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1. Bifurcation in R’

In this lecture we consider the theory of singular points of plane curves.
And to these considerations we add the study of stability. To make a point,
not to be taken literally, I will say that sixty per cent of the ideas of bifur-
cation theory can be most readily understood from this elementary study
in R’

We study the evolution equation

du/dt = F(u, u); wuek, ' 1.1

where F(-,-) has two continuous derivatives with respect to u and w.
Equilibrium of eq. (1.1) satisfy ¥ =¢, independent and

Flu,£)=0. (1.2)

The study of bifurcation of equilibrium solutions of the automous problem
(1.1} is equivalent to the study of singular points of the curve (1.2) in the
(i, €) plane.

It is desirable to classify points of the curves (1.2):

(i) A regular point of F(u,€)=0 is one for which the implicit function
theorem works

F,#0 or F,#0. (1.3)

If eq. (1.3) holds, then we can find a unique curve u=u(e) or e=¢e(u)
through the point.

(ii) A regular turning point is a point at which u,(¢) changes sign and
F,(u4,€)#0.

(ili) A singular point of the curve F(u,&)=0 is a point at which

F,=F,=0. (1.4)

(iv) A double point of the curve F(u,&)=0 is a singular point through
which pass two and only two branches of F(u, ) =0 possessing distinct
tangents. We shall assume that all second derivatives of F do not simul-
taneously vanish at a double point.

(v) A singular turning (double) point of the curve F(u, €) =0 is a double
point at which g, changes sign on one branch.
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(vi) A cusp point of the curve F(u, £)=0 is a point of second order con-
tract between two branches of the curve. The two branches have the same.
tangent at a cusp point.

(vii) A conjugate pointis an isolated singular point solution of F(u, £) =0.

(viii) A higher-order singular point of the curve F(u,&)=0 is a singular
point at which all three second derivatives of F(u,¢) are null. ’

Double points are most important for bifurcation. Suppose (ug, &) is a
singular point. Then equilibrium curves passing through the singular points
satisfy

2F(u,€) =F,, 6u* + 2F,, 8¢ du+ F,, 6>+ O[(|ou| + |de[*1=0  (1.5)

where du=u—uy, de=e—¢y and F,,=F,, (Up, &), etc. In the limit, as
(u, €)= (19, &) the eq. (1.5) for the curves reduces to the quadratic
equation

F,,du*+2F, dedu+F, de?=0 (1.6)
for the tangents to the curve. We find that
(l)(s ) F.r1 D\ 1
el 2LE) 1) @)
(€0) Full Fu -1
P F.rl 12
e Furt]_ (237 1) 09
( )(/10) Fac 1 Fse -1 .
where
D=F% ~F,F,.

If D<O there are not real tangents through (ug, &) and the pomt (o, &)
is an isolated (conjugate) point solution of F(u, £)=0.

We shall consider the case when (u, &) is not a higher-order singular
point. Then (g, &) is a double point if and only if D> 0. If the two curves
pass through the singular point and D=0 then the slope at the singular
point of higher contact is given by eqs. (1.7) or (1.9). If D>0 and F,,+0
then there are two tangents with slopes u{(g;) and uP(e,) given by eq.
(1.7). If D>0 and F,,,=0, then F,,#0 and

de (2du F,,+de F,)=0

and there are two tangents ¢,(1) =0 and u,(g) = —F, /ZFW If &,(up)=0
then F,, (1o, &)=0. So all the possibilities are covered in the following
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two cases:

(A) D>0, F,,#0 with tangents u{X(e,) and uP(&).

(B) D>0, F,, =0 with &,(uo)=0 and u,(eg) = —F¢./2F,.

The existence of two branches passing through the point (uo,&) is
guaranteed by the implicit function theorem when D >0 (see ESBT?*, sec-
tion I1.4). t .

When D=0 and all second derivatives are not zero there is a cusp at the
origin (ESBT, section I1.5). There are two typical situations: :

(i) Bifurcation with two curves having common tangents and different
curvatures at (1o, &)= (0,0), an example is given by fig. 1.

€

i

Fig. 1. Bifurcation at a cusp point.

(ii) A cusp point of a single curve. This is degenerate form of a turning
point. An example is given at fig. 2.

1
<

Fig. 2. A degenerate turning point.

When D =0 because all second derivatives are null it is necessary to con-
sider cubic equation to determine the number real tangents. If there are
three real, distinct roots then three bifurcating solutions pass through the
singular point (ug,&). If two roots are complex, then there is no
bifurcation. ‘

We next consider the stability of bifurcating solutions using the line-
arized theory of stability. The linearized equation is

Z,=F,(u,¢€)Z. (1.10)
The general solution of eq. (1.10) is

Z=e¢"2,, o=F.(14¢). (1.11)

* We will use the abbreviation ESBT to denote ref. [4].
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Since all solutions of eq. (1.10) are in the form eq. (1.11) we find that
disturbances Z of ¢ grow when ¢ >0 and decay when ¢ <0. The linearized
theory implies that [u(e), €] satisfying F(u, &) =0 is stable when 0 <0 and is
unstable when ¢ > 0. This criterion applies even to the nonlinear problem
when the initial disturbance is sufficiently small (cf. section I1.7 in ESBT).
A very general and important result is easy to deduce from the second
part of eq. (1.11) under the hypothesis that eq. (1.2) may be solved for
u=u(e). Then, differentiating Flu(e), ] =0 with respect to £ we find that

a(e) =F,[u(e), €] = —u F,lule), €]. (1.12)

It follows easily from eq. (1.12) that ¢(¢) must change sign as ¢ is varied
across a regular turning point. This implies that the u =¢, u = u(e) is stable
on one side of regular turning point and is unstable on the other side (see
fig. 3).

The study of stability may be tied to the study of bifurcation by the
hypothesis of strict loss of stability which was introduced by Hopf. This
hypothesis is a non-degeneracy condition which guarantees double-point
bifurcation. More precisely, we have the following theorem: Suppose that
(1o, &) is a singular point (A) o,(g9) #0 or (B) a,(u) #0. Then (1, &) is
a double point. For the proof under hypothesis (A) see ESBT, section II.9.
For case B we must solve F(y, €) for ¢(u). At the singular point (ug, &) we
have strict loss of stability because o, =Fy, + F,¢,=F,,=D"*sgnF,,.

