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Summary

We solve the problem of plane flow of a second-order fluid over a
rectangular slot when inertia is neglected by matching biorthogonal eigen-
function expansicas in different regions of flow. The method appears to be
cheaper and more accurate than direct numerical methods. The effect of
normal stresses on pressure measurements at the bottom of the slot is
discussed.

1. Mathematical formulation

We imagine that a non-Newtonian fluid is flowing between two infinitely
parallel plates a distance D apart, the bottom plate containing a rectangular
slot of height d and width W (see Fig. 1). The origin of coordinates is chosen
for convenience to be at the intersection of the centerline of the channel and
the centerline of the slot. The flow is a confined flow and therefore velocities
will be specified everywhere on the boundary. It will be assumed that the
flow is plane and steady, that the fluid is incompressible and that body and
inertial forces are negligible. Given these assumptions, the equations and
boundary conditions governing the motion of the fluid are given by:

divT=diva=0inQ,
u given on 3}, (1.1)

* Dept. of Mechanical Engineering, Clarkson College, Potsdam, New York 13676.

0377-0257 /82 /0000-0000 /$02.75 © 1982 Elsevier Scientific Publishing Company



186

— 0 o

T

b w —

Fig. 1. Domain for flow over a rectangular slot.

where tlAle domain, , and its boundary, 3$, are shown in Fig. 1. The Cauchy
stress, T, is given by

T=—®I+pd, +a,d,+a,4?, (1.2)

where @ is the pressure and 4, and A, are the first two Rivlin—Ericksen
Tensors and are given by

A =grad i+ (grad &)’

. d4, ., )
A, :—(# +A4, (grad &) + (grad &) 4,.

Equation (1.1), along with the assumption of plane flow implies the
existence of a streamfunction, ¥( X, y). The %-velocity, & and the y-velocity, ©
are given through the streamfunction by

12,13) :( A}/;, "‘i’ﬁ).

Thus,
. § 7
A= N
a5
where
§=24
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If we define
S=T+é1,
the components of S are given by

S(exy= b+ o[ U8, — by + 8 = 298] + (87 +77),

SCowy= —pB+ oo [T = B + 824 298] + (82 +97),

5 _a . s 0 2 D). craa
S@W)—Som>—uv++u{(?wf QMJY+8V w} (1.3)
By Tanner’s [1] theorem, ¥ satisfying

V¥ =0inQ,

(‘i’, —?%) given on 9%, (1.4)

d . . ..
where ™ is a derivative in the direction of the outward normal and

4 4 4
a2 0 4, 0 9

vi= +—,
%4 0x%0y* 9y*

leads, through (1.3), to a unique [2] Stokes flow solution (&,9) with a
non-Newtonian pressure [3,4]

b =, + ﬁ»)Ei)—%l( +
_O(p, dr 2%

3a,

: ) r A2, (1.5)

where ®, is the Newtonian pressure determined by the solution of the Stokes
flow problem
grad &, = p div A,. (1.6)

Since Stokes flows are reversible flows and since the domain, £, is

symmetric about the centerline of the slot, uniqueness implies that the
streamfunction, ¥, is even in %,

Y(—x,9)=¥(z,p) (1.7)
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and the Newtonian pressure, @, is odd in X

Dp(—%,9) = —D(£.7) ' (1.8)
when as £ - = oo the flow is rectilinear and symmetric:

V(%,9)=f(p) asx->=o0, (1.9)
where

vif=0.

The assumption (1.9) will thus accommodate either pressure driven or shear
(top plate moving) flows or a combination of both.

2. The hole error

It was first suggested by Broadbent et al. [5] that the normal stress
measured on the bottom of a slot for a viscoelastic fluid deviated from the
pressure on that boundary (see also [3]). More recently devices have been
built (e.g. Seiscor—Lodge Stressmeter [6]) which exploit this deviation.and
purport to measure elastic properties of fluids. Therefore, from a practical
point of view, it would seem desirable to be able to predict exactly how the
flow, and in particular how the stresses, depend upon the viscoelastic
parameters, a, and «,, appearing in eqn. (1.2).

Using (1.2) and (1.5) and evaluating f"( yy) on a stationary boundary the
reader may verify that

a;

R " 9a \’
7(W>:—¢¢+3%aﬁ). (2.1)

Two flows of interest are the pressure driven flow and the shear driven flow.
The hole pressure P,, is more interesting in the pressure driven case and will
be defined as

[T< J’J’>|y‘=1)/2 — 1 )’)’)Iy‘: vD/Z*d] £2=0

i
5 b= p/20=+00

€

(2.2)

Because the Newtonian pressure, <i>0, is a constant along the centerline of the
slot (see [4]), the hole pressure in the pressure driven case may be expressed
in terms of velocity gradients. Thus,

(55 o= (38 1 2
B a)'; y=D/2 ay'\ y=—D/2—d cmo

a an \’
0y I)‘"=—D/2,£=:oo

P

_

=
INSY




189

Given the solution ¥ of (1.4) we can .compute 34 /3 )?:‘i'99 and hence
2P, /a,. It is well-known that (1.2) is a valid asymptotic form of the

constitutive eguation for simnle fluids with fadine memoryv in slow flow. If
constitutive €q 11

