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0. Abstract

Canonical edge problems for the biharmonic equation can be solved by sep-
arating variables. The eigenvalues and eigenvectors arising in this separation
are derived from a reduced system of ordinary differential equations along lines
suggested in the excellent work of R. C. SviTH (1952). We study the reduced
system which is governed by a vector ordinary differential equation. A solution
of the biharmonic problem, governed by a partial differential equation, can be
found only if the prescribed data is restricted to a subspace of the space spanned
by the eigenfunctions of the reduced problem. The theory leads to problems in
generalized harmonic analysis which seek conditions under which arbitrary vector
fields f(y) with values in R? can be represented in terms of eigenvectors of the
reduced problem. This paper adds new theorems and conjectures to the theory.



224 D. D. JosepH, L. D. STURGES & W. H, WARNER

We extend SMITH’S generalization to fourth-order problems of the methods
introduced by TITCHMARSH (1946) to study eigenfunction expansions associated
with second-order problems. We use this method to prove that, if f(3) = [f,(),
Ll —1=y<1, f()€ C'[—1,1], f”€ L,[—1, 1], then the series expressing ()
converges uniformly to f(») in the open interval (—1, 1), uniformly in [—1, 1]
if fi(£1) =0 and, in any case, to [0, f3(1) — f;(+1)] at y = +1. This is
unlike Fourier series, which converge to the mean value of the periodic extension
of a function. The series exhibits a Gibbs phenomenon near the end points of
discontinuity when f;(41) &= 0.

The Gibbs undershoot and overshoot for the step function vector [1, 0] and
ramp function vector [y, 0] are computed numerically. The undershoot and over-
shoot are much larger than in the case of Fourier series and, unlike Fourier series,
the Gibbs oscillations do not appear to be entirely suppressed by F&3er’s method
of summing Cesaro sums. We show that, when f(») has interior points of discon-
tinuity, the series for f(v) diverges and we present numerical results which indicate
that, in this divergent case, the Cesaro sums converge to f(y) apparently with Gibbs
oscillations near the point of discontinuity.

1. Introduction

A large number of problems arising in Stokes flow [3-7, 10, 13, 17-27, 29,
30, 34, 35, 39, 41, 42, 43] and elasticity [1, 2, 8, 9, 11~14, 16, 26, 28, 32, 33, 37, 40]
can be solved in biorthogonal series of eigenfunctions generated by separating
variables. Most of the applications of this elementary method and nearly all of
the theorems are recent. We think that the potential for application of such an
elementary method is virtually unlimited. It is therefore desirable to provide a
theoretical basis for the method which may be readily adapted to the study of
the validity of the method in different applications. We believe that the extended
method of TiTCHMARSH provides such a basis. We use this method to prove the
theorem of convergence summarized in the abstract and precisely stated in § 7.
Though this theorem is general and stands by itself, it is intimately connected with
certain special biharmonic problems which we call canonical. The canonical
biharmonic edge problem for the semi-infinite strip 0 < x, —1 <y <1 satis-
fies Dirichlet conditions w(x, 4-1) = w,(x, +-1) = 0 on the long walls and takes
on prescribed values

(ll) f()’) = [fx(y),fz()’)] = [wxx(O! y)’ wyy(o’ y)]

on the short wall (Fig. 1.1). The algorithm of SMmiTH (1952) leads from the canon-
ical problem to derived problems (3.9-3.12) of ordinary differential equations
for right and left eigenvectors ¢(») and p™(») with values in R?. The expansion
theorem for the edge data is given in terms of the eigenfunctions of these derived
problems by SMITH’S extension of the method of TiTcHMARSH. SMITH showed
that, if f”(y) is of bounded variation and

1.2 A(ED =fi(ED =0,
(%)) AED =f(ED =0,

g e i
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then *
(1.4 o) = c®®0) + 2 a¥™0)
-0

where (-> is the integral defined by (3.11),

(1.5

and A is the 2x 2 biorthogonality matrix (3.10). It follows that the eigenvectors
{¢®, @™} are complete for expansions of f(y) satisfying the stated conditions.
On the other hand, compatibility conditions for the solution of the generating
canonical biharmonic problem (Fig. 1.1) may be expressed by the condition

1 A, 2,
en == WAS, k= PP 49"
n

Edge

Given

wix-1) = g_w(x,q):o
y
Fig. 1.1. The biharmonic edge problem. w(x, y) is biharmonic in the scmi-inﬁni?e st.rip,
w(x, y) > 0 as x = oo, w(x, 1) = wy(x, £1) = 0. Two different linear comb1nat19ns
of w and x-derivatives of w are prescribed at the edge x = 0. The problem is canonical
if w,, and w (or w,,) are prescribed at x = 0.

that ¢, = 0, so that solutions of the canonical partial differential equation lie
on a subspace of solutions spanned by the eigenfunctions of the derived problem
of ordinary differential equations. * * )
It appears that no mathematical results were published about SMITH’S series
between 1952 and 1977. This long period of inactivity may be associated with
the fact that the conditions (1.2) and (1.3) posed by SMITH rule out nearly all the
potential applications. SMITH stated that the details of his proof (see § 4-6) made it
seem unlikely that these conditions could be very much relaxed. Fortunately SMITH

* Here and throughout this paper, the summation symbol over the range (— oo, )
does not include a term for n = 0. When such a term appears, it will be displayed ex-
plicitly, as in Equation (1.4).

** TAMARKIN (1928) gave a general theory of eigenfunction expansions generated
by ordinary differential equations of arbitrary order. The eigenfunctions, like those in
the work of TITCHMARSH (1946), arise as residues at the poles of a resolvent. TAMARKIN’S
theory might be expected to apply to the first component of (1.4) but in fact the governing
problem ¢V + 252" + 5%, = 0, ¢,(=1) = ¢1(1) =0, does not satisfy hypothesis
(3) of TAMARKIN’S Theorem 2.
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was unnecessarily pessimistic. JoserH (1977) showed that SMITH’s series converged
absolutely and uniformly on the closed interval [—1, 1] when (1.2) holds but (1.3)
doesnot. In a later paper, JoSEPH (1979) showed that SMiITH’s demonstration does not
require (1.3). Taken together, the two papers of JOSEPH establish convergence to f(y)
when (1.2) holds. JosepH & STURGES (1978) showed that if (1.2), and (1.3) were
dropped the series would still converge absolutely and uniformly on [—1, 1]. They
showed that if (1.2), was also dropped the series would converge conditionally in the
open interval (—1, 1) but they stated (case ii of theorem 3) a false theorem about
convergence at an interior point of discontinuity. Their mistake was found by
GREGORY (1980 A) and SpENCE (1980). In § 9 of this paper we are the first to show
that the partial sums of biorthogonal series can diverge at an interior point of
discontinuity and we give numerical results which show that the Cesaro sums
converge even though the partial sums diverge.

GREGORY (1980 A) proved that the series (1.4) converges to the prescribed data
when (1.6) and (1.3) hold and (1.2) and (1.3) are dropped, absolutely and uniformly
on [—1, 1] if (1.2), is deleted, and conditionally on (—1, 1) if (1.2), is retained.
GREGORY’s proof is based on an explicit expression for the Green’s function on
the trip —1 <<y <1, —oo < x <oco which has a representation in a series
of biorthogonal eigenfunctions (GREGORY (1979)).

SPENCE (1980) uses Fourier transforms to prove convergence to even data for
the series solving the canonical edge problem. His central result is the estimate
(his Equation (1.7) in the notation of our Figure 1.1)

WX, y) — £0) < Mo, ) If lly-1,1p x>0

where M(o, ¢) is a constant, ¢€(0,1), y€[0,1 —¢], 6> 0, fand f are in L,
and

= Zc, b (y) e .

Our (f, f2) are SMITH’S (f, g) and SPENCE’s (f® — f@, £@). When coupled with
convergence results of the type proved by JosepH (1977), this estimate proves
that the series (1.4) converges to the data.

The methods used by GREGORY and SPENCE, unlike those used by SmiTH,
by JoserH (1979) and here, emphasize the partial differential equation and can
be regarded as proving the existence of solutions in series for arbitrary data of a
given class. Neither GREGORY nor SPENCE sum their series solution at y = 41
when fi(+1) ==0.

In this paper we go “all the way” with SMITH’S extension of the method of
TitcHMARSH and prove that (1.4) holds when (1.3) is dropped (JoserH, 1979),
when (1.2) is also dropped (GREGORY [980A), and when f(y) is merely in L,
and not necessarily of bounded variation. And we use this method to show that
at an end point of discontinuity (y = 4-1), the series (1.4) converges to

{fz 31,1} rather than to [f:]

It is natural to wonder in what way this theorem of convergence might be im-
proved. Since all the conditions on f(y) at y = -1 have been dropped, no further
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improvement is possible here. It may however be possible to relax the require-
ments of regularity, fe C(—1, 1), f"€ Ly(—1, 1). It is however certain, as the
example given in § 9 shows, that we cannot have convergence when f(y) is merely
of bounded variation, so we cannot possibly have convergence in classes as weak
as those for which Fourier series converge.

The extended method of TiTCHMARSH introduced by SMITH can be used to
prove expansion theorems for eigenfunction bases other than the ones studied
in this paper. These eigenfunction bases are generated by canonical problems of
partial differential equations. Whatever may be the domain and long side wall
boundary conditions, if the edge conditions are such as to allow inner product
formulas for the coefficients, the generating partial differential equation can be
called canonical. Though the canonical edge problem in the semi-infinite strip
defined at the beginning of this Introduction is all that we shall need here, it is
instructive to note that canonical problems can be defined for domains which
are not strips and for equations which are not biharmonic, not even of order
four, with other than Dirichlet conditions on the “long walls”, and with other
prescriptions of data on the “short walls”. A few examples, among many, are:
the problem of Stokes flow in rectangles [21] with second derivatives prescribed
on the top and bottom of the rectangle; in sectors of circles and between circles
[23]; Stokes flow between parallel circular disks of radius a [17], satisfying

yp=1,=0 on the disks,

0 7] 2272 .
[r-a—;(—:‘—- 6_r> -+ 37] p =0 between the disks,

(1.6)

(1 ¢ &2 .
= [a—r (7- ar—wz),zz—f] prescribed on r = a;

Stokes flow between semi-infinite or finite concentric cylinders of radii @ and
b > a [10, 41], satisfying

p=y,=0onr=ab,

o (1 o 927? .
an [r-a—r —% + 52—2] yp =0 Dbetween the cylinders,
2%y @ 1%
f= [5;22, 5 (:‘ ;)] prescribed on z = 0;
r

Stokes flow in a cone and between cones [24], satisfying

p = y: = 0 on the cones &, &;,& = cos 0,

_ &2
[ s+ u 3 2] =0 Dbetween the cones,

(1.8)

o €Y .
1 -8 )E"- prescribed on r = 1;
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unsteady Stokes flow generated by small amplitude vibrations of a fluid between
oscillating parallel walls [34], satisfying

w = v, = 0 on the sidewall,

(1.9) Véy 4 12V 2p = 0 between the walls (1 is a prescribed
) complex number),

JO) = [¥xr, ¥,,] prescribed on x = 0;

the stream function y(x, y) governing displacements of an incompressible elastic
solid when the side walls are free of tractions [8], satisfying

Vip =0,
axy T Pyyy =0

(1.10) free surface conditions at y = L1,
Yox —Pyy =0

SO = Wxe» v,,)  Dprescribed on x = 0;

and a similar fourth order problem for cylinders [9], to name a few.