It is easy to derive formulas which show that there is an exchange of
stability at a double point (ESBT, section I1.10). These formulas can be
used to prove the following theorem. Assume that all singular points of
solutions of F(u, &)=0 are double points. The stability of such solutions
must change at each regular turning point and at each singular point (which
is not a turning point), and only at such points.

We shall prove this theorem for the case in which =0 is a solution of
the evolution problem '

Fu,0)=0 VueR. (1.13)

\\
S~
~

Fig. 3. Exchange of stability at a regular turning point. The same type of exchange of stability
can be demonstrated for degenerate case shown in fig. 2.
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Then, differentiating the second part of eq. (1.11) with respect to u on the
solution =0, we get

0(0)=F,(0,0)#0,  say >0. (1.14)
On the bifurcating branch Flu(e), ] =0 and
0@ =F,lu(e), €] = —p. F,u(e), €,
= ~u[F,(0,0)c + O(e)],
= ~u,a®(0){e+O(&)}. (1.15)

The following bifurcation diagrams are implied by eqgs. (1.14) and (1.15)
(fig. 4). '

To bring the ideas developed so far we give a demonstration here of the
stability and bifurcation of the bent wire arch described in fig. II.5 of
ESBT. We replace u by o, the angle of deflection, and u by /, the length.
We imagine that the equation of motion of the bent arch is

dé/di=8[I- I(9)], (1.16)
where
I(-8)=/6)

is even. The upright position is §=0 and the bifurcating solution is /= /(8),
shown in fig. S.

The ideas developed so far have a much wider range of applicability than
might at first be supposed. The local analysis near turning point and
singular point applies even to partial differential equations under rather
common conditions (called bifurcation at a simple eigenvalue) under which
the important part of the problem is a part which can be projected into one
dimension.

There is a very important global result which holds strictly in R’ and not

Fig. 4. Bifurcation and stability at a double point.
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Fig. 5. Bifurcation diagram for the bent arch. The arch bifurcates subcritically and exhibit
hysteresis. A demonstration of the actual bifurcation is given here and is described in ESBT.

necessarily in R’ in projection. In the one-dimensional case it is possible to
prove that the stability of solutions which pierce the line u = constant is of
alternating sign, as in fig. 6. In higher dimensions curves of solutions which
appear to intersect when projected onto the plane of the bifurcation
diagram actually do not intersect in the higher-dimensional space. We may
write the evolution eq. (1.1) in following factored form

du/dt =F]F2F3F4F5F6F7

LU

\

b

Fig. 6. Bifurcation, stability and domains of attraction of equilibrium solutions of eq. (1.17).
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where each F;=F;(u,u) =0 gives an equilibrium solution. An example of
seven equilibrium solutions is shown in fig. 6. .

In this simple example we see bifurcating solutions, solutions which per-
turb bifurcation and isolated solutions. I call the intersecting solutions Fj,
F, and F, ‘‘bifurcating’’ (from one another). All the remaining solutions
can be isolated F; and F; perturb bifurcation. Fy is an *‘isola’! ‘which can .
be treated as a perturbation of a conjugate singular point. The stability of
solutions on the line u=constant alternates. You see that nonuniqueness
is endemic, even in R’.

2. Bifurcation in R?

For the moment we will use a general notation for our fundamental
(autonomous) problem

du/dr=f(u, u)=f,(u | u) + N(u, ). @1 .

Here ueR" or, say, u is an element in a normed space and u=0 is a
solution for all u

4, 0)=0,

Su(u | u) is the derivative of f with respect to u at =0, a linear operator
f,,(,u[ -) and N(u,u)=0(|u}?). The linearized stability problern for the
stability of the solution u=0 is

dv/dt=f,(u|v). (2.2)

A spectral problem for stability can be obtained from solutions of eq. (2.2)
in the form

v=e%¢, . (2.3)
where { is independent of ¢ and

o={+in
is an eigenvalue of

ol =] 2.4)

We say u =0 is stable (according to spectral theory) if {(4) <0 for all eigen-
values of eq. (2.4). The problem (2.1) arises when we have a problem
governed by differential equations which is forced by steady data. Then
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there is a forced steady solution and u is the difference between the forced

solution and any other solution of the same forced problem. Many very

general problems may be represented by eq. (2.1).
Consider eq. (2.4) in R% Then o is an eigenvalue of

= | a) b(u)] 4. T 2.5
fuu| ) [c(#) o @.5)
a root of

o*-o(a+d)+ad-bc=0. (2.6)

There are two roots

U|=ﬂ+dla,
c
and
2_a+d 1
=== A2
7=
where
2 2
A=("4d) +oe=*D"_ isbe.

The adjoint matrix, the transpose

AT=ab
c d

has the same two eigenvalues but, if c# b, different eigenvectors.

There are four cases in two categories to consider. Category one are the
algebraically simple eigenvalues.

Case 1: A>0. 0,# 0, are real. There are two adjoint eigenvectors.

Case 2: A4<0. ¢, and g, are complex and ¢,=4,. There are two eigen-
vectors and they are conjugate. Category two are the algebraically double
eigenvalues ¢,=0,; i.e., 4=0.

Case 3: g,=0, is a semi-simple double eigenvalue, (¢—d)*=b=c=0.
Then A=al=A"T and every vector ¢ is an eigenvector belonging to

=¢g,=a. We can select two orthonormal ones {; - {~=0. The eigenvalue
a is said to have a Riesz index 1.

Case4: Rieszindex two. There is only one eigenvector, one vector satisfy-
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ing (4 - ol){=0 and one generalized eigenvector satisfying (4 - al)*’X =0
(section IV.4 of ESBT). .