WRUAML AU SILG AT ikaes Wil s Qliidp AaitaiiUr ) aad SRV A

we assume that inertia is negligible, then (1.1) holds and «, may be
determined from the experimentally determined values of P,.
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re is governed by (1.1)

asymptotlcally as the slot width W tends to zero. The velocity which drives

the motion in the slot is the velocity at the slot entrance and this velocity

must vanish a locity is the value
,¥). This is given roughly by #

t tue corners. A representative scale ve

@0, —D/2) of 4 y d=7W where 7 is the
undisturbed shear stress at the channel wall (y= —D/2) and @ is small
when W is. In the limit as @ tends to zero the inertial terms tend to zero like
pﬁz/ W and the normal stresses like aﬁz/ W3, so that the ratio

A

inertia P 2 o
————>— W as -0,
normal stress «
where a is a normal-stress coefficient (see (1.2)). In fact, when W is not
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the channel is slow [7,8]. Some additional comments about the observed
asymmetry of flow are reviewed in the Appendix.

3. Comparison of methods of solution

Many numerical methods have been used to solve the problem of flow
over a slot. O’Brien [9], using finite differences, solved the problem for
different types of upstream velocity profiles (e.g. parabolic and linear).
Townsend [10] has extended O’Brien’s work, using finite differences to
analyz the pressure driven flow of a second order fluid, when inertia is
included. The immediate application of his work is to the Seiscor—Lodge

Stressmeter. Malkus [11] has used finite elements in analyzing the problem
(] A\ ’)I’\A RLL /‘f\“\')m’)A QQ("Q""\ Q"'IA DQIQ“I\Y\Q] r‘l’)] l‘\‘)‘lﬂ IIQDA a ]’\{‘\III’IAQNI

(1.4) and Mir-Mohamad-Sadegh and Rajagopal [12] have used a boundary
integral approach to analyze the same problem. Recently, Cochrane, Walters
and Webster [13] have numerrcally simulated the behavior of both Newto-
nian and elastic q ids in a number of comprc;\ geomeuies one of these
geometries being the lot. They use a finite difference approach to solve the
equations of motion. The difference between their work and that of Town-
send [10] is that instead of a Rivlin—Erickson model they use a Maxwell
model to express the dependence of the Cauchy stress on kinematical
quantities. In addition to numerical simulation they have some excellent flow
visualization photographs of the simuiated fiows. They observe that for flow
across a slot, inertial effects tend to destroy the symmetry of flow and that
the presence of fluid elasticity tends to compete with fluid inertia to restore
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the symmetry lost by the presence of inertia alone. In Fig.2 we have
exhibited a photograph of theirs for the case Re =1 and A =0 where A is a
relaxation time to be associated with fluid elasticity (A = 0 for a Newtonian
liquid). This photograph is the one closest to the Stokes flow limit and it
looks very much like our Fig. 8 except the center of the vortex in the cavity
in their photograph is positioned lower in the cavity than what we computed
numerically. This discrepancy is also noted by them relative to their numeri-
cal simulations. They observe that the presence of fluid elasticity tends to
push the channel flow deeper into the cavity.

All of the above analyses require some discretization of either the domain
of flow or its boundary. In addition one must choose approximating func-
tions for the discretized domain in the finite element approach, decide how
to approximate derivatives in the finite difference approach and make
assumptions as to the behavior of fictitious source points on the discretized
boundary in the boundary integral approach. A method which avoids, to a
large extent, all of the above approximations is the method of matched
eigenfunction expansions. To implement the method the domain of flow is
broken up into several sub-regions. Over each sub-region the solution is
sought as a finite sum over a complete set of eigenfunctions. The solutions
are then matched along their common boundaries. There is no real discreti-
zation of the domain of flow or its boundary. The dependence of the
solution on the size of the sub-regions is taken up in eigenvalues which are

Fig. 2. Photograph showing streamlines for flow over a slot (Re=1, A=0). Photograph
courtesy Cochrane, Walters and Webster, Fig. 5a.
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induced by separating variables. Thus changing the overall geometry will
change the geometry of each sub-region and hence change the eigenfunction
representations for each sub-region.

In the problem of flow in a wedge Sanders, O’Brien and Joseph [14] have
shown that the eigenfunction method is much more accurate and much less
expensive than finite differences.

4. Eigenfunction solutions
We are interested in solving problem (1.4). We write this problem again,

now in dimensionless variables with lengths expressed in units of D /2 and ¥
in units of Q, the flow rate. Thus,

vY=0 inQ,
o
o specified on 9%, (4.1)

where E;in is a derivative in the direction of the outward normal and the
domain, £ and its boundary, dQ are shown in Fig.3. As x - o0, ¥ = f( y)
and ¥(—x,y)=¥(x,y).

