small.

(i) Step increase in velocity:
— 720,07 = U)o G(0),

— T (L o l*)y=2U}o G(0) exp [x ! G’ (0)/2G (0)],

U -
_T<Xy>(x’t)~75G(S)dS, t>t+4,
0

N, (0,0%) = U?,
Ny(l,o 1) = do U exp {i@]

G (0)

2t

U s
N](x,t)~27st(s)ds, 1>i+4.
0

(ii) Step increase in displacement:

Y
— T(0,0%) == -6 (0) % ,
T al)=—Y [aG'(O) exp (%géé—?))

e a1+)],
ot
where 0f(/, o [1)/0t is given by (1.5),,
Y -
— TS (x, 1) ~ n G@), t>i+4,

0 YZ G’ (0)2

NI(O’ O+)= 4G(0)2 >

1[G’ (0
Nl(l,OCl+)=4QU2€Xp((xT(0§—))
113602 6], 6O
[“’{8 G(0)? 26(0)}+2G<0)]’

2

Y -
N,(x,t)~?—G(t), 1>t+ .

(iii) Sudden cessation of flow:
U o0
—T&(0,0%) = 7 [ G(s)ds— UYeG(0),
0

— TV 1)

’(0)}

=— jG(s)ds—zUVgG(O) exp[ 76 0)

U® -
_T<xy>(x,t)~TfG(s)ds, t>t+4,
!

2 ®© 2w
Ni(0,0%) == [5G(s)ds + U=~ G(s)ds,
0 0
2 ® ,
M3l =2 [5G ds-+ doUlexy (__“’G s )
4U° 1G’ (0
e (azG(é))) JG© ds.

2 | w©
Nl(x,t)~%ljsa(s)ds—tj6(s) ds],

t>t+ 4.
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