We shall not consider bifurcation for cases 3 and 4 (double eigenvalues)
in these lectures. Case 1 can be formulated as a problem in R’ by the
method of projection. I will show this in the next lecture. The remaining
case 2 in which o={+iz is complex and i

v=ee”y Q.7

is time periodic, leads to a time-periodic bifurcating solution as I now
shall show.
The evolution eq. (2.1) may be written in component form -

Ajy(u)u; + By ujuy + higher order terms. 2.8)
We suppose that near 4 =0 the discriminant 4 is negative, so that
o) =A¢,
o)l*=A"Cx, | 2.9)

where {*(u) is the adjoint vector with eigenvalue &(u) = &(u) - in(x) in the
scalar product

(X-1EX.7. (2.10)
We may normalize so that

GEH=0-{*=4 8 =1. .11
It is easy to deduce

&EH=0E=0. (2.12)

We suppose that the loss of stability of u=0 occurs at 4 =0 so that £(0)=0.
We will get bifurcation into periodic solutions if

n)=wo#0  and d§(0)/du=¢,(0)=0 (2.13)

[say &,(0)>0].
Since ¢ and { are linearly independent any real-valued two-dimensional
vector u = (u),u,) may be represented as

u,=a(t)§,+ﬁ(t)f,. (2.14)
Combining eqgs. (2.14) and (2.8), using eq. (2.9) we get
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ag;+al;= ol + )+ a® By { G+ 2 |al? By GG
+a*B 5l + O(lal?).

The orthogonality properties, [egs. (2.11) and (2.12)], are now employed
to reduce the preceding into a single, complex-valued, amplitude equation

a=f(u,0) = o(w)a+awa® + 28) | + Y@+ O(la]®), (2.15) °

where, for example, a(u) =Bi,k(,u)§'j{kc,-*. (For simplicity we shall suppress
cubic terms of f(y, @) here.) These terms come into the bifurcating solution
at second order but do not introduce new features. The linearized stability
of the solution a=0 of eq. (2.15) is determined by @=a(u)a, a=
constant x e®®, At criticallity (u=0), a=constant X €*' is 2z-periodic in
§= Cl)of .

We shall show that a bifurcating time-periodic solution may be con-
structed from the solution of the linearized problem at criticallity. This
bifurcating solution is in the form

a(r) = b(s,€), s=w(e)t, w(0)=wy, u=pu(E), (2.16),
where ¢ is the amplitude of @ defined by
2= .
e=-t j eSh(s, &) ds= [B]. @.16),
2 o

The solution, eq. (2.16), of eq. (2.15) is unique to within an arbitrary
translation of the time origin. This means that under translation t—¢+¢
the solution b(s + cw(€), €) shifts its phase. This unique solution is analytic
in € when f(4 a) is analytic in the variables (4, q, @) and it may be expressed
as a series:

b(s, &) o b,(s)
wE-wy|l=Y e w, |. - (2.17)
u(e) n=! Hn

The perturbation problems which govern b,(s), w, and y, can be obtained
by identifying the coefficient of &" which arise when eq. (2.17) is
substituted into the two equations: wb =f(u, b) and £=[b]. We find that
at order one

a)obl —ia)obl = 0, [bd = 1, bl(S) =ei’.

At order two we find that [b,] =0 and
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wo[52—ib2] + O)lb.] =[l10'yb1 +ﬂ’0b§+2ﬁo|b1 |2+ )’0512,

where g,=dag(0)/du and, for example, a,= a(0).

Equations of the form b(s)—ib(s)=f(s) =f(s+2n) are solvable for
b(s) = b(s + 2n) if and only if the Fourier expansion of f(s) has no term pro-
portional to e'. Hence, because §,#0 we obtain

H=w =0
in eq. (2.17) and
by — iby=(age® + 280+ ype %) /wy. .
We find that
by(s) = [ape™ ~ 280~ (yoe~*/3)}/icwp.
The problem which governs at order three, with cubic terms in b neglected, is

B3"ib3 = [—wzli] +/120"ub1 +200b1b2+2ﬁ0(b152+51 bz)+2?o5152]/600.
(2.18)

To solve eq. (2.19), we must eliminate terms proportional to e from the
right-hand side of eq. (2.19). This is done if [b;]=0; that is, if

1wy = 10, = —[4ap By — 4| Bol* — 2¢0 80— (2 3)’0[2/3)]/10)0- (2.19)

The real part of eq. (2.19) is solvable for u, provided that {,#0. The
imaginary part of eq. (2.19) is always solvable for w,.

Proceeding to higher orders, it is easy to verify that all of the perturba-
tion problems are solvable when eq. (2.13) holds and, in fact w(e) = w(—¢)
are even functions. It follows that periodic solutions which bifurcate from
steady solutions bifurcate to one or the other side of criticality and never
to both sides; periodic bifurcating solutions cannot undergo two-sided or
transcritical bifurcation. :

We now search for the conditions under which the bifurcating periodic
solutions are stable. We consider a small disturbance z(f) of b(s, €). Setting
a(t)=Db(s,e) + z(t) in eq. (2.15), we find the linearized equation Z(f)=
Jalu(e), b(s, €)lz(r) where f,=9f/0a and s=w(e)t. Then, using Floquet
theory, we set z(r) =e”y(s) where y(s)=y(s+27r) and find that

YY(S) = —wp(s) + £, (i B)Y() = [J(s, £)y)(s) (2.20)

where y(s) =dy(s)/ds.
The stability result we need may be stated as a factorization theorem. To
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prove this theorem we use the fact that y=0 is always an eigenvalue of J
with eigenfunction b(s, €)

Jb=0 2.21) -
and the relation '
@ ()5, €) =, (e)f, (e, bls £)) + b, e

which arises from differentiating wb =f(4, b) with respect to ¢ at any &.

Factorization theorem. The eigenfunction y of eq. (2.20) and the Floquet
exponent y are given by the following formulas: ‘

(s, &) =c(e) G b(s, €) + b(s, €) + u.(e)eg(s, s)) ,

(&) = w,(€) + u,(e)7(e),
y(€) = p.(e)7(e), : (2.23)

where c(€) is an arbitrary constant and g(s, £) = g(s + 27, ¢), 7(e) and j(e)
satisfv the equation

th+ Pb,+ £, (. b) + e(yg— Jg) =0 (2.24)

and are smooth functions in a neighborhood of £¢=0. Moreover f(¢) and
$(g)/¢ are aven functions and such that

7:0==,0),  #0)=-n,0). ” (2.25)

Remark. If w,(0)#0, c(¢) may be chosen so that y(s,e)—b(s, &) when
e—0.

