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Nonlinear Equation Governing Flow in a Saturated Porous Medium

D. D. JoseprH

Department of Acrospace Engineering and Mechanics, University of Minnesota, Minneapolis. Minnesota 55455

D. A. NIELD

Department of Mathematics, University of Auckland, New Zealand

G. PAapAaNICOLAOU

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

1t is argued that the appropriate generalization of Darcy’s law when inertia effects are included takes
the form Vp = ~(w/k) V — (pc/k")|V|V, div V = 0, where & is the permeability of the medium and the
‘form drag constant’ ¢ is a coefficient which is independent of the pressure p, the seepage velocity V,
and the density p and viscosity u of the fluid but which is dependent on the geometry of the medium.
We formulate a nonlinear extension of Brinkman's self-consistent theory for the flow of a viscous fluid
through a swarm of spherical particles. We equate the drag per unit volume given by the right hand side
of the first of the above equations to the total drag ND on the N particles contained within that unit
volume, in an infinite region €, where D is the drag on a single particle placed in a velocity field v
subject to p(v+ V)v + grad p = uV>v — wk v — (cplk'?)|vjv, div v = 0, ¥|q is a prescribed constant,
where p is the viscosity. Without solving these equations, we obtain an estimate for ¢ from the known

experimental drag law for a solid sphere placed in a uniform stream.

INTRODUCTION

It is generally accepted that the appropriate form of the
momentum equation for steady slow flow through a porous
medium is Darcy’s law, which is a linear relationship be-
tween p and V: :

P . .
Vp p v . . (1).
which neglects inertial effects. There are at present several
different views as to how Darcy’s law should be generalized
to include inertial effects. We argue that the effects of inertia
appear as a drag proportional to the square of the velocity.
The idea is that the drag due to the ‘dead water’ region
behind particles in a stream produces a quadratic drag in
much the same way as the drag of one cyclist drafting
another. i
The suggestion that the one-dimensional form of (1) be
modified by the addition to the right-hand side of a term
proportional to pV? dates back to Dupuit [1863], but the
modified equation is usually associated with the name
Forchheimer [1901]. Forchheimer and others have also
included a term proportional to V3, but this does not seem to
be consistent with experiment. The increased resistance is
due to a ‘pressure drag,’ like the aerodynamic drag behind
blunt bodies, and is essentially quadratic in the velocity. It
arises from the convective term (u- V)u in the Navier-
Stokes equation for flow of a viscous fluid with velocity u as
an average is taken over many pores in the medium, just as
the linear Darcy term arises from the viscous term (wWp)Vu
in the Navier-Stokes equation. {The available experimental
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data correlates well with a quadratic drag law (see, for
example, MacDonald et al. [1979)). AR

Some authors have attempted to account for inertial
effects by writing V = 9U, where 7 is the porosity of the
medium (volume of fluid/total volume), and substituting in
the Navier-Stokes equation with a Darcy viscous term to get

——+—(V-V)V=-Vp—-:—v [03)

This law is clearly false since it fails to give any inertial drag
effect for the case of steady unidirectional flow, since the
left-hand side of (2) is then identically zero. Kitaev et al.
[1975] have gone a step further and adopted a steady flow
equation equivalent to ‘

@IV - VIV = —Vp — AV - B|V|V 6)

where A and B are coefficients based on an equation
obtained by Ergun [1952] (5) below, with @ = 1.75 and B =
150). Kitaev et al. claimed that the Ergun equation, being
based on experiments with unidirectional flow, ‘takes into
account gravitational force and forces of viscous and surface
friction but not inertia effects (convective acceleration)
[Kitaev et al., 1975, p. 184]. We disagree with Kitaev et al.
Not only does the last term in (3) take inertial effects iqto
account, but the term on the left-hand side of that equation
should be left out. An essential feature of flow in porous
media is that the term which is quadratic in the velocity is
associated with a pressure drag of the type which always
exists in flows around blunt bodies and hence acts in the
direction of —V. -

We note in passing the works of Yamamoto and Yoshida
[1974), Vaisman and: Gol'dshtik [1978], and others, who
have taken into account the role of inertial effects by using a
boundary layer approach. The problem of what happens
near the boundary of a porous medium is an important one,
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but it is not considered here. Likewise, we do not consider
the effect of hydrodynamic dispersion. Having explored
these inappropriate leads, we now indicate what we consider
to be an appropriate description of the non-Darcy flow when
inertia cffects are significant.