Though the eigenfunction bases may differ from problem to problem, alt
such canonical problems can be studied with the same algorithms, the same
type of reduction to ordinary differential equations, the same type of biorthog-
onality condition with the same matrix A, the same type of formulas for the
biorthogonal coefficients and the same type of problems in the study of generalized
harmonic analysis of vector-valued functions.

Many of the partial differential equations which arise in mechanics do not
have canonical edge data. Apparently such problems may be solved in series
formally using the bases generated in canonical problems but, of course, without
scalar product formulas for the coefficients. The method of truncation seems always
to lead to good approximations for the prescribed data, even when the matrix
for the coefficients is not diagonally dominated [4, 5, 6, 7, 8, 9, 16, 22, 29, 30, 39,
40]. The classic example of a non-canonical problem in the semi-infinite strip is
the traction problem of elasticity. Such non-canonical problems also arise in Stokes
flow in cavities when the velocity is prescribed at the top or bottom of the cavity.
GREGORY (1980B) has shown that such problems may be solved by series of bi-
orthogonal eigenfunctions and SPENCE (1978) has given a construction which leads
to a diagonally dominated matrix for the coefficients (see also TEODORESCU, 1960).

The eigenfunctions arising from separating variables which are used in series
solutions can be said to be the natural ones; for example, the solution series in
the semi-infinite strip, away from the edges, reduces to only one term, the slowest
decaying one. The zero conditions at the long side walls will force even non-linear
problems to look linear deep in the strip. The same remark obviously applies to
the flow in a corner {3, 23, 25, 27, 29]. Thus the eigenfunctions we compute in do-
mains where the linear problem separates may be good Galerkin bases for linear
problems in which eigenfunction expansions belonging to different regions are
matched [35, 39, 40} and even for nonlinear problems [25, 35]. There is no doubt
that, in some problems, Galerkin analysis using natural eigenfunctions is the
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most accurate and least expensive of all competing methods of numerical analysis
(0} | .

We have reviewed some particular aspects of a special theory of eigenfunction
expansions associated with linear partial differential equations of order four: It
seems to us that this theory may be well-used in three ways:

(1) as a branch of elementary applied analysis for solving problems of mechanics
by separating variables; ]

(2) as a branch of “generalized harmonic™ pure analysis for the repesentation
in series of prescribed and arbitrary vector-valued functions; and

(3) as a branch of numerical analysis for Galerkin bases to be used in spectral
methods for solving linear and nonlinear problems.

2. Completeness of Fourier Series by the Method of Titchmarsh

In this section, we rederive well-known results by the method of TITCHMARSH
in order to display the method in its mathematically simplest context. We generate
theorems of convergence and completeness of the eigenfunctions of the canonical
edge problem for Laplace’s equation. In this application of the method we estab-

oo

lish a Fourier series representation f(x) = 3, ¢,f»(x) of a given function f()

in terms of characteristic harmonic eigenfunctions f,(x) arising from separation
of variables. The theorem of convergence establishes the solution of the original
canonical harmonic edge problem in the subspace (f;f;) =0 orthogonal to
the eigenfunction fy(x). The method of proof leads also to results about non-
uniformity of convergence, essentially the Gibbs phenomenon, and to the value
to which the series converges at an end point of discontinuity.

As we noted earlier, the results given in this section are not new (or even
the best possible) but they do illustrate the main ideas of our application of the
method of TITCHMARSH to higher order problems. In the next sections we establish
a series representation [fi(X), f2(x)] = Zc,[${(x), $9(x)] for a given function
f(x) = [f1, f,] with values in R? in terms of characteristic *‘biharmonic” eigen-
functions [¢{, ¢${”] = ¢ arising from separating variables. We get complete-
ness on the subspace of separable solutions of V*w = 0 when the data vector
f(x) is orthogonal to a certain adjoint eigenvector. )

For triharmonic problems, one wishes to establish a series representation

[AG, 200, 500 = Ze, (87, ¢, ¢57)

of a given function f(x) = [f,(x),f2(x),f3(x)] with values in R* in terms of
characteristic “triharmonic” eigenfunctions [¢{?, ¢5°¢{"] = ™ arising from
separating variables in a canonical triharmonic Véw =0 edge prqblem. Suf:h
polyharmonic problems of higher order are easily formulated, and basic properties.
of their solutions are known. We hope to complete proofs for such solutions soon,
and seek their applications in problems of mechanics.

Before closing this motivation for the work to follow we note that TITCHMARSH
does not seem to have established the applicability of his method for ‘“bad”
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functions f(x), like the ramp function and the step function. This justification
does follow from his method as we shall show.

The method of TITCHMARSH is an explicit realization of the spectral theory of
linear operators; one finds eigenvalues as poles of a resolvent operator and eigen-
functions as residues at those poles.

Consider the canonical edge problem for Laplace’s equation on the strip
Vip=0, 0=x —1<y=1,
w(x, +1) =0,
w(0, ¥) = f(») is prescribed,

2.1)

w—>0 as x— oo, uniformly in y.

The representation w = Yec,e~**¢"(y) leads to the self-adjoint eigenvalue
problem for ¢(y) ’

¢ +s%=0, —1=y=]l,
2.2) {
A1) =0.

A set of solutions of this problem are

2.3 ¢ =sin[s,(y — 1)), n=1
where s, = nm/2 are the non-zero roots of ¢*(—1) = —sin 25, = 0. Equation
(2.1); implies that the c, should be chosen as Fourier coefficients of f(»). That is,
@4, 70) = 3 eusin [ 50— 1)

n=1

fj . nx nx nw . N
= ¢, |Sin — y cos — — cos — y sin —
EBil A Rl 2 783

where the ¢, are the Fourier coefficients

L
2.4), €= —;— __{ f(w) sin ? @ —1)du

1 nx ! . nm
= T{COS -Z—_flf(u) sin =~ u du
1
—sinZ [ fw cos'—zz-tua'u}
2 4 2

1t follows from (2.4) that

oo

1
@.5) fo) = ,,3.:4... % sin % y (“fl f() sin (? u) du>

+ i %cos %y( j:f(u) cos (’—;—zu)du).

n=13,.
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Thus the expansion is naturally decomposed into even and odd parts.
. hn .
To prove that the set of eigenfunctions ’sm—z-( y— l)} is complete by the
method of TITCHMARSH we compute (2.3) as a residue at the poles of the resolvent

associated with the problem

{ m"’ + s*m = f(y),
2.6)

m(+1) =0.

To find the resolvent we invert (2.6) for all complex values of s 3=nz/2 using
the method of variation of parameters. First set

m(y, ) = X:(», 8) F, (0, 5) + X500, 8) B2, 5),
Q@7 X, +52X,=0, X(l,5)=0;

Xy + 52X, =0, Xy)(—1,5)=0.
Then '

X, =sins(y — 1),

@8 X, =sins(y + 1)
and the functions F,, F, are required to satisfy
2.9 X\F| ~ X,F; =0, Fi(—1,5)=Fxl,s)=0.
With this choice (2.7), satisfies (2.6), and it will also satisfy (2.6), provided that

(2.10) X \F| + XoF; = f.
Let W be the Wronskian
W = X,X; — XX, = ssin 25 = 2s sin s cos 5.

Then

R 9) =3 76 Xato5) di,
R ) = 7 J 0 X, 9
@.11)  miy,s) W= X (3, 5) Jj X, (u, 5) f(u) du + X,(y, 5) yf X, (u, 5)f(u) du
—sins(y — 1) _}j sin s(u + 1) f(u) du

1
+ sin s(y + 1) [ sins(u — 1) fig) du.
¥
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We shall justify the expansion (2.4) and (2.5) when f(-), f(-) are continuous
and f”'(-) is of bounded variation. To do this we consider a sequence of contour
integrals in the complex s-plane:

(2.12) i § sm(y, s) ds £ 1(f),

27zi D,
!
where D, is the square in the complex s-plane with its four vertices at + 4n I 1 7,

4n + 1
=+ m :z>‘ Our program is as follows. We first show, using residues, that

@.13) lim 7,(f)= 3 ¢, sin"z—”(y —1
n—»oo n=1

where the ¢, are given by (2.5). Then we show

(2.14) L(fHy=r+ 2,

where

1
Ry =5 D:f s{P(y, 5) — G(y, s)}ds

is a remainder. If we can establish that R,—>0 as n— oo, then (2.13) and (2.14)
imply (2.4); that is, the set of eigenfunctions {sin ’—12:-1()' — 1)} is complete; arbi-

trary data f(y) may be represented by a series of sines.

In the demonstration sketched below we get convergence of the series to f{y)
in a sup norm, uniformly in y if f{4+1) = 0, but, in any case, at all interior points
ye(—11.

First we evaluate I,(f) by the method of residues, noting that the simple
poles of sm(y, s) are at the non-zero roots of sin 25 = 2 cos s sin s (that is, at
nxn/2) and that s =0 is not a pole. This evaluation leads easily to (2.13).