Proof. Substitute the representations (2.23) into (2.20) utilizing eq. (2.21)
to eliminate Jb and eq. (2.22) to eliminate Jb,. This leads to eq. (2.23)
which may be solved by series

q(s,€) - | @)
sevel=X1 7 |é, (2.26)
#(e) il S

where yo=7.(0) and f,=%(0). Using the fact that to the lowest order
b=¢e®, y=0(c?) and £, (1 b)=0,(0)e*c we find that

def

e*[i£(0) + 7,(0) + 0,1 -Joqo=0, Jo=J(:,0). (2.27)
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Eq. (2.27) is solvable for go(s) =go(s+27n) if and only if the term in the
bracket vanishes; that is if eq. (2.25) holds. The remaining properties .
asserted in the theorem may be obtained by mathematical induction using
the power series (2.26).

The linearized stability of the periodic solution for small values of £ may
now be obtained from the spectral problem: u(s, &) =u(s+2m, ¢) is stable
when p(g) <0 [y(¢g) is real] and is unstable when y(g) >0 where

() = 1, (€)9(€) = — 1, (), (0)e + O(E?).

Two examples are given in fig. 7.

3. Projections into R?

In this section we shall show that the analysis of bifurcation of periodic
solutions from steady ones in R?, also applies in R” and in infinite dimen-
sions; say, for partial differential equations and for functional differential
equations, when the steady solution looses stability at a simple, complex-
valued eigenvalue.

Fig. 7. (a) Supercritical (stable) Hopf bifurcation. (b) Subcritical (unstable) Hopf bifurcation
with a turning point. In (b), if zero loses stability strictly as u is increased past zero, then
&,>0 and zero is unstable for 4> 0 (as shown); the double eigenvalue of Jj splits into two
simple eigenvalues of J(-,¢): one eigenvalue is 0 and the other, y(¢), controls stability.
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Our basic problem is again

o= £ u) =1, u) + N, w), G.1).
where N(u,u) =O(|u}?). A small disturbance v=e%{ of u=0 satisfies

ol =f.u|0). NS
The adjoint problem is

al*=f1u|l*) (3.3)

and very often in applications, there are a countably infinite number of
eigenvalues {g,} which are arranged in a sequence corresponding to the
size of their real parts

R E R R

clustering at —o. To each eigenvalue there corresponds, at most, a finite

number of eigenvectors {, and adjoint eigenvectors {y. In the case of a

semi-simple eigenvalue o, we may choose the eigenvectors of f, (u l +) and
,f,"(;l]-) such that they form biorthonormal families

(ks $ap) = Oy kj=1..,m, 3.4)

m, being the multiplicity of the eigenvalue ¢, (assumed to be semi-
simple). Taking now the scalar product of eq. (3.1) with £ we obtain

%mqﬁmMAqwmmum

=, S [ SN+ (NG 1), &
=0, )+ (N 1), {7 (3.5
When u is small the linearized equations lead to
u(t), oy = (u(0), {yesrWliginabir,

so that if £,(u) <0, the projection <u(¢), {;) decays to zero. In fact, for the
full nonlinear problem there is a coupling between different projections,
and if some of these do not decay, this last result is no longer true. Never-
theless, the important part of the evolution problem (3.1) is related to the
part of the spectrum of f,(u|-) for which ,(u)=0.

In the problem of bifurcation studied in this section we shall assume that
the real part of two complex-conjugate simple eigenvalues o(u), &(u)
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changes sign when u crosses 0 and the remainder of the spectrum stays on
the left hand side of the complex plane. Suppose { and {* are the eigen-
vectors of f,(u I-), f,f(;tl -) belonging to the eigenvalue g(u). Then, the
equation governing the evolution of the projection

a‘-’; (s, {*) = 0, {*+ (NGt ), £, 3.6) |

is complex-value, that is, two-dimensional. So our problem is essentially
two-dimensional whenever

u—u, {*—<u, T*¢

is an ‘‘extra little part’’.

Now we shall delineate the sense in which the essentially two-
dimensional problem is strictly two-dimensional. We first decompose the
bifurcating solution u into a real-valued sum

u(t) =a(t), + a(t) +w(t), 3.7
where

W, =KL =( " -1=0. (3.8)
Substituting eq. (3.7) into eq. (3.1), we find, using eq. (3.2) that

la- oW +[a~a(wall + — =f,(t| W)+ N u). 3.9

Projecting eq. (3.9) with {* leads us to an evolution problem for the *little
part’’ w on a supplementary space of the space spanned by { and {:

2 = | W+ NG 1)~ (NG ), N T (B.10)

and to an evolution equation for the projected part
d-o(ua=(N,u),{*. (3.11)

In deriving eq. (3.11) we made use of the relations
d
y * _ * =O
< ¢ > d w,{*)

Culpt [ W), E=Cw, fHu | L)y =a(w,(*)=0.

and
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Eq. (3.10) now follows easily from egs. (3.9) and (3.11).
- Insum, eq. (3.11) governs the evolution of the projection of the solution
u into the eigensubspace belonging to the eigenvalue ¢,(u) = g(u) and eq.
(3.10) governs the evolution of the part of the solution which is orthogonal
to the subspace spanned by {* and Z*.

In bifurcation problems the complementary projection w plays a minor
role; it arises only as a response generated by nonlinear coupling to the
component of the solution spanned by { and {. To see this we note that

(NG w), £*y =4 (fraut|u|w) + O(lu[*)), *
K fuai ], 0% = @0 + 2B() |+ Y()a® + 20 f L1 W), £
+ 28 fu 1T W), )+ fut [ W] W), %),
a(u) =i |10 0,
B =K L |17,
YW) = K 11T, | (3.12)
It follows that amplitude equation (3.11) may be written as

d-o(u)a=a(u)a*+2Bw)|al* + yu)a*+ O(la] + |a| |w] + | w]?).
(3.13)

Returning now to eq. (3.10) with eq. (3.12) we find that after a long time
w=0(|a]?) and dramatize the two-dimensional structure of Hopf bifurca-
tion in the general case by comparing eq. (3.13) with eq. (2.5) which
governs the stability of the strictly two-dimensional problem.