Solutions of (4.1) will be expressed in series of Papkovich-Fadle eigen-
functions. These eigenfunctions arise from separation of variables in a
natural way. This elementary method of solution was first used for a Stokes
flow problem in slots by Joseph and Sturges [15,16]. The method has a long

V4
! : T
REGION | % REGION

I I | | 2

| REGON IV |
REGION »d
1 D

(S 2 —

Fig. 3. Domain for flow over a rectangular slot in dimensionless coordinates showing the four
sub-regions of flow.
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history in elasticity. A particularly notable contribution was made by Smith
[17]. Smith proved completeness in an overly restricted class of functions
(completeness means convergence of the series to prescribed data). Joseph
[18] extended the completeness proof of Smith to classes of data which do
arise in applications. The recent completeness proofs of Gregory [19,20,21]
and Spence [22] relax the assumptions about the data still further.

In this paper we use notations introduced by Smith [17] and we refer the
reader to the papers of Joseph and Sturges [15,16] for further information
about the eigenfunction expansions.

Now we shall piece together eigenfunction solutions which are valid in
different regions of the flow. The method of matching used to join solutions
seems to have been used first by Zidan [23] to solve the problem of extrusion
of a low speed jet from a pipe. His solution failed because the set of
eigenfunctions he used was not complete in the region occupied by the jet.
The method of matching was successfully used first by Sturges [24] and more
recently by Trogdon and Joseph [25] to solve different versions of the same
extrusion problem. The present application is novel because the geometry of
the flow is more complicated.

We shall proceed as follows. In this section we shall list the solutions.
Without further discussion the reader may easily verify that the listed
solutions are biharmonic and satisfy the boundary conditions. The matching
or joining conditions are discussed in the next section.

The domain of flow, £, is divided into four sub-regions as shown in Fig. 3.
The solution in region I is of the form

o0 C 0 C* .
\I,I(x,y) :f(y)-i- 2 P_l;‘i’k(J’) ePlx+W/D) | 2 P:2¢/>(k(y)ePk(x+W/D),
— 00 k — 0 k

(4.2)

where
¢.(s) = P,[sin P, cos P,s — s cos P, sin P,s],
P, being the 1st quadrant roots of
sin2P, +2P, =0, |P|<|P|<..<|P], P_,=P,
and
¢}(s) = P¥[cos P¥ sin P¥s — s sin P} cos Pys|,
P} being the 1st quadrant roots of
sin 2P} —2PF =0, |P¥|<|P}|<..<|P}|, P* =P}

The solution in region III is the same as the solution in region I,

¥(x,y) =¥(=x,y). (4.3)
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The solution in region I must be joined to the solution in region IV on the
line x= —W/D.
In region II the solution takes the form

[=e} D N
‘I’"(x,y) — 2 2 X) e —P(y+1+2d/D) (44)

where

- s
¢, (5) :‘l’k(w/_l)),
sin 2PW/D+2P,W/D=0

and thus,
s P,
" W/D"

The solution in region II must be joined to the solution in region IV on the
line y=—1.

In region IV we have four independent biharmonic series of eigenfunc-
tions at our disposal

Ve =f0) + 3 Bl s

cosh P.W /D
+ 2 PQ*k2 oty )cozgsf’{PVi;D

B 4.5
+ _2 %g&’k(x)ig:‘h};% )
kv e

It is easy to verify that (4.2), (4.4) and (4.5) are biharmonic.

We now relate the coefficients in the expansions to prescribed conditions
on the boundary. In region I, (4.3) satisfies the boundary conditions identi-
cally. Equation (4.4) satisfies the boundary conditions at x = * W /D and
will satisfy the conditions on the bottom of the slot, y = —1—2d/D, if

¥ (x, —1-2d/D)=0 (4.6),
and

11
2o —1-2d/D) =0. (4.6),
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The solution (4.5) in region IV will satisfy the boundary conditions on the
top of the channel, y = 1, if

¥V(x,1) =£(1) (4.7),
and
a\l,lv ,

3 (. D=/, (@.7)

Substituting (4.4) into (4.6) results in the following conditions involving the
coefficients, E, and D,:

> [D, e 2P 4 g ——¢’}£f> —0 (4.8)
“~ ;
and

S [D,e 4%+ b, (x)

°° : 1—P 1+ P, ||~
+ 2 D, e *fd/P —*] - k St é,(x)=0. (4.9)
— o0 k k

Next, substituting (4.5) into (4.7) gives the following conditions for the
coefficients, 4, and B,:

> [A,;FB,J%;C)ZO (4.10)
— o0 Pk
and
2 [Ak+Bk]¢k(x)
d thp, — P tanh P, — P, \ | .
+ 34,2 Pk g | 2Tk G (x)=0. (4.11)
— o0 k k

5. Matching conditions

We shall require the continuity of velocities and stresses across common
boundaries between each sub-region. It is not hard to show (see [25]) that the
velocities and stresses will be continuous across the boundary between
regions I and IV if

w w
(=G )= (=),
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(W)W
Da - D9y 9

ax ox
RES 20 W 92! w
P )-S5 )
0x D 9x D
BV oow oy ¥ w
8x° (_f’y)_ ax° (_—D_’y) G0

and the velocities and stresses will be continuous across the boundary
between regions II and IV if