To get (2.14), we note that

X

1 X”
)f(u) i+ X9) [ (— L)

52 )f(u) du

@15 Wmy,s) = X,(») _jj(—

32

X, , y y
= sgy)((—Xzf+ X;f’)_|l— _jl Xzf”du)

Xay)
52

+

1 1 .
((—X;f+ XM -1x f”du)
¥ ¥

where we have assumed that f{-) € C'(—1, 1). Since X, (=D =X,(1) =0, two
of the corner terms in the square brackets are zero and, since Xy(—=1) = X{(1) = s,
the other two corner terms may be written as

1 1
T XOA=D = X0) D).
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The coefficient of f() vanishes and the coefficient of f(3) is

1 , , W sin2s
3z [—X(») X0 + X0) Xi()] = E- s

It follows that (2.15) may be written as
O

(2.16) sm(y, s) = e + sP(y, s) — sG(y,5)
where 1

@17), PGy, ) = ———= LG A=) = K:0)fD]
and . ,

@17), 560, 5) = oy [ 60) [ X f ")

1
X0 [ XS0 du.
y
First we shall derive (2.13). Cc_msider the integral

Lf [  sin s + 1)) du
(2.18) I,,(f)——-zi §m{51ns(y—l)__£ sin s(u + 1) f(u
D

1
+sins(y + 1) [ sin s — 1) f(w) du} .
y

This integral is evaluated by computing residues at each zero s = nrf2 of
sin 2s. There is no residue at s = 0. Each contour D, contains 4n poles. The
computation is easy and straightforward and it leads first to (2.5); then, after

some manipulation, to (2.13). .
To comrl;lete the justification of (2.4) we must show that the contour integral

A, in (2.14) tends to zero as n—oo.

Lemma 2.1. Ler D, be the sequence of square contours with vertices at
1 - .

[i (n + -:11—) 7T, + (n + T) n] and let y lie in the open interval —1 '<y < L

Then, as n— oo

(2.19) § sP(y, s) ds— 0.

Dy

Proof. We may rewrite the integral on the left of (2.19) as

in ys
2.20) _ lj _1? :cos syfe i sin . fo} s

cos § sin §

where

1
fom () +A=D), o =5 (D) — (D).
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fI'-Zau:h of the two integrals converges to zero. We shall prove convergence to zero
or the first integral. Let 5 = ¢ -+ #z. The contours D, split into two horizontal

lines (¢, +a,) along which o variesand 7 = +a, d—ef;t (n + T) 7 and two verti-

cal lines (4-a,, ) on which v varies and ¢ = +-a, We establish an inequality

bouﬂd on the magmtude Of the ﬁlst lﬂte Ial and Sllow that the bOl.llld oes to
g g

1 cos SY s 1 |cos s
2.21 leos 9 4
221 ’ Sﬁ s coss f|s |coss] s
_ §{ cos? gy + sinh?zy 5‘
(6% + 72) (cos? ¢ -+ sinh? 1)}
- cos? @,y + sinh? 7y 3
=2 Z
f {(a,z, + 72) (cos® a, + sinhzr)} a
f" { cos?gy -+ sinh?q,y 3} -
(@ + 0¥ (cos?o -+ sinh? a,.)} do
<2 f 1+ sinh2zy ¥
a N dr

—ay — + sinh? ¢

1 + sinh? a,)\}
+2 f( a2 sinh? a, ) do

_4V§ fncosh'r]y] 4 cosha,|y|
= dr -
a, [cosh 27]% sinh q,

4 cosh a,)y|

8 ((
_— (¥l —1)
< a, of e + "5k a,

_8[e*™-D — 1] 4cosha, |y|
PXIE) sinha,

If thi = ! '
1s goes to zero as a, = (n + T) 7 — oo, then the first part of (2.20) goes to

:ero. A similar proof holds for the second half, establishing (2.19) and the theo-
em.

Let || —1< 0 and a4,—>oco; then the last line of (2.21) tends to

—8
—_— 4e%(¥1 -1
= T 0
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The convergence to zero of the integral (2.19) is not uniform because a Gibbs

phenomenon occurs near points y = +-1. However, the convergence to zero
of the integral (2.21) is uniform if £7(y) is of bounded variation.

Lemma 2.2. Let D, be the contours mentioned in Lemma 2.1 and let y lie in the
closed interval —1 < y=<1. Then as n—>oc :

(222) :st(y, S) dS—> 0.
Dy

Proof. We must consider the line integral of

sG(y, 5) = ;2.{5111 s(y — 1) f sin s (u + 1) f"'(u) du

+sins(y + 1) f sin s(u — 1) f"'(u) du
on the contour D, in the complex s-plane. If f is of bounded variation, it may be
written as f”” = ¢ — ¢ where ¢ and y are positive, bounded and non-decreasing.
We assume that f”’ is of bounded variation and use the second mean value theo-
rem: if F(x) is integrable and ¢(x) is positive, bounded, and non-decreasing, then
there is a &, a << & << b, such that
. b b
2.23) [ F(x) (x) dx = #(b) [ F(x) dx
3 §

where ¢(b) = 1i§rbx $(x). Split sins(u 4 1) into real and imaginary parts. Each
X
of the integrals on u in sG(», s) is the sum of four integrals, to each of which the
second mean value theorem may be applied. For example,
¥ ¥y
.24 [ #(u) Re sin s(u + 1) du = #(3) J Resins(u + 1)du
-1 [
1 1
= H) Re{?-cos s¢,+ 1D ——-cos s(y + 1)}, —1<é <y
and (since —yp is non-increasing)
1 1 .
2.25) — [ @) Imsins@ — 1) du = —p(y) [ Imsins(u — Ddu
y &2
1 1
= —w(y)Im{—T —-?coss(af2 — 1)}, y< E, < 1.

The terms in sG(y, s) having the form (2.24) may be written

S ZS{Sm sy — 1) cos s(€, + 1) —sins(y — D cos s (y + 1)}

= sm2 {sin s(y + &) + sin s(y — &; — 2) — sin 2sy -+ sin 2s}
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where —1 << &, < y. The dominant term is

*0)/s?

and

. ds

lim ——>0.

n—+oo Ky
n

Similar estimates for the other terms of sG(y, s) prove (2.22).

Lemmas (21) and (22) allow one to evaluat .
This leads to valuate the series (2.14) at y = +1.

Theorem 2.1. At each point ye[—1,1]1 we have

<IN o, —1<y<i
c, SIn — —_ ==
"§l nsing =1 {0, y=z1.

To prove this theorem we note that at y=41

hind . nmw
n§ Casin o (y — 1) =f(+1) + lim $sP(+1,5) ds.
A—>00 1y

n

Since from (2.20)

_I—Dfﬁ PO, ) ds = — 5 fﬁi{cos 2y, +§Mfo}ds

2mi Il e .
: 2z 3 S lcoss sin §

n

we find that in the limit

1
5t SPEL ) ds = ~f, Ffy = (1),

3. Formal Solution of the Canonical Biharmonic Edge Problem

We wish to find w(x, y), x =0, —1 = y =1 satisfying

o2 o2

Viw =0 2 Z
3x2+6y2’

)

wix, 1) = wy(x, £1) = 0,
SR I ) PP
w0, 9]~ [A0) = (3 is prescribed,

w(x, ») >0 as x — oo,

$MITH (1952) found a solution of (3.1) by separation of variables, which he
justified under the overly restrictive conditions on the data vector f(-1)=

FED=o0.

3.1)
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The solution given by SMITH is*

(3:2) wo ) = 3 [So00) e + 3 dp0) e,

Here ¢{°(y) and ¢{’(y) are the even and odd eigenfunctions, respectively, asso-
ciated with the eigenvalues s, and 5,. The eigenvalues are the non-zero roots of

(3.3) A(s) A(s) 2 (sin 25 + 25) (sin 25 — 25) = 0.

To each non-zero root s, of A(s,) =sin 2s, + 2s, = 0, there corresponds the
even eigenfunction

3.4 #P(y) = s, sin s, cos 5,¥ — $,Y €OS 5, sin s,y
satisfying
(.5 (LD = ¢(£D) = 0.

The product function e~*"*¢{?(y) is then biharmonic, satisfies the edge conditions
(3.5) on the long sides of the strip, and, if Re s, > 0, has the proper growth
condition as x —oco. In the same way, to each non-zero root §, of zf(&,,) =
sin 25, — 25, = 0 there corresponds the odd eigenfunction

(3.6) ¢(y) = 3, cos 5, sin 5,y — 5,y sin §, cos §,y

which also satisfies edge conditions (3.5). The product e *w*¢{’(y) is then bi-
harmonic with the right edge conditions and behaves properly as x—oo if
Re (5,) > 0.

All of the non-zero roots s, and 3, of Equation (3.3) are complex. We order
the roots lying in the first quadrant of the complex s-plane according to the size
of their real parts, i.e., 0 << Res, << Res, < Res; < ... with the same conven-
tion for §,. We identify roots of (3.3) in the fourth quadrantas s_, =, (complex
conjugate). Roots in the second quadrant are given by —s_, and in the third quad-
rant by —s,. As we noted in the last paragraph, in the canonical problem (3.1),
roots with negative real parts are unacceptable because the corresponding ex-
ponential functions are unbounded as x —oco. There is no non-trivial solution
of (3.1) belonging to roots s = 0 of (3.3). It follows from our numbering conven-
tion that the summation given in (3.2) is over all the acceptable sclutions of
(3.1)4, (3.1), and (3.1),. Only (3.1); is at issue. -

To deal with (3.1); SMmiTH introduced an algorithm for generating the coeffi-
cients ¢,, ¢,. This algorthm requires that we treat a reduced problem in ordinary
differential equations derived as follows. Suppose (3.1); holds; then the data vec-
tor f(y) must be represented as

3.7 S ~ _Z {e9™0) + &0}

oo

* Again we note that 3 contains no term for index #» = 0 throughout this paper;

any such term will be displayed explicitly.
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where the vector eigenfunctions

() R [ ‘"’(V)J
3.8), ®@(y) = , "(y) =
(3-8 2™0) [ o (y)] 270 $00)
have first components (3.4), (3.6) and second components
3.8), $°0) = 600Nk P0) = 4GB

The separation conditions guaranteeing that each term of (3.2) is biharmonic
require that $®(y), $*(y) satisfy

P+ SZAPY =0, $P(LD) = #VCED = 0;

St $O + RAGD =0,  FALD) = V(L) =0
where

0 —1
(3.10) A= [1 2J

is the biorthogonality matrix.

At this point the reader should suppress the fact that (3.7) and (3.9) were derived
from separable solutions of the biharmonic. We want instead to represent (3.7)
in terms of eigenvectors of the reduced problem (3.9). The problem (3.9), (3.7) is
self-contained.