4. Bifurcation from periodic orbits. Normal forms

We consider the equation
dv/de=Ft,u V). 4.1)

Here V(z,u) lies in a real Hilbert space (¢ )), u is a real bifurcation
parameter, and F is T-periodici.e., F(T,, V)=F(t+ T, 4, V). Assume that
there is a T-periodic solution

V=U{tu)=Ut+T,u). 4.2)
We rewrite eq. (4.1) in local form about U. If u= ¥V -"U, then
du/dt=f(t, y, u)
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where
S puy=F(t, i, U+u)—-F(1, u, U). 4.3).
We shall study eq. (4.3) with

f(tuu")=fu(t’ﬂl')+N(t,#,‘)s

where f,(,u|-) is linear and N(t, 4, v)=O(|v}?).

We assume that the periodic orbit U, that is the orbit u=0 of eq. (4.3)
is stable if u<0, and loses stability for #>0. To express this precisely con-
sider the linearisation of eq. (4.3)

dv/de=f,(t, u|v). X

This is to be thought of as a complex linear equation (with real coefﬁcients)
on HC, the complexification of H. Associated with eq. (4.4) is a linear
operator on the space P$ of T-periodic vector fields on H€,

J,=~d/dt+f,(tu]") 4.5)

Eigenvalues of J, are called Floguet exponents. The orbit u =0 is stable if
all Floquet exponents have negative real part, and unstable if any has
positive real part. The loss of stability at #=0 is assumed to occur in the
simplest way.

Bifurcation assumptions:
There is a Floquet exponent o(u)=£&(u) +in(u) such that
@) o) =iwy=2nr/T, 0sr<1.
(ii) o(u) and &(u) are isolated algebraically simple eigenvalues of J,.
(iii) d&/du(0)>0.
(iv) all eigenvalues of J, other than ¢(0) and &(0) have negative real
part.

The type of bifurcation that occurs depends on the value of r.

(i) Strong resonance: if r=m/n and n=1,2,3, or n=4 and a certain
inequality holds then nT-periodic solutions bifurcate.

(ii) Wan [6] has shown that there is an invariant torus when n=4 and
the inequality does not hold.

(iii) Weak resonance: If r=m/n, n=5, and certain exceptional con-
ditions hold then nT-periodic solutions bifurcate.

(iv) If r+m/n, n=1,2,3,4 there is a Hopf bifurcation to an invariant
torus.
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The next section describes how to approximate the original problem (4.3)
with an autonomous equation in R2. It should be mentioned that the .
asymptotic representations can be constructed directly, without normal
forms, by methods of applied analysis (see appendices to chapter X in
ref. [4]).

4.1. Derivation of the autonomous equation

We assume that r#0, 4 (see refs. [3-5] for a study of these cases). This
means that the periodic orbit =0 loses stability in two real dimensions
instead of just one. The first step is to decompose eq. (4.3) into a part in
this plane and a complementary part.

There is an inner product on P,

[51,521=%§T(§1(’), &) dt.

Let J; be the adjoint of J,, with respect to [-,-]. It can be verified that
Ji=d/dt+f2tul-), | @.6)

where f*(z,u|-) is the adjoint of f(t,u|-) with respect to (, ). Now
o(u), 6(u) are eigenvalues of J,i» J; respectively; let & 5;,“ be corresponding
eigenfunctions. Using eq. (4.6) and the assumption that r#0, 4, one can
show that

(G (1, &) =(&,(0), £1(0))
(a0, &x)y=0.
Normalise §,, &, so (£,,&F)=1. Now we can write
u=z&,+25,+ W, _
where z=(u,&}) and W is real. Eq. (4.3) becomes
dz/dt=a(u)z+b, (4.72)
dW/dt=f,(t,u| W)+B, (4.7b)
where
bt 12,2, W)=(N(t, 1, u), EX(1)),
B(t, 1,22, W)= N(t, 1) = CNGE, iy 0), EDE, — CNCE ), EDE,.
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We have b=by+ b,, B=By+ B,, where bo-b(t %220), b=0(z| |W|+

IW1?) Bo=B(t, 1,2.2,0)B,=O(|z| [W] + |W]?). :
Roughly speaking eq. (4.7b) will be eliminated and eq. (4.7a) made

autonomous up to O(IzIN *1). To do this we change variables

y=z+yt, ) =2+ E 2PZ%pg(t, 1),

p+a22

Y=W+I(t,uz,2)=W+ 2 P20, ), : 4.8

p+g=2

where N is arbitrary, y,, and I}, are T-periodic, and I,, L &}, &F. We chose
Ype» Ipq 1ater, after eq. (4.7) has been rewritten in terms of y, ¥. Now

dy_ 9y 9y Sy
i =07+ b+ Yy + Py (cz+b)+ Py (6z+Db)

ay ay ay )
oyt ( Loz Loz _oysB)+5,(1+2) 452
oy <6t azaz »Zaz oy ) ,( 1
where

b'(t,.u,z,z)=bo<1 ?) +bo ay

d—-—fu(t ,ufY)+( 1;+az%£+az— - 1.4, plf)+B)

ar
oz’

+B,<1+%—r->+3l

where

or ar
Bt By(1+—)+B .
twz2)= o( oz ) %z

Expand

b= f,‘ bog(t, )2P29+ O(|2|N* ),

+q22 B
B »eg,
where b,,, B,, are T periodic and B, L £% &*. Then

d )
2 _oy+ E ( y”"+[a(p—l)+aq]y,,,,+bpq>z bl
ds prgz2\ Of

+0(|z] pw] + [w]?+ 2]V,
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w
a6l 0+ T (G Lo | D+ lop+ 00l B2

p+g22
+0(iz] fw] + w2+ |z|V*)).