YWV(x, —1)=¥"(x, —1),

a\I,IV _8\1’“
ay (x,—l)— ay (xa_l)a

82\I,IV 82\1,11

ay2 ( b -1)_ 2 (X, _1)’

3\ IV 3g.11

aa‘; (x, —1):38;1’3 (x, = 1). (5.2)

Substituting (4.4) and (4.5) into conditions (5.1), leads us to the following
relations among the coefficients of eigenfunctions in regions I and IV:

e} ¢ oo
2 [G—al ’;fzy) + 2 [cr - Qk]P*z =0, (5.3)
— o0 k — 0
S P,[C, + O, tanh P,W /D] ‘j’izy )
s i
+ 3 P¥[C}+ Qf tanh PFW /D] ‘b;(*);) =0, (5.4)
Bl f
2 [CG—Qde(y)+ 2 [C¥— Qrleor(y)
< By - ( cosh Pky d ( W) sinh P, y
= — b | 5.5
_Eco kquk D ) cosh P, - 5, D) sinh P, (5:3)

< B~ (W coshP y & A, o W sinh P, y
=2 *§¢k(3)__lf_ 2 2¢k(—D‘)—.——'f‘- (5.6)
e P cosh P, > P sinh P,
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Combining (4.4), (4.5) with (5.2), we get the following relations for the
coefficients of the eigenfunctions in regions II and IV:

§‘, [D+E e hary g —p ]¢‘;£x) =f(~ (5.7)
—oo k
§ ﬁk[D —E,e “WD—A coth P, + B, tanhP] Affz) =f(—1), (5.8)
Bl %
3 [+ B e a2 44 83,0 = ()

+ § Qi ¢Z£21) co(;)ls?’kf;;)/cD 2 ok ¢*;=(21 ) COEES;:PV,;;D ’ (5'9)
ﬁ ISk[Dk —E, e~2hud/D — A, coth P, + B, tanh Pk] éu(x)=f"(-1)

B § Qk(i)’;(’(l) cosh P x 4 § 07 éy'(1)  cosh Prx (5.10)

il p? cosh PLW/D P¥?* cosh PEW/D"

6. Biorthogonality—determination of the coefficients

The eqns. (4.8) through (4.11) and (5.3) through (5. 10) are now expressed
in a form which will facilitate the implementation of biorthogonality. First
we define

¢1(S):¢k(s)? 4’2(3) P (s)/sz,
&f(s)zé’k(s)a ¢2(5):¢k s)/sz

and
ot (s)=ok(s),  ¢3*(s)=op"(s)/PE™
The vector form of eqns. (4.8)—(4.11) and (5.3)—(5.10) is
20 ah F(x )]
D 2Pkd/D
_200[ < 2 #5(x)
® iy 1-P, B 1+ P #(x)] _
+§O D, e 2fud/p ﬁk E, ”k [01 ] [O} (6.1)
o0 Ak(x)
_}EO[A .+ B,] "(x)J
3 coth P, — P, tanh P, — P\ |[ g%( x)}
t2 A"( P, "( P, [0 [0] ¢
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S e o1l 90N LS e
2 G Qk](qss(y) tala Q"][w(y)}

S B $;(W/D) cosh B, y S 4 $;(W/D) sinh P, y
= p? coshP, |+ S 7% p2 sinh P, (6.3)

— o0

0 0
< $1(»)
2 P[C,+ Q, tanh PW/D] h
—® ¢2()’)
0 sk
+ 3 PZ[C¥+ Qf tanh PFW/D] ¢;k(y)J
—o o3 (y)
§ B $.(W/D) cosh B, y § P ;'(W/D) sinh B,y
=-| 5 B cosh B, |—| S°%  p? sinh P,
0 i 0
(6.4)
< 2 (x|
2| Dt Ee Py 4 —Bl|°
—oo[ ) ] #(x)

n_ < ~ 9:(1) coshPx e . 9(1)  cosh Prx

|/ 1)+_200Q" P} cosh PLW/D EQ" Py? cosh P¥W /D
0

(6.5)

~

asﬂx)]
¢5(x)

S B[D.~E A4/ 4 4, coth B, + B, tanh A

¥(1)  cosh Prx

$.’(1) cosh P, x d é
; y + E ok *2 h PXW /D
T Pxs  cosh PEW/

oC
~|/ (_1)__200Q" P2 cosh PW/D
0

(6.6)

To obtain the above expressions we twice differentiated eqns. (4.8), (4.10),

(5.3), (5.4), (5.7) and (5.8).
The biorthogonality properties for the eigenfunctions appearing in eqns.