THE NONLINEAR EQUATION

The experimental work discussed by Ward [1964] and
Beavers et al. [1973] indicates that the appropriate form for
the dynamic equation governing one-dimensional flow of a
fluid in a saturated porous medium is

cpV?
kl/2

where p is the pressure, V is the mean filter velocity, g and p
are the viscosity and density of the fluid, & is the permeabili-
ty of the medium, and c is a nondimensional coefficient.
Ward concluded from his data that ¢ was a universal
constant, equal to 0.55, for all permeable materials, but later
experiments reported by Beavers and Sparrow [1969] and
Schwartz and Probstein [1969] indicate that ¢ has a more or
less universal value for a particular family of materials. For
example, c is 0.1 approximately for foamed metal fibers and
0.26 for compacted polyethylene particles of random shape.
Furthermore, Beavers et al. [1973] showed that bounding
walls could have a substantial effect on the value of c¢. They
found that their data correlated fairly well with the expres-
sion

_% _
dx  k

4)

¢ = 0.55(1 - 5.5d/D,)

where d is the diameter of their spheres and D, is the
equivalent diameter of the bed defined as

D, = 2wh/(w + h)

where & and w are the height and width. of the bed.

Several attempts have been made to give a theoretical
justification for the linear version of (3) (Darcy’s law) but
comparatively little theoretical work has been published
concerning the Forchheimer quadratic term involving V2,
The most noteworthy effort is that of Irmay [1958], who gave
a nonrigarous derivation of the Forchheimer law, obtaining
an expression which can be written in the form

_d _ Bl -V ap(l - )V
dx d*v dv
where d is the mean particle diameter and « and B are shape

factors which need to be determined empirically. Equations
(4) and (5) are identical if we make

&)

a7
k= ﬂ(———l s (6a) -
¢ ol-19
W )

so that ¢ = a(B7°) "2 According to Bear [1972], Irmay later
adopted the values « = 0.6 and B8 = 180, which make ¢ =
0.4517>?. This reasoning makes ¢ depend rather strongly on
the porosity, . For n = 0.5, it predicts ¢ = 0.13. The
agreement with the experimental work is not as good as one
would hope for, but at least Irmay’s expression gives c to the
correct order of magnitude.
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For flow through a porous bed of spherical particles, we
would like to relate k and ¢ to the size of the spheres and the
way they are packed. For the situation where the spheres are
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not closcly packed, such a relationship for k has been found

by Brinkman [1947}, who considcred the situation when the
porosity was sufficiently large for onc to take the equation
for flow past an individual sphere to be

gradp=—%v+p.V2v

Ul

where v and p are the fluid velocity and pressure and p is the -
viscosity of the fluid. It is not appropriate to replace win (7) .

by an effective viscosity u', as one does with suspensions, '

i

since the fluid in the porous medium retains its bulk proper- -

ties. For an incompressible fluid, v satisfies

divv=0

@®

Brinkman solved equations (7) and (8) subject to the appro-

priate boundary conditions (v =
sphere, and v = vg at large distances from the sphere). He