Now define

1
(3.11) (&> “—if_fl o) dy

for any integrable function x(:) defined on [—1, 1]. We define an adjoint problem
relative to (3.9) in the usual way and find that the even and odd adjoint eigenvec-
tors y™(y), ¥™(3) must satisfy

¥O0) + 2ATYO0) = 0,

(D) = 9P (L) =0;

$0) + 247 <'°(y) =o,

(L) = ¢ (LD =

where A7 is the transpose of A. The biorthogonality conditions
APy =k Oy,

G.13) HPAPED) = ke, 8,
AP = (YA =0,

where 6,, =0 if m==n and J,,=1 if n=m, follow directly from (3.9)
and (3.12) in the usual way. The biorthogonality relations lead directly to inner

(3.12)
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product formulas for the coefficients in (3.7):

1
Cp = ’E (")Aj> ’
(3.14) 1
A (rv) Af>.
¢, = k,, f

All the quantities appearing in the formal solution of the fe'(iuced. problem
were given explicitly by Smite (1952). For the even functions, including those
corresponding to the zero roots of (3.3), we have

sin2s, + 25, =0, n=1,

5o =0,
¢ =0
=1,

¢(y) = s, 8in §, COS §,y — S,y COS 5, 8in 5,¥,
P () = —4(y) — 2 cos s, COS 5.V,

3.13)
W =1,
¥ =0,

W) = () — 2 cos 5, cos 5y,
¥P0) = ¢°0),
ko = —2,
k, = —4 cos* s,,.
For the odd functions we have

sin2§, —25, =0, n=1,

S’o . 0,
i =0,
4;20) =D

() = 5, cos 5, sin 5,y — 5,y sin 3, cos §,,
#0) = —¢P(y) + 2sin 3, sin 5,
(.16) 30 =y,
w“” =0,
$00) = () + 2 sin §, sin 3,y,
P0) = 670,
ko= —2,

k, = —4sin*5,.
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To get an expansion theorem of the form of (3.7) for unrestricted f”(y) € BV
it is necessary to use all of the eigenfunctions of (3.9) including the eigenfunctions
o9, O belonging to s, =0 and 35, = 0 which are not eigenfunctions of
the generating canonical biharmonic problem. The biharmonic problem (3.1)
is solvable only when the data vector f(y) lies on a subspace defined by

1
¢o = 1= WOAP = 0,
0
317
L, 1
Co = ™ HPOAf> =0.

Q

Several types of decompositions of the data are useful in the theory and are
very useful in applications. We collect them here. It is obvious that even and odd
parts of the data can be treated separately. We have

) ~eg® + X ee™,

(3.18) "
F°0) ~ cop® + _Z X
where
1
JOo) = 5 LFO) + f(=)),
(3.19) .
f0) = 5 LfG) — (=]
and
1
=7 YPAf),
(3.20) 1"
&, = — CPPASOS.
Cy 7 P PASf)

Using (3.12), we find, after integrating by parts, that

cnkn = —'<w(")l:fe>/s2

4 cos?

= 4f{(1) — p@f sk,

fl (l)
21
(3 ) EIl Ell < g (n)".fo>/§5

= —4f)(1) + f1 (1) — <pOFI5E

Il
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We now introduce new data vectors, Fé(y) and FO(y):

[Ff(y)J g_f[ff(y) ~fi) +i A~ yz)/Z]

o) E® B0 -«
’ [ﬁ?@)J d__c_f[f?(y) Ay + IO - — ys)/z]
o) ) — &y
where
62 Fi(l) = F{(1) = F(1) = FY(1) = 0
and
OS — YOFy = f1(1) p> = 8f5(1),
(3.24) @OFTy — GOFy = 3[fY(1) — FAD] >

= 24 tan? 5,

After combining all these representations and the results given in § 7, we
find that

l]f 1 1
0 or —1<y<

(3.25) — 3 ) =
- " [——l] for y =41,
> (2cos?s, + 4 1—?
(3.26) —_Z(W)W‘"’(y)= ' Jtor —125=1,
(=] Ft(y)
327) — OF 4+ pPFE ®(y) = [‘ ]for —1<y<1,
(327 fv;k,.?.@’ > 9P0) = F0) =y
3., 1.,
. ] 27727 Jfor —1<y<1
(3.28) _Zoo(;m——;;) RO 0
[_1] for y =41,
; 6 [z -77]
G299 > (S ey ——_g) ¢ =2 27 | for —1=y<1,
— 0 n 0
. F()
_ PPFY 4+ HOFYS ¢y = 1 < v<
(3.30) _ww FY + BOE $90) = | for 1=y =1,
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JosepH (1977) and JosepH & STURGES (1978) showed that the series (3.25)-
(3.30) converge and they obtained the rates of convergence using asymptotic
formulas for large n:

1
25, — (Zn 47) w+ilog(dn — 1=,
. 1 .
2s,,—>(2n+7)n+zlog(4n + )=,
sin 8,y = % [(4n — 1) aP2 e~ =19 L O(n=2),

(3.31) sin 5,y = % [(@dn + 1) P2 e~i0HO L O(p=12),

5, = O(n),
ko= 00, k,= O(n?),
@™ ™ p® B — OHB I

JosepH (1977) showed that the coefficients in the series (3.27) and (3.30) are O(n?)
and that these series may be majorized by a convergent numerical series

5, = O(n),

(3.32) ¢ 3 1/nt—hr
n=1

where ¢ is independent of #. The series (3.28) and (3.29) converge absolutely (and
uniformly) on —1 < y <1 but more slowly than (3.32) with a majorant equal
to

oo
c Z 1/n(3—fy|)/2_
n=1

JosePH & STURGES (1978) showed that the series (3.25)and (3.28) were conditional-
ly and not uniformly convergent. )

In the sequel we shall forget about the generating canonical biharmonic prob-
lem (3.1). It is perhaps useful to note here that whenever the formal solution of
(3.1) just given is justified, we have an immediate and precise mathematical
realization of St. Venant’s principle. Stating this principle in an informal way, we
note the solutions of (3.1) in the strip decay very rapidly to

w(x, ¥) ~ :6°(») exp (—s5,x) + 616{0(») exp (—35,x) + complex conjugate.
The decay is fast:
s, = 2.106196 + i 1.125365,
s, = 5.356269 + i 1.551575,
5, = 3.748838 + i 1.384339,

5, = 6.949980 + i 1.676105.
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1t follows that the interior form of the solution is independent of the details of
the edge data. Only the constants ¢, and ¢, depend on f(y) and in fact are projec-
tions of f. The interior solution is a decaying system of closed eddies with a fixed
spatial period.

4. Proof of Completeness of Biorthogonal Series
by the Method by Titchmarsh

The method of proof is the same as the one used in § 2 for Fourier series. .
We begin the proof by constructing a resolvent operator. The computations are
more involved here because we are interested in justifying the expansion formula
(3.7) for a prescribed data vector f(y) where f(-) € BV and BV is the collection
of all C'(—1, 1) vectors in R? whose second derivative is of bounded variation.
This means that our resolvent is a tensor-valued operator

d?
21 Ty —_ A1
“.1) (s21-T)', T A 7

. m
carrying f’ € BV into m(,s) = [ml] = (s?1 — T)~'f where
2

m" + s?Am = Af, A= [? _;]
my(£1) = mi(£1) = 0.

We follow SmitH (1952) and construct the expansion formula (3.7) as residues
at the poles of m(y, sz)désm(y, s); that is, we consider

4.2)

1
L{f) =5 Df sm(y, s) ds
N

where Dy, is a sequence of closed contours of increasing “radius’ which do not
pass through the singularities of sm(s, y). We take Dy as the square with ver-
tices at (4-2Nn, 4-2Nn) and get the expansion theorem by showing that

@3 L) =f+ &y = gf,v(cnqb‘"’(y) + &d"0)
.
l-&,7& (£,75), &=2N=
Dy
7
\-&,-i§ &,-it)

Fig. 4.1. Contour Dy in the complex s = o 4 iz plane
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where ¢,, ¢, are defined by (3.14) and
1
Ry=— ff(y, s)ds—> 0 as N— oo,
270
The solution of (4.2) was given by SMiTH (1952) as

44 m(y, s) = X,(sy) Wiz (2s) _fl Y (su) Af(u) du

1
— X(sp) W3i(25) [ Yi(su) Af(w) du
r
where the X, Y, and W are also 22 matrices. The matrices X; and Y; satisfy

{Xx(s)’) =X[s(y — D}, Yis») =Y[s(r — DI,

4.5),
Xa(s9) = X[s(&y + D], Ya(sp) = YIs(r + D]

where X and Y are the solutions of the matrix differential equations
X" +s?2AX =0, EX(0)+ EX(0)=0,

@5, - X(0)=[g ‘2)] E=[(1) g],
w0 . 5[

Y’ +s2YA=0, Y@©)E-+Y(@©OE=0,

and

e ro-se e[

The conditions (4.5) determine X(x), ¥(«) uniquely where « = sy and

(X1, Xp2 sine —xcosx o sina

X(o) = =1 . .
| X2 Xo2 sinx +acosax  2coso — & sine
[ Xll XIZ
| —X,; +2sine  —X;, + 2cosx ’

(4.6)

(Y, Y2 2cosx + asine  asinx

Y(x) = = . .
[ Y21 Y22 3sinx —acosax  sinax — & COS &

Y2 +2cosa Y, X2 +2cose Xy,
(Y2 +2sina Ya,| Xy, +2sinae Xy,
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The generalized Wronskian W(a, b) is defined as follows:
a=s(y —a), B=s(y—>b), a&=s0b—a),
dX(x) dY(B)
= /X
W(a, b) = Y(B) & & (=),

= s[¥(8) X'(») — Y'(B) X()],

[@sinx  —(x cos & + sin &)
4.7 =25 . . . . TN
[sinx —acosx —asina
o Pi’(s, &)
(X3  —X {{(&)]
=25 . N E
_X 1) —X11(x)

The inverse Wronskian W-! is determined by the equation W?* = I det W.
Then

w(s, &) = 45%(4* — sin? &) 1 = I det W,
W-(a, b) = W(a, b)/4s*(x* — sin® &),

W(a,a) =0,
(4.8) WL wa, —1) = W(s, 25),
W W(—1, 1) = W(s, —2s),
— 1 [ —2ssin2s 25 cos 2s+ sin 2s]
Y2 7 25(4s® — sin* 25) | —sin 25 + 2scos 25 25 COS 25

1 —2ssin2s  —2scos 25 — sin 2s
1.2%s .
' 25 cos 25

'™ 25(4s? — sin? 25)|sin 25 <+ 25 cos 2s

To derive m(y, s) given by (4.4) set
m(y, s) = X,(5y) F1(, 5) + X,(sp) Fa(y, )

where F, and F, are to be determined. Calculate m’(y,s), m”(y,s) and put
X,F; + X,F; =0 in m'. To satisfy m” + s>Am = Af we must determine
F, and F, such that

X,F, + X,F; =0,
4.9) . .