(6.1)-(6.6) are summarized below:

[ 485(5)97(5) ds =y,
-1
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[ A8H6) 47 (s) ds = kb,

f_wv:fDAék(s) -J(s) ds Z%/k,ﬁ,,k,
where

A"f':[o . 2]’

k,= —4 cos*P

k}= —4sin*P*,

#5(s)

and ¢¥"(s) and ¢*"(s) are, respectively, the vectors containing the even and
odd adjoint eigenfunctions. The adjoint eigenfunctions are given by Joseph
and Sturges [16] as

Yr(s) =¢7(s) —2cos P, cos P,s=y,(s),

¥, (s)
P2
*1(s)=¢¥"(s) + 2 sin P¥ sin P*s =¢*(s)

wur{““w

$i(s) =~ =¢i(s),

and

_ ()
P}?

n

F(s)= =¢t"(s).

The adjoint eigenfunctions, J"(s), bear the same relationship to ¢"(s) as
Y"(s) does to ¢"(s). To implement biorthogonality we use the operators
defined below:

[ Ale)-w(s) s,

fj A(o)-9*"(s) ds, (6.7)
[ a()-97(s) as.

—W/D

The operator (6.7), is first applied to eqns. (6.1), (6.2), (6.5) and (6.6). This
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leads to
—-28,d/D < —~2P,d/D 1—lsk o
D,e?H/P+E + 3 D e hd/P| "k
ol P, | k,
S [1+P |G,
_2 E, 7 |% O (6.9)
0 k n
4 +B+§Ak coth P, — P, Ank+§B tanh P, — P, G”"—O
n n A k A — VY
el P, k, %, P, k,
. 4 (6.10)
D,+E, e‘”""’/D+An—B,,=k—f”(—1)
4§ 0,80 AR, /D)
= k P? k,coshPW/D
§ or 470 AP, PEW/D) 6.11)
“ px2 k,cosh PXW/D’ '
A " A 4
D,—E, e *"%/P— 4 coth P,+ B, tanh P, = 5 (1)
#(1) A(P,, PW/D) £(1) AP BEW/D)

* 2 Z P2 k, cosh PW/D + 2 i Py> k,cosh PYW/D"

where

_ 1wy,
"~ W/D f_ %(x) dx,
Ww,/D

Gnk W/Df W/D‘PZ X)¢) (x) dx

~

A(P,,PW/D)= cosh P, xy!(x) dx

W/D f

and A(P,, P¥W /D) is obtalned from A(P,, P,W /D) by placing an asterisk
(*) on the sub-scripted “k” quantities. Next, the operators (6.7), and (6.7),
are applied to eqns. (6.3) and (6.4). This leads to

<1>§{(W/D) AR, B,)
P? k,cosh P’

¢y (W/D) A*(Pr, P)
P? k* sinh P’

C,—Q,= 2 (6.13)

ZA

(6.14)
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S, ¢W(W/D) AP, B,)
C,+Q, tanhPW/D=— B = =, 6.15
O W/ _230 kP2 Pk, cosh P, (6.15)
o S e W/D) A* P* A
C* + Q* tanh P*W/D = - 2 Ak #5(W/D) A*(ErF) (6.16)

B2 Prk*sinh P’

where

a 1 ~
AR, B)=[ cosh Pyys(y)d
and

A 1 ~
A*(Pr, B,) :f_1 sinh P, yy}"(y) dy.

Equations (6.13)—(6.16) may be solved for the coefficients C,, C*, Q, and
Q¥ in terms of the coefficients 4, and B,. Symbolically, we find that

Cn: - 2 ankBk’ (617)
Q,=— 2 ’R,.B,, (6.18)
Cn*: E 3RnkAks (619)
and

o= 2 R, Ay (6.20)

Equations (6.11) and (6.12) may now be solved for the coefficients D, and E,
in terms of the coefficients A, and B, by using the expressions for Q, and
Q% given in eqns. (6.18) and (6.20). Thus,

Dn:%[lgn'*’lanBk_ankAk] (6.21)
and

E, e_”;"d/D =3 [28,. —H,, B, +4anAk] > (6.22)
where

'H =R, °R k+(l tanh P )Snk,

°H,,=°R,, 'R, +(1—coth )8,

H,="R,,’R,,—(1+tanh B,)§,,,
‘H,,=*R,,*R,,—(1+coth P} §,,,
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_41 ., (=1
n—k—[f( 1) +—— 7 ]

n

2gn :_lj_ |:f”(-_ 1) - f”,(l‘)*_ 1)

n

n

and §,, is the Kronecker delta. The reader is referred to Trogdon [26] for
explicit representation of the quantities 'R, , through 8R, ;- In the above
expressions and in what follows the summation signs have been dropped and
a repeated index implies summation with respect to that index. From eqn.
(6.10), the coefficients 4, may be found in terms of the coefficients B,. Thus

A,=—('G""). /G, B,, (6.23)
where
cothP,— P, | G
IGnA - ( "k . ) k”k + 6nk
k n
and
tanh P, — P, | G
2Gnk = = “k e + 8nk
P, k,
Equation (6.9) may be solved for the coefficients E,, yielding
E e 2h/P=f D,, (6.24)
where