Finally use eq. (4.8) on the right hand side to get

dr pegz2\ Ot
+O(¥| 1Y +{Y 2+ [y, (4.92)

Y_oys ¥ (a—}'ﬂ+[a(p—1)+6qlr+5m)y”5"’

——fu(tulY)+ E RAC )+ lop+6q1L,+B,,}

+O(|y| Y]+ EYI2+ [yIN*)), (4.9b)

where 5 and § are functions of Vij I; with i+ j < p+ g with T-periodic
coefﬁc1ents and such that all terms in eq. (4.9b) are orthogonal to &gl
Now YpgsIpg are chosen successively for p+g=2,3,...,N so as to
sxmphfy eq. (4.9). Th1s is the key step. We choose 1" pg to make
)-r[ap+&q] =0 for small u. This is always possible since
I‘ pqr Bpg€{SePr:&L é‘,,é,j"} and the bifurcation assumptions mean that
for small u none of the eigenvalues of J,, on this space has real part as
small as Re(op + q). This reduces eq. (4.9b) to

%wz ul V)+O( Y] 3]+ 1Y 2+ V). (4.102)

In order to choose y,,, write
bpg(t, )= L bpqi() expQrilt)/T,
€
S (AN ES ,Ea ¥pa1 (1) exp(2nilt)/T.
- .

Then

a r .
‘gﬂ +lo(p=1)+0qlype+ bpy= :Ez pgi (1) exp(2milt)/ T,

where

ot (1) = (——+[o(p 1)+6q}>yqu(u)+bpql(u)

”r:
2pqi(0) = —;3 {1+ 7[p=1=q)}7pg1(0) + B (O).
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dy aor; ‘ ) i
ar ~Slbuly )+p+qz2<a—f" b | D)+ [crp+at.I]qu+qu)z”z"

+0(z] [w] + w2+ [z)V*)).

Finally use eq. (4.8) on the right hand side to get

d ) _
Zoy+ ) (%fq+[o(p—l)+6q]y+5m)ypy”

dt P+g=2
+O(XY[ Y]+ Y2+ [pN*)), (4.92)
dY N ) _ =
3 SSeul N+ T A-J )+ op+8qlL, + B,
dr ot

+O(y Y]+ Y2 +|yN*Y, (4.9b)

where 5,,4 and qu are functions of y;, Ij with i+j<p+q with T-periodic
coefficients and such that all terms in €q. (4.9b) are orthogonal to f;, E,,‘.

Now YpgsIpg are chosen successively for p+g=2,3,..., N so as to
simplify eq. (4.9). This is the key step. We choose I,, to make
—J,,([pq)+[op+6q]+qu§0 for small 4. This is always possible since
I, By,e{lePr: &L & é-;’} and the bifurcation assumptions mean that
for small 4 none of the eigenvalues of J, on this space has real part as
small as Re(op + @q). This reduces eq. (4.9b) to

S k| DY+ 0T[5+ [P+ M0, (4.10a)

In order to choose Ypq» Write

Bpalt10= T, bpgi() exp(2milt)/ T,
Vgt 1) = IER Ypat () expmilt)/T.

Then

] = .
% +lo(p-1)+ 0qly,e+ 5pq = /Z'; g (1) exp(2milt)/ T,

where

i/
ot (1) = (2%’— +lo(p-1)+ 6q]) Poat () + bpor 40,

e (0) = 2—;—‘ {1+ (P =1~ g1} (0) + by 0)
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We have b=by+ b,, B=By+ B,, where bo-b(t #27%0), b=0(|z] |W| +

[W1?) Bo=B(t 1r,2.2,0)B,=O(|z| | W | + | W |?). i
Roughly speaking eq. (4.7b) will be eliminated and eq. (4.7a) made

autonomous up to 0(|z[¥*!). To do this we change variables

y=z+yt,mza=2z+ Z 2P2% (8, 1),

p+gz2

Y=W+I(t,u,z ) =W+ E 22°L,(t, 1), - 4.8)
p+g=2
where N is arbitrary, y,, and I, are T-periodic, and I,L & .’,’u We chose
Ypg» Ipg later, after eq. (4.7) has been rewritten in terms of y, Y. Now
dy

dy
— +bh+—=
4 ooy

9y ay  __ 9y
=0y+(—=+0z = +67— +b)+ +=)+b =
oy (at oz Py 4 2z -ay b'> bl(l ) 1

Sy 9 5z
+ Y (oz+b)+ P 62+ b)

Z
where

0
b(t ll,‘(,,Z) bo(l + ay> +b0 a_

dY or ol
L feul ¥+ (5 o +6z —fu(t ulr)+B)

or = oI
+B)(1+—)+B,—,
’( a) '3z

where

or or
B, By(1+—)+B .
twzd)= o( 32 ) r

Expand
- N
b= E bpglt, 12?27 +0(|z|N* ),
B 7p
where b, B,, are T periodic and B,, L &% &*. Then

N /0
i:1-Z=¢J',)J+ Y ( ypq+[a(p—l)+6’q]ypq )z"z‘q
df p+gz2 Bt

+0(|z[ [w] + |w}?+ |2V,
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dy ar, . _
5 =flu| D+ L <_ﬂat —f,,(t.ﬂII},q)+[ap+aq1qu+qu)z"Z"
p+qz2 _

+O(iz] fwl + [w]*+ |2V ).

Finally use eq. (4.8) on the right hand side to get

d—y=cry+ ¥ (?-h+[a(p—l)+dq]?+5pq)y”y”

dt p+gz2 at
+O(|X Y]+ 1Y) +|yN*Y, (4.92)
dy N : i -
5" Laul)+ ¥ ; {=JuIpg) + lop + 6q)L,, + B}
p+gz

+O( Y| Y]+ Y |2+ [y N*Y), (4.9b)

where qu and §pq are functions of y;;, Ij; with i+j<p+ ¢ with T-periodic
coefficients and such that all terms in eq. (4.9b) are orthogonal to &5, &7

Now YpgsIpg are chosen successively for p+qg=2,3,...,N so as to
simplify eq. (4.9). This is the key step. We choose I,, to make
—J,,([pq)+[ap+6'q]+§pqso for small y. This is always possible since
Togs Bpg€{E€Pr: &1 8}, &} and the bifurcation assumptions mean that
for small u none of the eigenvalues of J, on this space has real part as
small as Re(op+ &q). This reduces eq. (4.9b) to

%=fu(t,ul Y)+O(| ¥} |y]+] ¥ |2+ [y]¥*1). (4.10a)

In order to choose Ypgs Write

byt )= :E:a bpgi(1) exp(2milt)/T,

Yoot )= 122 Vgt (1) exp2milt)/T.
< .