X, F; + X;F; = Af.
The boundary conditions m,(-=1,5) =0 lead to F,(—1,s5) = F,(1,5)=0.
Equations (4.9) can be solved by premultiplication, first by [Y;, —Y,] and then
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by [—Y, Y,]. From the first premultiplication we get

,

(-wa, —0, —w1, -1 ] = -z 0l [

F’,] = —W,,F; = —Y,Af.
2

Hence
y
F\(y,s) = Wi32s) jx Y, (su) Af(u) du.
Similarly, from the second premultiplication
1
Fy(y,s) = —W3l [ Yi(su) Af(u) du.
y

An alternative form of m(y, s) which exhibits the even and odd eigenfunctions
and adjoint eigenfunctions explicitly is useful in the residue computation of the
expansion formula (3.7). The alternative form is

1
(.9 _{ v(u, 5) - gu)du

m(.V ) S) -

2s(cos? s) (sin 25 + 2s)

(4.10) )
L P0v9) [ 5)- g)du

I 2s(sin? s) (sin 25 — 2s) + Q0 )

where
»

@D 0009 =g ([ sin st 1) (6160 + 8200

1
— [ sins(u — 1) (g,(0) + gz("))du)

¢0,5)

4ssin? s

(_f: sin s(u + 1) (21() + ga(w)) du

1
+ f sin s(u — 1) (g.(u) + gz(u))d“)

e e
_i‘;:'(sym—zs)_fl [o 1] Y y(su) () du

sins(y +1) 0 —1
s J [0 l] Y, (su) g(u) du

Expansion of Biharmonic Eigenfunctions 247

and
= =)
s[4

y"(y’ S) = ['Px(y, S), 'PZ(ys S)]

where ¢,. ¢,, v, and p, are the even eigenfunctions (3.15) with the particular s, ~
replaced by the variable s and

(51(379 5)]
$:(9, )
P, 5) = 1. (3, 5), Ay, 9],

@.11), #0,5) = [

where ¢, ¢, ¥, and 9, are the odd eigenfunctions (3.16), also with §, replaced
by s. The function sQ(y, s) makes no contribution to the integrals Iy(f) because
it has zero residue at all s, 3.

To derive (4.10) we decompose the inverse Wronskians into two parts which
will correspond to residues at even and odd eigenfunctions:

Wi'(25) = Q(25) §(25) = ©_(25) H\(25) + @.(25) Hy(29),

4.12)
W3l (25) = 2(25) &(—25) = w_(25) H3(25) + @,(25) Hy(25)
where w_(f) = (sin f = B)~*, Q(f) = w.(p) »_(B)/B, and

—X,,(8) Xu(ﬁ)]_[—X{l(ﬁ) X;;(ﬂ)]
X, X0 |-xu® xi®)

1 —sin § 1+ cosg
4.13 H(p) = —
@13 @ 28 [—1 +cosfp sing,

1[ sinf 1 —cosp

§B) = [
], Hy(f) = H(—f),

Hz(ﬂ) =33

2ﬁ ]’ H4(/3) = Hz(—ﬁ)-

—1 —cosfp —sing
In the next step we compute

X1 (s¥) Wi3(25) = Q(B) X(~) §(ﬁ)k=;-(sy—l).

X.(sy) W2_,l‘(25) = (B X(») é-(_ﬂ)E::(y.H)_
=25,
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in the decomposed H; form (4.12). This is a tedious computation. A typical
intermediate result is of the form

I+cosﬂ

—hl 1(0‘, ﬂ) - sin ﬁ —hy l(o‘a .B)
2X(x) Hy(f) = et
_hz 1(2, ﬂ) sin ﬂ Az, B)
_ [h11(x, B) [ 4+ coiﬁ]
I YCH) sin f

where
hy (%, B) = asin (o + B) — (x + B)sin & - (B — sin ) sin x,
By (x, B) = —hy(x, B) + 2 cos (x + ) — 2 cos«.

When the substitutions x =s (y — 1), 8 =25, « + f =s(y + 1) are made,
combinations of the eigenfunctions @(y, s) and @(y, s) appear. The results are
1 [%(y, $)

14, X\Wii =
@414, x\wi; 25(sin 25) (sin 25 + 25) [ ¢,(y, 5)

] [sin 25, 1 — cos 2s]

1 [él(y, 5)

- A ] L 5
2s (sin 2s) {sin 25 — 25) | ¢,(», s)] [sin 25, —1 — cos 2s]

>

B sin s(y —_2 [~1] [0, 1]

2ssin 25 1

0% 5)
@14, Xw5l = ! [ ‘

2s(stn 25) (sin 25 + 25)| ¢, (, s)] [—sin2s, 1 — cos 2]

1 4;1())’ S)
™ 25(sin 25) (sin 25 — 25) | (y, )
|, sins(y 4 1) 1—17[0,1]

TZssin2s [ 1] '

" 2ssin2s

} [sin 25, 1 + cos 2s]

The next step is to postmultiply these forms by ¥ matrices. We proceed by multi-
plying the row vectors of the product XW-! into ¥ and manipulating that row
before multiplying by the column components. The computation brings out the
even and odd adjoint eigenfunctions (y, s) and P(y, s) after a tedious computa-
tion which can be organized by paying attention to the (x, §) combination in
the products.
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The results are

(4.15);  Xy(sy) Wi3(29) Yolsu) =

1 ¢1(y’ S) )
" 25 (cos? 5) (sin 25 + 25) $,(, 5) CACDAZED)
i XD
e Gn s %) L;z(y, s)] AR
sin s(u 4+ 1) 1
+ 4s (cos2 *0 s ) s)) (.1
sm sy — 1)
2ssin 2§ [O ] ¥alow),
4.15);,  Xy(sy) W3(25) Yy(su) =
1 d;l()’, S)
+ 25 (cos? 5) (sin 25 + 25} ¢,(y, ) fpa(: 5, valu, 5)]
_ 1 ‘£1(y7 S) n n
25 (sin® 5) (sin 25 — 29) | (3, 5) (9100, 5), 920, 5)]

N sin s(u — 1)

1
! 4s (cos s F0, ) — sin? sw(y S)) (L, 1]

i + 1o -1
R

2s sin 2s

To obtain (4.10) we substitute (4.15) into (4.4).

5. Computation of Eigenvectors as Residues at Poles of the Resolvent

In this section we show that

(ER)) lim Iv(f) = X {e.9®0) + &P}

by evaluating Iy(f) at the poles of sm(y, s). Since X(sy) and Y(sy) are entire func-
tions, equation (4.4) shows that the poles of sm(y, s) can only occur at zeros of
the inverse Wronskians; that is, at the zeros of

2s(—4s? + sin? 25) = 25(2s + sin 2s) (—2s + sin 2s).

The second form of m(y, s) given by (4.10) superficially suggests that sm(y(s)
has poles on the real axis at the zeros of sin s, cos s and sin 2s. These poles are
apparent but not real; they have zero residue.
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Integrals around the square contour Dy with vertices at [+-2Naz, +2N=)
do not pass through poles of sm(y, s5) (see SMmiTH, 1952). They do pick up contribu-
tions from the residue at the pole at the origin and from the 8N poles s, and Sy
inside the contour Dy. There are N poles §, satisfying sin2s 4+ 25 =0 and N
poles 5, satisfying sin 25 — 25 = 0 in the first quadrant of the complex s-plane,
and there are 2N poles in each of three other quadrants. The function sQ(y, 5)
has no residue at s = 0 and sm(y, s) has no residues at zeros of sin 2s. The residues
in the first and fourth quadrants split into even eigenfunctions at s, satisfying
sin 25, + 25, = 0:

¢k 1
2 : — — _rn —_ — (n)
(5.2) sl_l)r:n; (s — s,) sm(p, 5) oot s,,"’(y’ sn) = 569" 0)s
and odd eigenfunctions at 5, satisfying sin 25, — 25, = 0:
5.3) lim (s — §,) sm(p, s) = bk P, 5. = : PRS0
- o3, s Sn) § > 5) = - 8 sin® §"(p Y5 Sp) = 2 n®P (y))

where ¢, and ¢, are the coefficients in the expansion formula (3.7).
To compute the residue of sm(y, 5) at s =0 we make use of the following
formulas:

0
76,0 =2 | |+ 06 = by + 02,
Wi ) = 20100 + 06 = kow® + 0(s?),
#5,) = 22 [ )] + 069 =299 + 0,

P(s, ) = 2s[y, 0] + O(s*) = 25%p@ + 0(s%),
i s _ 1
s0sin2s +2s  4°
sins(y + 1 1
pIOED_ 1

50 sin 2s

s 3
TeiniseinZs — 25 g 570

Using these formulas, we find that sQ(y, s) has a zero residue at s = 0 and
. 1[0 !
lim s>m(y, 5) = - [ ] [ fa(w) du
=0 2 l =1

549 + (— %) [(2s2) [3} (—2s2) _f: ug(u) du}

= @) + &PO0).
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Equations (5.2), (5.3) and (5.4) taken together prove (5.1).
We note that the eigenvalues s, and §, are distinct when n =0 but s, =
So = 0 is a double, semi-simple eigenvalue.

6. Computation of the Data Vector Plus a Remainder
from Another Form of the Resolvent

Now we shall show that
sm(y, s) = (f(y)s) — sG(, 5) + sP(Y, 5),

1 y
sG(y, 8) = — Xi(sy) Wiz _{ Yy (su) f(w) du

1 1
6.1 — 5 Xy Wil [ Yi(su) () du,

SP(3, 5) = — Xolsy) Wik [_f;(l)}
s "L sA)
+ 2 X (sy) Wi [_f]’(-l)]-
s (G )
Given (6.1), it follows that

er 1
6 L= g $m0ds

1 1
= f(») + i—ﬂ?DisG(y, s)ds + Enf,SP(y’ 5) ds.

The last two integrals in (6.2) are the remainder 22, defined in (4.3).