0 on the surface of the '

i

3

calculated the drag on the sphere to be mD,, where D; =
67rpvga is the Stokes drag on a sphere of radiusgandm =1 -
+ \a + A%a*3, where A.= k™2, He then identified v, with a :
unidirectional mean filter velocity and equated the total .
force on the spheres contained in a column.of the medium to
the Darcy drag on that column. He thereby obtained a -
relationship between a and the porosity 7 and hence an .
expression for the multiplication factor m, which can be

written as

- N1z}l
m={1+u[._(_§__3) ]} o
4 1~-179

This requires that the permeability be given by
k = ko/m

where kg is the value of & in the limit as n— 1. According to
(9), m becomes unbounded as 1 — , and hence we must
assume that § < # < 1. Brinkman showed that (10), with m
given by (9), was in qualitative agreement with an experi-
mental relation formulated by Carman which is now widely
accepted ((6a) of this paper, with 8 = 180).

It is desirable to repeat Brinkman’s analysis for the
nonlinear problem in which the Navier-Stokes equations,
rather than the linearized (Stokes) equations govern the flow
around the spheres. In this problem the effects’ of the
presence of a swarm of other spheres is accounted for by the
nonlinear ‘Forchheimer’ drag law rather than the linearized
(Darcy) drag law. This leads us directly to the following self-
consistent problem of the Brinkman type:

m c
—v - E%Mv (1)

p(v~V)v+gradp=\uV2v— p

divv=0  v|yn = prescribed constant
Pending analysis of (11), we shall proceed in a speculative
manner and investigate the implications of making the as-
sumption that the quadratic drag acting on an array of
spheres is related to the quadratic drag on a single one in the
same manner as the respective linear drags are related. In
other words, we shall suppose that the Forchheimer quadrat-
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Fig. 1. Measured drag coefficient Cp = D/(3pUo2ma’) versus

log,oR where R = 2aUy/v for a sphere of radius a. We may represent
this graph by (13).

ic drag can be calculated by supposing that the quadratic
pressure drag on a sphere is effectively multiplied by the
above factor m due to the presence of the other spheres. We
shall make use of experimental measurements of the total
drag D on a sphere, which are displayed graphically in
Figure 5.11.6 of Batchelor [1967] and in our Figure 1. This
graph is a plot of the drag coefficient Cp = D/(pUs’na?)
versus the logarithm of the Reynolds number R = 2aUy/v.
Here a is the radius of the sphere, U, the uniform stream
velocity, p and p are the density and viscosity of the fluid,
and » = p/p. For values of R up to 10%, the curve can be fitted
fairly well by

M(R
cD-——(--)+04
R

12)
where M(R) is a slowly varying function of R. For example,
M(40) = 48, M(100) = 64, M(1000) = 80, and for small values
of R we expect that M would have the value 24, correspond-
ing to Stokes flow. In terms of dlmensxonal quantities, (12)
can be written as
- .
D = " MupaUy + 0.27pa’Uy? (13)
Wc now consider the porous medium formed by a distribu-
tion of such solid spheres, which occupy a fraction I — nof
the volume, and so we expect that the drag force experi-

enced by the solid material per unit volume of the medium
will be

D = m(1 — p)DI(§na®)

where D is given by (13).
We take Uy, the stream velocity experienced by a single
sphere, to be V. Then we identify D with the right-hand side

of (4) and get
h= 2
= 9~—T‘m( T (14)
~ ¢ = 0.05[m(1 - n)] (15)

where m is given by (9).
These expressions may now be compared with Irmay's
{1958] formulas:

1051

2
=19
a5l - ) (19
¢ = 0045772 (7

Numerical values are given in Table 1.

From Table 1 we see that, using thc Brinkman [1947]
hypothesis, we get good agreement with Irmay. We get
values of k/a? of the order of 50% of Irmay’s valucs, while
away from the singularity at y = § our values for ¢ are of the
same order as Irmay’s values for that parameter.