A

— o —2Pd/D(4—1\ 3 —2Pd/D
H,=e P(EGT)n Gy e PP,

1-P,\ G,
3Gnk:( 3 k) VRS

and
1+P. | G
4Gn N . —"k n
k Pk kn k

Substituting eqns. (6.21) and (6.22) into (6.24), using (6.23), results in the
following system of equations for the coefficients B,,

2 _ A 2 -
{ Hni(lG 1)iszjk_i_:;link_‘_Iinm[ Hmi(lG ])iszjk_F]'Hmk]}Bk
=g, ~ H,,'8,- (6.25)

Once the B, are determined the other coefficients may be determined by
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matrix multiplication and addition. The form of eqns. (6.25) is particularly
interesting. All matrices appearing depend on the parameter W /D, except H
which depends upon the parameter d/D. Therefore the system of equations
(6.25) 1s particularly convenient for parametric studies where W /D is fixed
and d/D is varied.

The system of equations (6.25) is an 1nf1n1te system of equations. This
system is solved by truncation. The result is a determination of the coeffi-
cients, B{™, A, EM, DM c*M M, QM) and Q*™ which are
approximations to the actual coefficients under truncation.

To compute the right hand side of (6.25) one must know f(y)=
lim, . . ¥(x,y). It is easy to show that nondimensionalizing the stream
function by the flow rate in the channel implies that

¥(x,y)=4(y+1)? asx—>=o0
for the shear (top plate) driven flow, and
V(x,y)-y(3—y?)/4+1 asx—>=o0

for the pressure driven flow.
7. Evaluation of the Newtonian pressure

The Newtonian pressure is found as a solution of
grad ®, = v *u,

where

a

%
4uQ/D*

Thus, in region I

0 —

(oo}
Oi=f"(y)x +2 3 C,cosP,sin(P,y)eH+¥/D

— o0

[>o]
+2 3 C*sin P* cos(P*y) e /D)4 CT;

in region II
00 -~
n_ _ . X P(y+1)
d, 22DncosP,,sm(PnW/D)e
— o0
e e} X A
. —P(y+1+2d/D) 4 11,
+2§0EncosPnsm(Pn W/D)e ch
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and in region IV

. sinh P, x

cosh PW /D
sinh P*x

cosh P*W /D

0 =/"(y)x +2 3 0, cos B,sin P,y

— o0

o0
+2 3 Q*cos P*y

e o}

x coshP oY
—2 A, cos P, sin P,
_200 "W/D sinh P

x sinh P Y
-2 B, cos P, sin P,
_200 "W/D cosh P,
+cWVv

where C', C" and C'V are constants. These constants may be determined by
matching the pressures along their common boundaries. It is easy to show
that C"" = C" and evaluating

1
f (q)é - q’év) lx:—W/D dy=0

gives

00 *

P*

in’ P* anhP*K——u—/ >4, ~2*—smP
— o0

— oo
8. Results and discussion
Streamline plots for the shear driven and pressure driven flows are given

in Figs. 4-9. Figures 4-6 are for the shear (top plate) driven flow. The ratio
W/D=1 is fixed and the ratio d/D is varied. The flow in Fig.4 is

¥ =0.75

0.5

0.01

¥ =-01 x 10”3 (outer vortex)

¥y=-02 x 1073 (inner vortex)

Fig. 4. Streamlines for shear driven flow over a rectangular slot (W/D=1.0, d/D=0.24).
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¥ =0.75

0.5

N
Fig. 5. Streamlines for shear driven flow over a rectangular slot (W/D=1.0, d/D=1.0).
¥ =0.75
0.5

\o 0.5 x 10

W

5

Fig. 6. Streamlines for shear driven flow over a rectangular slot (W/D=1.0, d/D=2.0).

“

¢
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¥ =0.75

Y =-0.1 x 10_3 (outer vortex)

¥y =-0.2 x 1073 {inner vortex)

Fig. 7. Streamlines for pressure driven flow over a rectangular slot (W/D=1.0, d/D=0.5).

dominated by corner eddies. As d/D is increased the corner eddies coalesce
to form one central eddy as shown in Fig.4. A further increase in d/D
results again in the coalescence of corner eddies yielding two central eddies
(see Fig.6). The same sequence of eddies is shown in Figs. 7-9 for the
pressure driven case. One interesting difference between the two flows is the
depth the channel flow penetrates the slot. The pressure driven flow always
penetrates further into the slot.

The hole pressure P,, given by (2.2) for the pressure driven flow, is shown
in Fig. 10. For the values W/D=0.5 and W/D=1.0, P, is essentially

Fig. 8. Streamlines for pressure driven flow over a rectangular slot (W/D=1.0, d/D=1.0).
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0.1 x 10°°

Fig. 9. Streamlines for pressure driven flow over a rectangular slot (W/D=1.0, d/D=2.0).

1.0 W
09 D
08
07 t
~ 06 |
% 05 ¢
04 |
03
02
01
0

oz

0 02040608 10 12 14 16 18 20
d

D

Fig. 10. Variation of the hole pressure (pressure driven flow) with d/D for W/D=0.5 and
1.0.
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independent of slot depth d whenever d/D>0.5W /D. P, depends signifi-
cantly on the dimensions of the slot and it increases, for fixed W /D, as d/D
increases. Our numerical technique for computing P, does not work well as
the depth-width ratio d/W tends to zero for fixed values of W/D.