To derive (6.1) we set ¥;A = —Y/s? (j=1,2) in (4.4) and integrate twice
by parts using the boundary conditions satisfied by ¥, and ¥,. We then note, using
(4.8) and (4.9), that

X\ Fi+ X,F, = (X\Wi3 Y, + X, W5Y) Af = 0,
XiFi + X;F; = (XiWi, Ys + oW, Y)) Af = Af
and, since (6.3) holds for all f,

XWiiY, + X,W; Y, =0,

X\WLY, + X W'Y, = 1.

(6.3)

(6.4)

Equations (6.4) may also be derived by direct computation and they imply that
X;W[JY; + XZ'W{,]]YI = —1.

Now we give an explicit and convenient form for the integrands appearing
in the definition of the remainder 2. A useful form of sG(y, s) can be obtained
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from (4.10). Comparing (6.1), with (4.4) we find that the form of sG(y, 5) can be
obtained from that for m(y, 5s) by replacing the vector Af(u) in the two integrals

1 . . . .
by the vector v f"(u). Since equation (4.10) gives an alternative form for m(y, s),

we can obtain a corresponding form for sG(y, s) by replacing g = Af by f"/s
in (4.10), (4.11):

1
¢(y’ S) __{ 'P(u1 S) 'f”(u) du

252 cos? s(sin 2s - 25)

(6.5) sG(y, 5) =

R 1
4’(}’: S) —-'/l‘ ';’(u’ S) 'f” du

252 sin? s(sin 25 — 2s)

+ T O(ys S)
and, since Q(1,s) =0,

(6.6) sG(1, 5) = !

0 ! .
s(sin 25 + 25) [ 1] _{ y(u, 5) - f'(u) du

1 0 1 .
+M[l] __{ w(w, s) - f"(u) du.

It is convenient to decompose the expression (6.1); for sP(y, s) into even and
odd parts. From (3.19) we have

MY =rfo+fo i) =Se+ fo,
A=) =fo—f, fi(=D=—fi+f;
where f, =f%(1), fo = f°), fo = f(L), fo=f"(1). Then (6.1); may be written
as
~fds
]
The matrices multiplying the data vectors may be reexpressed using (4.14):
2[X2W2—,1l -+ XIWITZ‘] = {4f(1 — cos 25) + 2(I — f)} [0,1] — 4f'sin 2s{1, 0],

AXW5 — X,Wik] = {—4f(1 + cos 25) + 2(1 + D} [0, 1] — 4f sin 25[1, 0]
where '

—fols
sP(y, s) = 2[X, W3} + Wil [ ° J+ 2 (X, W3y — XIWI—,;][

e

f _ 1 ¢l(y’ s)
25 (sin 25) (25 + sin 25) | ¢,(y, 5)|”
- 1 d;l(y’ s)
=3 (sin 25) (sin 25 — 25) | $,(y, 5)|
sins(y + 1) [—1
I= 25 sin 2s [ 1] ’
sin s(y — 1) ["1]

2s sin 2s 1]’

=
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Hence ,
sP(y, s) = 4f{f(1 — cos 2s) -+ %(l —Dy+ —s—f{, sin 2sf
— 4f0{f(1 -+ cos 2s) — %(l -+ i)} + —4s—f; sin 2sf.
That is, ) ’
j;Je(ya S) 2f6 ¢l(y, S)
©.7 sP(y, s) = s(sin 2s + 25) ' s%(sin 25 — 25) ':4;2()” 5)
© fodo(y, ) 2f, $:(», 5)
=+ s(sin 25 — 25) © s3(sin 25 + 25) | p,(y, 5)
where

a; —a; —a + 4
J, =
—a; +a, —as+a,

—s(y sin sy sin s + cos sy cos §) — sin § €os sy
[ s(y sin sy sin s + cos sy cos s) — sin s cos sy] ’
J°=[ al—i—az—-a3—a4]
—a, —a, —ay — a,
s(y cos sy cos s - sin sy sin s) — sin sycos §
- [—s(y COS sy €Os 5 + sin sy sin ) — sin sy cos s} ’
a,=s(y —Decoss(y + 1), a=s(y-+ 1)coss(y — 1),
a;=sins(y +1), a,=sins(y —1).

Finally we note that

6.83) SP(41,5) = £.pi(5) + FoPo(5) == foP3(5) = foPa(s)
where
1 —1 11 4 [0]
P‘(S)z—s— 2s —sin2s| '__s—[l] +sin2s+25 15’
sin 2s + 2s
_ —4 cos?s [0]
Pa(s) = s3(sin 25 + 25) >
(6.9)
1 —1 11 4 [0
Ps(s):_s— —2s — sin 2s = —T[l] T sin2s — 2s l]’

sin 2s — 2s

_ 4 sin3s 0
P4 = Fnas — 25) [ 1 ] :
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7. Theorem of Convergence

We now show that 2y —0 as N—oo when —1 <y <1 and we find
the values assumed by 2y on y = 4-1. Since all of the functions of y defined
in § 6 are either even or odd, it will suffice to study 2y when 0 < y < 1. To
simplify our study of the contour integrals on the square contour Dy of the
complex s =o¢ + ir plane (Fig. 4.1), we use the following computational

Lemma 7.1. Let

(7.1) A(s, y) = (0,7, ) + iz(0, 7, ¥)

be an even function of s when 0 < y < 1. Let Dy be the square in the s = ¢ + it
Dplane with vertices (=&, +i€), £ = 2nN. Then

& &
1.2 § A3 ds = if [ 070 — [ 40,8 ds}.
Dy 0 0

The proof of this lemma is straightforward and is omitted.

Lemma 7.2 (SmitH, 1952). Suppose f’())€ BV for 0 <y < 1. Then

(7.3), le— st(v 5)ds—0

N—oo 277i gy

exponentially with the asymptotic order
(7.3), O(e~*NU-»)y,

SMITH’s proof does not cover the case in which y = 1. We get fast convergence
at y =1 (see lemmas 7.5 and 7.6).

Now we are going to prove the most delicate result of this paper. In fact this
result implies all that we need for our theorem of convergence.

Lemma 7.3. Let 0=y < 1. Then

1 sin sy sin s

(7.4), Lim =— §

N~oo 2l y, sin 2s __2sa's—> 0

with asymptotic order

7.4, ( log 2aN )

QaN) -niz)

We note that the integral in (7.4), does not tend to zero when y = I and when y
is near to one it converges very slowly. The slow convergence here is associated
with Gibbs phenomenon in the series which are generated as residues of (7.4),
at the zeros of sin 2s — 2s.
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Proof. The A(s, y) of (7.2) is given here by

sin sy sin §

ns o, 7,y) + ixlo, T, ¥),

7.3) (s, y)=

200, 7, ) = a0, 7, Y |y(0, D,
2o, 7, ) = Blo, 7, )/ |7(e, D) |?,
|¥(6, %) |* = |sin 25 — 2s|? = (sin 20 cosh 27 — 20)?
~+ (cos 2¢ sinh 2t — 27)?,
(o, 7, ¥) = plo, 7, y) [sin 26 cosh 27 — 2¢]
+ »(o, 7, y) [cos 20 sinh 27 — 21],
Blo, 7, y) = v(o, 7, y) [sin 20 cosh 2t — 20]
— u(o, 7, ¥) [cos 20 sinh 2v — 21],
(o, T, ¥) = sin ¢ cosh 7 sin gy cosh 7y
— cos o sinh 7 cos oy sinh Ty,
(o, T, ¥) = sin ¢ cosh = cos oy sinh Ty

+ cos ¢ sinh 7 sin oy cosh 7y.

We first show that the integral of x(o, &, y) on the horizontal sides of Dy tends to
zero exponentially. For this part of the demonstration we note that

&
(7.6) [ 1(0, & y) do < & Max | 4(0, &, )],
G 0So<t

(o, & D) < €0, |0, £, )| < 6+,

45
(o, £)[2 > (sinh 26 — 2£)? — 4§ cosh 2£ > eT (1 — 166 %).

fv(o', E’ y) [ < eE(l+y)a

The last expression is positive when & > 1.64. Therefore

450D
1.7 £ Max || <]—r1—6§eng, &> 1.64.

It follows that the integral on the left of (7.6) with & = 2zN tends to zero as
N-—>o0 with asymptotic order Ne*™0~=D 0 <y < 1.
The delicate part of the proof of lemma 7.3 is associated with the fact that the

path for the line integral

5 ¢ . .
3 sin &y sinh ¥ cosh zy (sinh 2t — 27
f!)(f,r,y)dt:f y y( )d

(7.8) 457 1 (sinh 27 — 20)? v

on the vertical side of Dy passes through the sector of the complex s-plane
containing the eigenvalues s, and §,; that is, the sector in the first quadrant con-
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taining the roots of (sin?2s —4s%) = 0. The path on ¢ = & = 2nN passes
between the real parts (n — 1/4) % and (n + 1/4) = of s, and §,. The eigenvalue
band lies in a “‘sector” whose intersection with the line ¢ — & is an interval
(3 log & — n/2¢, %logs + 7/28) defined by the imaginary parts of s, and 3
(see (3.31)). i )

Since
p3+y)r def
79 196, 59| < g b2~ 0€ T,
we have
& Hlogs logé
(7.10) of QE, 7,y dv < of O, T, y) de +ll fg . O, v, y) dr
110

&
+ [6¢, 1,y dr.
logé
The first integral on the right of (7.10) clearly converges to zero because

$logt Hogt (1, o

(7.11) 0¢ v, nar= [ “— &
/ ] =

1 1

1
T [Fm g 0sr<t e-aw

To obtain the asymptotic order of the other two integrals on the right of
(7.10) we define a monotonically increasing function

i 2
7.12 def sinh 27 — 27
( ) M) ( sinh 27

for 0= 7 <oo, M(0) =0, M(cc) = 1. Clearly

(7.13) M* = M(3log§) < M(@) if Llogé < =.
Moreover, since & = 2aN oo, M*— 1. It follows that

(7.14) (sinh 2v — 27)* > M* sinh? 2t > M*e*/4 — M*)2
when 7> Llogé and, since 4£2 — M*/2> 0,

(7.15) 48 - (sinh 2t — 27)% > M*e*/4.