Then
9 _ o
2 4 [o(p=1)+ 0qltpg + by = L i) exp(2niln)/T,
where
2mil _
ot (1) = <T +lo(p-1)+ aq]) 9 pat (1) + Byt (1),

et =22 {1+ [P~ 1= g1}y 0)+ by O)
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We see that we can always choose Ypqr t0 make ap,(4)=0 for small u
unless /+r7[p—1-q}=0. Wecall {(p,q,L,r): !+ r[p—I-g] =0} the Excep- _
tional Set. It is the union of two disjoint subsets: ‘

I the mean set: (p,q,47)=(g+1,4,0,7) 2<2g+1<N,
II  the resonant set: (p,q,,r)=(q+1+nk,q, —km,m/n)
0sm<n, k=1, 2<2q+1+nk=<N.

The mean set is present for any r, but the resonant set arises only when r
is rational.
When (p,q,Lr) is in the exceptional set choose Ypqi(1)=0; otherwise
choose Ypq(1) 10 make @,y (1)=0. This reduces eq. (4.9a) to
2q+1sN

d
'd-:":a(p)y'*' Z yq+lyqbq+l,q,0(/1)
gzl

2g-14+nksN

+ ‘_Zo EO [yq +! +nkyqbq+ 1+nk,q, _mk(’u)e—mekt/T
> qz

+)’qu_ ! +nkbq, q-1+nk, mk(ﬂ)eZMkr/T]
+OCYIYI+IY P+ yVh. (4.10b)

The asymptotic representation is obtained by neglecting the order terms in
egs. (10a,b). The truncation number N in eq. (4.10b) is arbitrary. The
justification of this approximation will not be attempted here; see refs
[3-5]. We proceed to study the approximate problem.

It is clear that eq. (4.10a) gives Y(s, #)=0. To study eq. (10b) set

y = xel, @4.11)

Substitution in eq. (4.10b) gives an autonomous equation of the form

d.X . 29+1<N
—=pdx+ ¥ +x|x|Ma,(u)
dr . g=1
+ L T x2{x a4 2% 1a, ),
k>0420

where ué(u)=o(u)—-0(0) and a, ,(u)=0 if r is irrational.

We shall look for the equilibrium solutions of eq. (4.12). We expect to
find fixed points and closed curves. These will be cross sections of sub-
harmonic trajectories and invariant tori for the original problem. The type
of solution will depend on which terms on the right hand side of eq. (4.12)
have lowest order in x after ué(u)x. If n=3 the term from the resonant set
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ag 1 X" ~1 is the only term of order 2, and we shall find fixed points for
eq. (4.12). If n=4, g5, 2"~ from the resonant set and a,x|x|* from the
mean set both have order 3, and either fixed points or an invariant circle
can occur. If n= 3 then terms from the mean set have iower order, and we
expect a closed orbit of eq. (4.12). Normally it is traversed at a speed
O(€?). but if enough exceptional conditions hold this speed can be so low
that the terms from the resonant sei break up the closed Ol’iDl. mt() fixed
points. This is weak resonance.

All of the above remarks assume that various terms are #0. The excep-
tional cases where this is not true are i ignored here. Also it will be assumed
for simplicity that 6, a,, a, ,a, _x--- are independent of z. This does not

change the essence of the arguments.

5. Bifurcation fro

subharmonic a

ﬁ
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B i
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2
=
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2

We assume the orbit can be written in the form

x(t, p) =€ e5x(s,£),

u =€),
s=¢efe)t, 5.1
where yx is 27 periodic in 6. Note that 27z/sQ(s) is the period of the closed

wlils Af A fA 17D)
Oroit 01 Cy. (#.14).

Substitution in eq. (4.12) gives

+ ]XIZq[aq'keinkGXl«knkEZq-#nk—l

+aq’ _ke—inkgxnk—-l£2q+nk—3]. (5.2)
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Expand in powers of &:

x(s, €)= i:)o x; (9,

o)=Y e,
Jj=0

Q©=Y 9.

j=0

The functions x;(-) are 2n-periodic; and

l 2n
l=— j x(s, &) ds,
2n J,

SO

1 2n
— ; ds=1 =0,
o jo xi(s, &) J

=0 Jj=1.

.3

5.4

We now solve by evaluating coefficients of successive powers of €. From

the terms of order 0,
) . dx
(iQ20— 106)x0 + 2o Eﬂ =0.

Taking the mean over (0,2n) gives

1920 = fiy6-

Now it follows from the bifurcation assumptions that & has positive real

part. Hence, since £, and f, are both real,
.Qo=ﬁ0=0.

The terms of order 1 in &€ now give
. . dx
(92, -1, 8)x0+ £ E}Q = | xol*X0a;.

Taking the mean over (0,2n) gives

. 1 (> 2
12, —g,6=a; — “xo ds.
1~ H) 1 on L [x0l* %0

(5.5)

(5.6)

It can be shown from egs. (5.4), (5.5) and (5.6) that xq(s)=1. From eq.
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(5.13) we now obtain
1Q,-4,6=a,.

Taking real and imaginary parts gives
Bé+a;=0
2 -gi=p5.

To continue we have to assume that Q; #0. It will be seen in the next sec-
tion that ©,=0 is the first of the special conditions leading to weak
resonance. '

The terms in &2 give

dx = O s
22 - @G+ £)=816) - (9~ 1,6)

where
gi(s)=ay_,e™%
=0 nzs.