To determine P, from experiments one usually positions two force trans-
ducers opposite each other and symmetrically located about the centerline of
the slot. The difference between the output of the two transducers gives a
measure of P,. Using (2.1) we evaluate T( yy) on a stationary boundary as

34 )2
9y ] -
The quantities used to determine the difference between the force on the top

of the slot and the bottom of the slot are the Newtonian pressure and the
velocity gradient. In Fig. 11 the Newtonian pressure discrepancy

N (x,1) — ®(x, —1—2d/D)

is exhibited and the normal stress discrepancy

(a“W( 1)) —(aiy“(x 1—2d/D))2

o (2]
x—»rrnoo 3}/

R N Q
I yy)= _(I)o+_2“

ly==1

1.4

1.2

08

06

Bx) - Bx-1-28)

04

02

0

1.0 -08 -06 04 -02 [¢)
X
WID

Fig. 11. The Newtonian pressure discrepancy for different truncation numbers (pressure
driven flow with W/D=1.0, d/D=1.0).
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-0 -08 -06 -04 -02 0

X

W/D
Fig. 12. The normal stress discrepancy for different truncation numbers (pressure driven flow
with W/D=1.0, d/D=1.0).

is shown in Fig. 12. Both distributions are shown for W/D=1.0,d/D = 1.0
and truncation numbers N =5, 10 and 20.

For N =5 oscillations are apparent. For N = 10 the oscillations have been
smoothed out; there is almost no change in the graphs as N is increased from
10 to 20. For practical purposes it would appear that a truncation number of
N =20 is sufficient. The streamline plots given in this section were all
generated using a truncation number of N = 10.

Our streamline plots are directly comparable with those given by O’Brien
[9])- The agreement is quite good but our results appear to be more accurate
in that with relatively few eigenfunctions we can predict details of flow such
as corner eddies. O’Brien is mainly concerned with predicting streamline
patterns and thus makes no calculation of the hole pressure. Malkus [11] was
probably the first to use numerical methods to compute the hole pressure for
the Stokes flow. Again, our results appear to be more accurate in that we do
predict a reversal in P, as the slot depth is increased. This reversal becomes
less apparent with increasing slot width. The reversal in P, is consistent with
the vortex structure of the flow in the slot. The depth at which reversal first
occurs is a strong function of the slot width (see Fig. 10). Malkus gives no
indication of the accuracy of his results, while we have shown for the slot
W/D=1, d/D=1 that our method of computing P, appears to give
accurate results when relatively few eigenfunctions are used. Mir-Mohamad-
Sadegh and Rajagopal [12] give details of how to solve the same Stokes flow
problem using a boundary integral technique. They state that the hole
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pressure can be computed using their solution but they make no attempt to
compute it. Townsend [10] notes that inertia is an important parameter in
flow over a slot. Either the inertial contribution to the flow must be known
or else its effects must be minimized if the Stokes solution is to be used to
compute the hole pressure. We have shown in §2 when the Stokes approxi-
mation is valid and thus when elastic effects will dominate the flow at
second order. In Fig. 10 we have shown the extent to which elastic effects
depend on the geometry of the slot.

Appendix: Shear driven motions perturbing rest in a deep cavity

In our study we have used the half-depth D /2 of the channel as the unit
of length. This choice is restrictive since it rules out the problem in which
D — 0 and the fluid at the top of the slot is driven by the shearing of a
scraping plate which is dragged across the slot with a uniform velocity U.
This limiting problem has been solved with biorthogonal series by Joseph
and Sturges [16]. They showed that the influence of the data on the edge (U
in this case) has essentially decayed to zero in a distance 2. In the slot
interior a few gap widths away from the end the solution is dominated by
one eigenfunction which may be described as decaying oscillation of fixed
period. For the semi-infinite slot (d — co) with even data the interior form of
the stream function is given by

¥(x,y)~a,¢,(x) e’ + complex conjugate, (A.1)
where ¢,(x) is defined under (4.2) and
P =2.106196 +i 1.125365. (A.2)

In problems in which general data are prescribed at the top of the slot the
interior form of the stream function is a linear combination of the leading
eigenfunctions of even and odd parity

V(x,y) =a,,(x) e +a,p,(x) ePr + complex conjugate, (A.3)

where ¢,(x) and P, are given by (A.1) and (A.2) and ¢,(x) = &{(x) is the
odd eigenfunction defined by (A.5), and 13, =P, is the first root of (A.5)s.

There is a sense in which the expression (A.3) is the universal form for all
steady solutions not only of the Navier—Stokes equations but also for any
fluid whose constitutive equation collapses to a Newtonian one in slow
steady flow. The reason is that no matter how violent the steady motion at
the top of the slot may be, the solution deep in the slot is dominated by
stationary walls and is slow and steady.