We may use (7.15) to majorize the last integral of (7.10). Thus

BT 450—D 4£y—l
dr = - )
METT MG — 1) M — 1)

(7.16) fég(é,r,y)dr<4 f

logé logé
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For the second integral on the right of (7.10) we note that

log$ logg 46(3 Ty

(717) %lo.g/; 0(5: 7, y) dr < %Io_g/; M*e4‘( + 1652 —2M* dv

B+
=2logé max (1652 oM + M*e“-’) '
This maximum occurs at the point
¢ = Llog ((3 + y) (16§82 — 2M*)) .
M1 —y)
Hence, the inequality (7.17) may be continued as
(34 ») (1652 — 2M*))’+‘
a—y m*

< %log 3 (
= K(y) 5,_2__1 logé,
KO) = 2 (M3 log2] ™ ¢ [ (—32”2 ) (l;y)]l;‘)

222 —1) 3ry

This inequality gives the asymptotic order asserted in (7.4), and it establishes

lemma 7.3.
Now we define integrands of the type

(7.18) Ao(s, ¥)Z k(s, y)/(sin 25 4+ 25)

where (s, y) is a product of sin s or cos s with sin sy or cos sy.

where

Lemma 7.4. Lemina 7.3 holds for all integrands of the type (7.18).

The proof of this lemma is exactly the same as the one we just gave for lemma 7.3.
We next define integrands of the type

def L ]I(S, y)

(.19 Ads, = s! sin 25 4 25
and note that on Dy
1 1
—_=—, = 2aN.
W= e

Hence, using our previous computation, we find
Lemma 7.5. Let 0=y < 1. Then

1
(7.20), Lim=— $A4(s5,)ds—>0, [=01,2,...
Dy .

N-oo 27
with asymptotic order

.20, ( log 2nN 2).

(23N)(21+ 1—y)/.
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If 1=1 the integral (1.20), converges to zero when y =1 with asymptotic
order given by (7.20), with y = 1.

Lemma 7.6. Ler f’(y)€ BV. Then sG(1,s) is an integrand of the type (7.19)
with 1 =2,

The proof of lemma 7.6 is straightforward. We split (6.6) into real and imaginary
parts following the recipe given in lemma 7.1. The integrands of (7.2) so defined
are real functions of a real variable and, if f'(-) € BV, we may use the second mean
value theorem as in (2.23), (2.24) to reduce (6.6) to an integrand of the type
(7.19). We get an s in the numerator from ¥ and % and an s in the denominator
from integrating after using the second mean value theorem. This shows that
I = 2. Of course, we get exactly the same result for sG(—1, s).

Lemma 7.7. Let —1 <y << 1. Then sP(y,s) is an integrand of the type (1.18)
and

N—» o

lim  §sP(y,s)ds—>0.
Dy

To evaluate &y as N —oo at y = -1, we need to evaluate contour integrals
which do not depend on y. Lemma 7.6 treats an integral of this type and the
expression (6.8), which we evaluate below, leads to other integrals of the same

type.

Lemma 7.8. p,(s) and p,(s) are integrands of the type (1.19) with y =1 and 1 = 2.
pl/im Fpi(s)dsds—>0, j=2or4.

ds
L 9. i —_—
emma 7.9 131—1»20 f sin 25 4 2s—>0

Dy

with asymptotic order :
log 27N

0( 2N )
The proof of lemma 7.9, using the minus sign, leads us to evaluate O(¢, 7, y)
given by (7.9) with y = —1. This evaluation gives the estimate (7.4), with
y=—L
Lemma 7.10.

1 1 1

7.21 im — = —
o gm g ernas= i [ sl

Lemma 7.10 follows directly from lemmas 7.8 and 7.9.

Remark. The contour integrals studied in this section lead to series representations
of numbers in terms of functions of s, and §,. For example, using the method of
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residues we may obtain' the following results from integrals associated with
(6.9):

> 1
_1=_z°:°coszs,,’
3 _ > 1
710 Asin?5,
2 > 1
- 2%

to name a few. All such results can be obtained directly and more easily from our
theorem 7.1.

Lemma 7.11. Suppose that {w Fy = O(h(|s|)) when F¢c BV. Then (y F) =
O(/s| h(|s])) when FeLy(—1,1).

Proof. The proof depends on the fact that the L,-norm of y and the sup-norm
of an integral of y have the large | s| behavior stated, independently of the behavior
of F. From equation (3.15), we have

Yy = [zj = ¢ (», 5) [i ] —2 cos s cos sy [(1)] .
Recombining the trigonometric functions, we can write
v, = ¢ =+ [s(1 —y)sins(l + ») + s(1 + p) sins(1 — )],
p, = ¢, — [cos s(1 + y) + cos s(1 — »)].
Each term in these expressions is certainly
O(IS!VM s=o0+it,

independently of y; some terms do not grow this fast, of course. Thus

1 3 -
lwle, = (_[ v |? dy) < K, |s] V1 +sinh® 2 [z].

y
Introduce Y(y,5)=s [ w(»,5)dy;
o

¥, 1 . 1
Y = [Tz] =Y, [1} —ZCosssmsy[O],
4
Y,=s5 [ ¢ dy = s sin s sin sy - sy COS § €OS §y — COS § sin 5y.
)

Terms in ¥ have the same behavior as terms in ¥, so

sup [#(y, 5)| < K, |s|V1 + sinh? 2 |7].
¥y



260 D. D. JosepH, L. D. STURGES & W. H. WARNER

Now calcnlate (w Fy when F¢ BV. De this by representing each of th
two components of F as the difference of two vector functions A(y), u(y) whos:
components are nondecreasing and bounded. Separate y into real and imaginary
parts. At most eight scalar integrals must be examined, each of which can be

treated by the Second Mean Value Theorem. A typical result is

1 1
j: 22(3) Re wy(y, ) dy = A,(17) f Rewy(p,5) dy
- Y2

= A,(17) Re (f ! aafzdy)

Y2 T
1 1
= () Re (L Wal9) = 705 9), —1 .

Since there are two components of ¥ and eight integrals, then certainly at worst

16

[P = 1 Max (AL, i —1)) Max 9.

Now suppose F& L,(—1, 1); then
[<WF> | < |, [ F e,

We now see that the dependence on }s{ is that stated in the lemma, since Max ||
and |y |, have at worst the same |s|-behavior and the other factors involve F
and not s.

o
Lemma 7.12., ﬁnﬁs(}’(l, 5)ds— 0 as N—>co when f'¢L,(—11).

Proof. By lemma 7.6, sG(l, s) is an integrand of type (7.19) with / = 2 when
J” € BV. By lemma 7.11, sG(l, 5) is thus an integrand of type (7.19) with / = 1

when f € L,. Therefore, by the last sentence of lemma 7.5, ZL § sG(1,5)ds—0.
41 DN

Theorem 7.1. Let f(y) € C'(—1,1) and f'(y)€ Ly(—1,1). Define

(7.22) S0) = o) + 200 + § {e6®0) + &™),

where the constants ¢,, ¢, are given by (3.14) for n =0, &1, 42, ... Then

o), —l<y<l
(71.23) SG) = 0

LA —fx&l)]’ y=&l.

Expansion of Biharmonic Eigenfunctions 261

ose first that S € BV. Then equation (5.1) implies that

f. Supp N

lim Iy(f) = cod®0) + 206® + 3 {c.d®() + &)}

N=>x

= S(»)

1
I = JO0) + 5| 15604 ) + 3P0, 9 o)

and, by (7.3), and lemma 7.7,
A‘g‘; () = f()-

To show that f”€ L,(—I1, 1) is sufficient, use lemma 7.11 and SMITH’s result
(lemma 7.2) to prove that the integral of sG(y, s) still goes to zero in the limit.

For the second part of the theorem, we sety = =1 in (5.1), (6.2) and use
lemmas (7.6), (7.10), (7.12).

SmiTH (1952) proved theorem 7.1 with ¢, = & = 0 and unnatural conditions
for f and f’ at 1. SMITH’s proof works well when the unnatural conditions
fi=fi=0 at y=-1 are relaxed (JosepH, 1979). GREGORY (1980) proved
theorem (7.1) without restriction on f;, f; or onf; and fi at y =1 by a different
method. SPENCE (1980) proves a similar result as noted in Section 2. The present
proof goes “all the way” with SMITH’s extension of the method of TITCHMARSH.

8. Gibbs Phenomenon and Cesaro Sums for the Step
and Ramp Function Vectors at an End Point of Discontinuity

The Gibbs phenomenon deals with “overshoot” in the partial sums of certain
Fourier series. For example, consider the expansion of the periodic extension of
the ramp function

1 had sin n
) —y=3 T acy<a).

2 = n
The series on the right of (8.1) converges slowly, conditionally and not unifdrmly.
At the point y = kz of discontinuity the series converges to the mean value
0 of the function f(3) which periodically extends 1y on —z <y <= toR.
The Gibbs phenomenon refers to a property of non-uniformity in the convergence
of the partial sums

sin ny

N
8.2) Sy0) = X (===

near the points kz of discontinuity. For each integer N, the partial sum Sy(»)
oscillates around the function y/2 many times. The overshoot and undershoot
are largest near the point of discontinuity y = 4-=. As N is increased, the oscilla-
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tions begin to crowd the points y = +z. The amplitude of these crowded
oscillations also decays as N increases. As N — oo the oscillations are all pushed
into the points y = 4z from the interior as might be expected of “convergence™,
but the magnitudes of the oscillations do not go to zero; instead, they attain
a finite limiting value. In general, the limiting value depends on the function SO
being expanded. In the case (8.1) where f(y) =%y, the limiting values of the
overshoot and undershoot at y = 7/2 are

1.1789797 (x/2),

0.9028233 (=/2),
respectively.
The Gibbs phenomenon may be eliminated by summing Fourier series in
other ways. The arithmetic mean method of summing Cesaro sums

_ 1 M
8.3 Su(y) = WN% Sn(»)

eliminates Gibbs phenomenon, smooths the partial sums and improves conver-
gence to f(y).

Hewirr & Hewrtt (1979) have written an interesting historical and mathe-
matical paper about the Gibbs phenomenon. The problem interested many fa-
mous mathematicians and aspects of it were controversial for many years. In
their paper, HEWITT & HEWITT exhibit graphs of convergence in the presence of
Gibbs phenomenon which represent numerical computations of as many as
100,000 terms. Their study shows that it is possible to obtain precise hypotheses
about convergence of Fourier series from numerical studies.