The available experiments most relevant to our work
would appear to be these of Beavers et al. [1973], in which
beds of randomly packed spheres of diameters 3, 6, and 14.3
mm in turn were used, with measured permeabilities 5.8 X
1075, 1.57 x 1074, and 1.02 x 1073 cm?, respectively, and
thus k/a® values of 2.58 x 1073, 1.74 x 1073, and 2.00 x
1073, respectively. For large values of the bed size parame-
ters d/D, the measured values = 0.37 and ¢ = 0.55 were
found. Unfortunately, this value of the porosity is uncom-
fortably close to the singularity at 4 = { in the Brinkman

“theory, and a close match between theory and experiment

should not be expected. For 5 = 0.37, we predict that k/a*> =
1.8x 107*and c = 1.2.

In fact, of course, the Brinkman approach is valid only
when the spheres are not too closely packed, and in practice
this seems to mean that the porosity must be at least larger
than 0.6 and probably larger than 0.7. For comparison, the
range of porosities of the materials for which data is given in .
Ward’s [1964] paper is 0.34 to 0.67, so the test between
experiment and theory is not a very good one. Nevertheless,
our predicted values of k/a? and ¢ seem to be of the right
order of magnitude and provide some ground for optimism
that more precise analysis will give a better fit with experi-
mental data.

CONCLUSION

We have formulated a nonlinear theory which is consistent
with the available experimental data for flow through porous
material. Although our work is formulated for flow through a

TABLE 1. Values of k/a® and ¢ Predicted From the Present
Argument by Using the Brinkman Hypothesis for the Effective
Stream Velocity Experienced by a Sphere and the Values
Predicted by Irmay

kla® c

Equation Equation Equation Equation
(15) 17 (16) (18)

[Brinkman, {Irmay, [Brinkman, {Irmay,
U] 1947} 1958] 1947} 1958}
0.35 0.000 0.002 2.672 0.217
0.40 0.001 0.004 0.659 0.178
0.45 0.002 0.007 0.356 0.149
0.50 0.005 0.011 0.234 0.127
0.55 0.010 0.018 0.168 0.110
-0.60 0.018 0.030 0.126 0.097
0.65 0.029 0.050 0.097 0.086
0.70 0.048 0.085 0.076 0.077
0.75 0.079 0.150 0.059 0.069
0.80 0.132 . 0.284 0.046 0.063
0.85 0.233 0.606 0.035 0.057
0.90 0.463 1.620 0.024 0.053
0.95 1.261 7.620 0.015 0.049
1.00 o e 0.000 0.045
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fixed solid matrix, similar considcrations apply to sedimen-
tation problems in which solid particles fall through a
viscous fluid.
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Correction to ‘Nonlinear Equation Governing Flow in a Saturated
Porous Medium’ by Joseph et al.

The paper ‘Nonlinear Equation Governing Flow in a
Saturated Porous Medium’ by D. Joseph, D. Nield, and G.
Papanicolau (Water Resources Research, 18(4), 1049-1052,
1982) contained some errors. The end of the first column on
page 1051 should read as follows.

Then we identify D with the right-hand side of (4), using M =
48, and get

aZ

k=————— 14
9m(l — ) 1

¢ = 0.05[m(1 — P2 (15)

where m is given by (9).

In addition, the authors feel that the following method of
analysis, starting from (12), is instructive. Instead of putting
M(R) = 48, as in the original paper, set M(R) = 24 + M’ (O)R
+ O(R). Then the new (13) is

D = 6maplUy + {0.2 + 0.5M'(0)}mwpa’Uy* + O(Uyd)
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This expression has the form of the Oseen drag but with an
undetermined coefficient 0.2 + 0.5M' (0) replacing the 2
required by Oseen. By following the argument of the paper,
one gets

k:_ﬁ.z—_
Im(l — n)

_1_ 7 g - 12
72 0.1 + M'(0)/4) [m(1 — )]

c =

This new formula gives a value for k£ which is twice that
given in the original paper and is in the better agreement with
the formula of Irmay. One also gets better agreement with
Irmay’s formula for ¢ when M'(0) is of the order of ﬁ,

(Received December 7, 1982.)