We close our discussion of biorthogonal series solutions of slot problems
with an analysis of the hole pressure in a deep slot when the shear stress
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7(x,0) at the top of the slot is presc

shall suppose that the top edge of the slot is a

| S
CU

A
I

th
matnem

Oor

streamline, ¥(x,0) =

lalfl\/ul v V’eA AL

ence we

The Stokes flow problem corresponding to this slot conﬁguratlon is

governed by the biharmonic equation

4\1'—0 in—1<x<l1,y<0,

;

with boundary conditions

¥(x,0)=0,

¥, (5.0) =1(x),
¥(x, —o0)=0,
¥(=1,y) =0,
¥ (+1,y)=0.

This problem has an exact solution in biorthogonal series

¥(x,p)= 3 Go(x) e+ T G (x) e
— o0 — o0

¢{"(x)=p, sin p, cos P, X — PpX COS p,, sin p,x

sin2p,+2p,=0,

$7(x) = B, cos B, sin p,x — p,x sin p, cos ,x

sin2p, —2p, =0.

The coefficients in the series (A.5), are given by

G o . |

k, = —4cos*p,

1

Lt (o) 6 (] ©
&=L f! [ g )

k,= —4sin‘p,,
where

P (x) = ¢\ (x),
4 (x) =" (x),

P (x) = ¢{"(x) — 2 cos p, cos p, X,
(D (x) = ¢ (x) + 2 sin p, sin p,x

f(x)
0

el

)

(A.4)

-

(A.5)

§
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are adjoint eigenfunctions.

If 7(x,0) is even in x, C, = 0; if it is odd in x, then C, = 0.

The problem just solved can be regarded as a first approximation for the
flow of a simple fluid which perturbs the rest state. Suppose the driving data
for the slot flow described above are given by

T{xy)(x,0) =er(x).

There is no flow when € = 0. The equations of motion are
p(u-Vyu=v-T

u:(u,v)Z(‘Ify,—‘Px)

V(x,0,e)=¥(=1,y,e)=¥ (=1,y,e) =¥(x, —00,6) =0

T{xy)(x,0,¢) =e€7(x), (A.6)
where

T=[-0®+ay(y>+8)]1+pd+aB+O(lull?),

def Lo .
Alu] = A, is linear in u,

def .
Blu,u] = A4, is quadratic in u, (A7)

and v, §; the components of 4 and B, are defined in terms of the stream
function (with deleted) by (1.3).
Now we expand the solution in powers of €
¥(x,y,¢) ‘I’n(x,y)]
u(x,y,e) | § | #a(x5)
®(x,y,¢) _n:OE ®(x,y) ]|
| T(x,p,¢€) | T,(x,y) |
where
T,= — 0,1 +pAlu,),
T,=—-9,1 +pA[u1] + alB[uO, uo] + a2A2[u0],
A%[uy] = (85 + 31,

8 =2Y, ,,,
Yo~ \I,O,yy - ‘I'O.xx ’

(1)) = 1Y,

d dJ
(Tl)xy = “(‘I'l,yy - ‘I'l,xx) + “1{[\1'(”5; - ‘I'o,xg;]‘lfo +8v 2‘1'0} (A.8)
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At first order
0=—v® +pvu,
Uy = (‘I'o,y' - ‘I'o,x)

v 4, =0,
‘I’O(X,O) = \P()(ihy) = ‘I,O,x(i l’y) = ‘I,O(x’ - OO) = 0’
Wy, (x,0) = 7(x). (A9)

This is the linear problem solved by (A.5) with f(x)=7(x)/p and @, is the
Newtonian pressure. At second order we find that

plug V)ug=—v® +uviu

+v- {(xlB[uO,uO] +a2A2[u0]}, (A.10)
u = (\I,l,y'_\Pl,x)’
\I’I(X,O) = \I,l(i lay) = \I,],x(i lsy) = \I’l(xs _OO) =0 (All)

(T),,=0 ony=0; thatis

1w = —o{[ ¥, v0. — Yov0,] + 8 v 2}
def
= —a,g(x). (A.12)

A theorem of Giesekus [27] states that if div A[u]=grad ® and div ¥ =0
then

div( Blu,u] — A*[u]) = grad(%%—% tr Az).
Applying this theorem to the last term of (A.10) and using (A.8); we get
a, do 3a
plag 9y = 9[-0+ 2 800 (0,204 57)
+u v 2u,. (A.13)

If inertia is now neglected then v *¥, =0 and ¥, is given by (A.5) with
f(x) replaced by —a,g(x)/p and ®, is determined by the reduced form of
(A.13) with the left side set to zero.

Let us suppose that 7(x) = 7(—x) is symmetric. Then ¥y(x,y) = ¥ (—x,y)
and ®,(—x)= —®,(x). Now ¥, (x,y) is determined by the driving data
g(x) in (A.12) and g(—x) = —g(x), hence ¥,(—x,y)= — ¥ (x,y). So the
streamlines at first order are symmetric but the streamlines at second order
are antisymmetric. So in this problem we do not get symmetric streamlines
even if inertia is neglected.
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