We see from eq. (5.4) that we must have

(2=
j [£1(5) ~ (12, ~ 1,6)] ds =0.
0
This is true if and only if
.Qz =ﬂ:=0.
It is easily shown using Fourier series that the equation
dy
Qy = -a(y+9)=4(s
'35 (Y +9)=§(s)
where £ is 27n-periodic and [2* #(s) ds=0 has a unique 27-periodic solu-
tion. We see that
x,/s):Ae"‘+‘Be'5i‘ n=>5
=0 nx=s.

The analysis continues along these lines. It is found that (-) and Q(-)
are both odd functions, and the x(-, €) is 22/n periodic (constant if r is irra-
tional). This is 1o be expected since eq. (4.12) is invariant under rotation
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through 2n/n. By tracing back through the derivation in section 2, we see
that our approximate solution is quasi-periodic with the two frequencies .
2n/T and wo+&2w(e?) =wo+ R, +E*23+ . ’

5.1. Subharmonic bifurcation

Suppose x=0¢"® is a steady solution of eq. (4.12). Note that .
J explig(d)] exp(2rik/n), 0<k=<n-1, are all steady solutions of eq. (4.12).
They are the n-piercing points of a single nT-periodic trajectory. We have

0=ué+d6%a,+d%ay+---+9""2e™ Mgy _ +--.
Assume
9(8) = o+ @10+ @207+ ---
p=p 06+ 5§24 ...

We evaluate the coefficients of increasing powers of J.
For n=3: the terms in & give

p G +ay _ e300 =0,
Hence

”(1)=|00.-1/6-.!’
2k-1

@o=1targ(ag _1/6) + k=0,1,2

(taking uM=—{a, _;/| will give the same solution). The higher order
terms can now be calculated. We obtain a single 37-periodic trajectory.
The bifurcation is two sided since u(d)=0(J).

If n=4: the terms in J give

ﬂ(l)=0-
For n=4 the terms in &* give
uPé +a,+e g, =0,
)
illm&"‘al!z: Iao,-liz-

This gives a quadratic equation for u®@. If the discriminant is positive we
have two different values of u*® which lead to two different 4T-periodic
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trajectories.
If n25: the terms in &% give

uPé+a,=0.

This is the first special condition for weak resonance; the requirement that

#® be real restricts 6 and a,. It can be verified that this restriction is

equivalent to the requirement that Q, =0 which was used in section 3.
For n=5: the terms in &° give

”(3)& +ag, _Ie"“’“ =0.

This determines 4® and @,. Higher order terms can then be calculated.
Since u(d) = 0(6?) the bifurcation is one sided. Since #® 0, u(d) is not
even, and we obtain two 57-periodic trajectories.

If n=6: the terms in &7 give

u(3) =0.
For n=6: the terms in J* give
p96 +ay+ay _ e =0,

This gives a quadratic equation for 4; if the discriminant is positive two
67-periodic trajectories bifurcate.
If n27: the terms in §* give

[.1(4)604' a= 0.

This is the second special condition for weak resonance.
The results continue along these lines. As » increases subharmonic tra-
jectories are possible only if more and more special conditions hold.

5.2. Rotation number and lock-ins

We conclude with a few remarks about the phenomenon of frequency lock-
ing when there is an invariant torus. This occurs when all the trajectories
on the torus are captured by a single (subharmonic) trajectory.

Consider the Poincaré (first return) map. This is a map from the in-
variant circle to itself, this map takes a point on the circle to where the tra-
jectory passing through it meets the circle again after going round the torus
once (i.e. after time T). Consider its rotation number, o (defined for
example in ref. [4]; the reader may think of g as a frequency ratio). If o
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is irrational there is a change of coordinates which makes the Poincaré map
a rotation, and the flow on the torus is quadiperiodic. The Poincaré map.
has no periodic points. If o =p/q is rational, the Poincaré map must have
periodic points of order g, to which correspond subharmonic trajectories.
Generally there will be two such trajectories one attracting, the other
repelling.

It is important to distinguish between the rotation number 4(¢) for the
asymptotic representation and the rotation number o(¢) for the real flow.
It is known that o(¢) is continuous but is is generally not differentiable.
What happens is that if o(¢y) =p/q then. o(¢)=p/q on an interval about
€. The rotation number locks on to each rational value. This happens
because if §; is a periodic point of order g of the Poincaré map, Je» then
generically 8/36(f7)|,=e, 60=6,#0. This enables us to solve for a fixed
point of f7 when ¢ is near ¢, so o(¢) cannot change near &,.

In particular the set of values of ¢ for which o(¢) is rational has positive
measure. It is an important result of Herman [2] that the set on which o(¢)
is irrational also has positive measure. ,

The results show that the approximate rotation number is of the form

6(e) = wo+ e2w(e?).

It can be concluded from this that the true rotation number lies between
two polynomials

o(e)=06(e) = Ke",

where N is arbitrary. It follows that the lengths of the flat line segments
on which lock-ins occur must tend to zero faster than any power of N as
e—0.

5.3. Experiments

The type of dynamics that I have discussed here is characteristic of the
observed dynamics in some mechanical systems involving fluid motions.
The fact that an analysis of the kind given here does seem to fit well the
observations of motion in small boxes of liquid heated from below, and
in flow systems like the Taylor problem may surprise some readers. The
surprise is that an analysis in two dimensions, and low dimensions greater
than 2 give results in agreement with observations of continuum systems
with “‘infinitely’’ many dimensions. In fact, this kind of agreement is
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associated with the fact the spectrum of eigennodes in the small scale
systems for which agreements is sought is widely separated and the dimen-
sion of active eigenvalues is actually small. .

I do not want to give a too cryptic explanation of the relevance to real
fluid mechanics of the kind of analysis sketched in these lectures. In fact
this kind of analysis is recommended for actual computation of bifurcated
objects in fluid mechanics near the point of bifurcation [4]. A nét too cryp-
tic explanation of relevance can be found in my two review papers (D.D.
Joseph, Hydrodynamic Instability and Turbulence, eds. H. Swiney and J.
Gollub, Topics in Physics (Springer, 1980)) or in Bifurcation in Fluid
Mechanics, in the translation of the XIIIth Int. Congr. of Theorenca] and
Applied Mechanics (IUTAM), Toronto (1980).
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