There are no theorems about the Gibbs phenomenon or summation of Cesaro
sums for biorthogonal series. In this section and in the next we give numerical
results and present conjectures based on these numerical results. The Gibbs phe-
nomenon arises in biorthogonal eigenfunctions expansions whenever f;(4-1) = 0.
The difference between a bad data vector f(y) for which f,(d4-1) =0 and a good
data vector F(y) for which F,;(4-1) = 0 can be expressed as

1
10 =50 =1 o]+ 5[5 ]
whete fi(1) =/, + fon A(—1) =1, — fo and

1 . def N
6 [o]=lmsor S0 |- e00)
is the unit step function vector and
y . 4 A ef N | BN
(8.5) [ 0] = lim $)(), Sy = Zv {— = ¢‘"’(y)}

is the unit ramp function vector. (The components of the partial sums Sy are
denoted by

(8.6) Sy = [

Sm()’)}
Sna(y)
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with an identical convention for .§'N.) It follows that a ““Gibbs phenomenon™ for
biorthogonal series is associated with (8.4) and (8.5).

JoserH & STURGES (1978) showed that the partial sums (8.4) and (8.5) converge
conditionally on the open interval (—1, 1) and not uniformly. They exhibited re-
sults which appeared to exhibit a Gibbs phenomenon and also appeared to be
amenable to “smoothing” by Féjer’s method of averaging Cesaro sums

e 1 &,
@®7) CSN= 5 3 Su0).
M=1

(The components of CSy are CSy; and CSy, and the average of the odd partial
sums is denoted by CfS'N.)

The numerical results of this section are displayed in Tables 8.1 and 8.2 and
in Figs. 8.1-8.7 and are described in the captions. The following points deserve
emphasis.

(i) There is a Gibbs phenomenon associated with the biorthogonal series
representing the unit step function vector and the unit ramp function vector.
The oscillations are much larger than those which occur for Fourier series.

(ii) The overshoot and undershoot for the unit step function vector, given by
(8.4), is given in Table 8.1 as

i [ 1 1.666]
e N‘l“m< ~0) — [0]}: [0.63 ’

s 1 } 0.355
et NL";: N0) — [0 = [—0.63 ]

where the maximum and minimum values are attained as y-— 1.
The overshoot and undershoot for the unit ramp function vector, given by
(8.5), is given in Table 8.2 as

(8.8)

i s y 1.672

o Nl—l;nool NO) — [0“ = [0.63 ]
s y 0.355

eCohny Z\lll-rvnm{SN(y) - [0]} = [-—0.63 ] .

(iii) The method of averaging using Cesaro sums greatly improves convergence
and reduces the magnitude of the undershoot and overshoot. Figures 8.1-8.7
do not appear to indicate that Gibbs oscillations are entirely suppressed by averag-
ing. In fact, Figure 8.7 suggests there is a limiting Gibbs oscillation in the re-
presentation of 0 by the averaged sum C/S‘Nz(y) with an undershoot and overshoot
of about —0.10 to +0.18.

(8.9
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Table 8.1. Partial sum Sy(y) and Cesaro sum CSy,(y) for the step function vector (8.4)
after N = 10,000 terms for 0.9995 < y < 1. The overshoot and undershoot are italicized.

y Snvi(») CSmi»)
0.99950 1.04045 0.87837
0.99955 0.36195 0.90694
0.99960 0.94973 0.94998
0.99965 1.64035 0.88945
0.99970 1.06635 0.79629
0.99974 0.43355 0.80744
0.99975 0.35478 0.82847
0.99976 0.37128 0.85340
0.99980 0.90273 0.90287
0.99985 1.66000 0.75394
0.99986 1.66561 0.67058
0.99987 1.57779 0.57468
0.99990 1.17904 0.36838
0.99995 0.23612 0.06212
0.99999 0.00394 0.00089
1.00000 0.00000 0.00000

Table 8.2. Partial sum .§N1( y) and Cesaro sum C"?S‘Nl( y) for the ramp function vector (8.5)
after N = 10,000 terms for 0.9995 < y < 1. The overshoot and undershoot are italicized.

y Sy agm()’)
0.99950 ©1.04042 0.87794
0.99955 0.36152 0.90653
0.99960 0.94896 0.94965
0.99965 1.63998 0.88921
0.99970 1.06632 0.79605
0.99974 0.41037 0.81092
0.99975 0.35456 0.82826
0.99976 0.35997 0.84810
0.99980 0.90233 0.90272
0.99985 1.65981 0.75388
0.99986 1.67198 0.68836
0.99987 1.62356 0.61417
0.99990 1.17901 0.36870
0.99995 0.23622 0.06220
1.00000 0.00000 0.00000
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Fig. 8.1. Partial sum Sy,(y) and Cesaro sum CSni(») for the first component of the unit
step function vector (8.4) after N = 20 terms for 0 < y < 1.

No. terms = 200.0
20

Suly)
\\\\

s

Sl y]/

0
0.97

100

fig. 82. N= 200, 9.97 =y = 1. The magnitude of the overshoot and undershoot
is nearly at their limiting N — oo value. As N is increased, the position of these extreme

values tends to y = 1 (¢f. Fig. 8.3, Table 8.1).
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No. terms =1000.0
20

Sy

CSu; (}’)/4

D0.995 1000

i hoot are much closer
Fig. 8.3. N = 1000, 0.995 =y = 1. The under_shoot and‘overs
to their limiting position y — 1 as N — o= (¢f. Fig. 8.2). Ttus graph should also be com-
pared with the value for N = 10,000 given in Table 8.1.

No. terms =200
20

§m(y)

CSuly)

UO 1.0

Fig. 8.4. Partial sum .§N1(y) and Cesaro sum C/S‘N,(y) for the first cosmponent of the
ramp function vector (8.5) after N = 20 terms for0<y=1l
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No. terms =1000.0
20
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Egm V2]

0
0.96 120

Fig. 8.5. Partial sum S‘m(y) and Cesaro sum C§N1(y) for the first component of the
ramp function vector (8.5) after N = 1000 terms for 0.96 < y=1.

! 1000 terms
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Fig. 8.6. Partial sum Sy,(») and Cesaro sum CSn,(p) for the second component of the
step function vector (8.4) after N = 1000 terms for 0.994 < y=1.
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i 1000 terms
§yz(y}»
Bl \
0 0994
.39 1.00

-

Fig. 8.7. Partial sum S‘Nz(y) and Cesaro sum (_/'\Sm(y) for the second component of the
ramp function vector (8.5) after N = 1000 terms for 0.994 <y < 1.

9. “‘Super’’® Gibbs Phenomenon; the Divergence of Partial Sums
and the Convergence of Cesaro Sums at an Interior Point
of Discontinuity

Fourier series converge to the mean value of a function at an interior point
of discontinuity and have Gibbs oscillations near these points. For Fourier
series, end point discontinuities and interior point discontinuities are much the
same; for example, the method of averaging with Cesaro sums wipes out the Gibbs
oscillations at an interior point of discontinuity.

The aforementioned properties of Fourier series do not hold for biorthogonal
series. We shall show that biorthogonal series can diverge everywhere when f(y)-
(f’(»)¢ BY) has an interior point of discontinuity. The example used in the ge-
monstration is fairly typical and it is probable that the partial sums representing
discontinuous functions are usually divergent. For the same example, we give
numerical results which show that the Cesaro sums converge, with Gibbs oscillations
near the points of discontinuity. It seems to us that the convergence of the Cesaro
sums of divergent partial sums of an eigenfunction expansion is an extraordinarily
interesting point of analysis.

The divergence of partial sums at an interior point of discontinuity interests
us all the more because two of us claimed to have proved convergence under
case 2 of theorem (iii) of the paper by JosEPH & STURGES (1978). A flaw in the
proof of case 2 was discovered by R. D. GREGORY (1980 A, p. 74) and by D. S-PENCE
(1980). In the proof a mean value called 7 is assumed to be constant, but it may
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oscillate with n. GREGORY exhibited a continuous data vector

y—%, 0=y,

0
-1 1= [ g(y)z{—%—y, (—-1=y=0)

which has discontinuous first derivative at y = 0. The series for f(y) can be
split into two series formed by summing over the eigenvalues in the first and
fourth quadrants. These two series both diverge, although their real parts do
converge. GREGORY requires that the two series mentioned above should converge
separately, so the series for f(y) diverges in GREGORY’S sense but converges in the
sense used here.

With these preliminary remarks aside, we turn now to our example:

©02) | s =["V] =5,

93 f) =

We first show that the partial sums
N

Sy = Z Cn¢(1")(,V),

—N

1
(9.4) €= < PpMAf >
ky

_ sin (5,/2)  cos (s,/2) sin s, sin (s5,/2)
T 2s,cos*s, 4cosds, 2cos*s,

do not converge to f(y), but diverge. .

The asymptotic (large n) forms of the eigenvalues s, and the eigenfunctions
¢™(») were used by JosepH (1977) and by JosEpH & STURGES (1978, see lemma 1)
to prove that biorthogonal series for data in BV, with end point discontinuities,

1
nz)' When n is large

() = O(TI2) and ¢, = O(n™), & = é—(l —lyD). It follows that, if

converge conditionally and not uniformly when ¢, = O(

9.5) Q=00 pg>-—1,

the series on the right of (9.4) diverges for all y. By use of the same asymptotic .
estimates it is easy to show that the first term on the right of (9.4), is O(n~%%) and
the second two terms are O(n~%). Hence, the ¢, given by (9.4), are O(n~>*) and
the series on the right of (9.4) diverges.
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Table 9.1. Divergence of partial sums (9.4) and convergence to f(») =1 at y = 0.2

of the Cesaro sums (9.6) with increasing N.

N Sy1(0.2) CSp(0.2)
10 0.90571 1.02743
1 0.69855 0.99753
12 1.09884 1.00597
13 0.74885 0.98619
14 1.07343 0.99242
15 1.49948 1.02623
16 0.82760 1.01381
17 0.95436 1.01032
18 1.02069 1.01089
19 0.48700 0.98332
1001 2.13748 1.00047
1002 0.03474 0.99951
1003 2.20128 1.00070
1004 0.66499 1.00037
1005 —0.88771 0.99850
1006 2.17302 0.99966
1007 0.96034 0.99962
1008 0.60859 0.99924
1009 2.90860 1.00113
5001 2.77057 1.00221
5002 —0.91526 1.00183
5003 3.10129 1.00225
5004 0.60339 1.00217
5005 —2.06240 1.00156
5006 3.14847 1.00199
5007 0.79857 1.00195
5008 0.06361 1.00176
5009 4.19523 1.00240
5010 —0.58266 1.00208
9090 —0.92886 1.00730
9091 —1.08558 1.00707
9092 3.45654 1.00734
9093 —1.58162 1.00706
9094 1.42031 1.00710
9095 4.68762 1.00751
9096 —1.70468 1.00721
9097 1.30874 1.00724
9098 2.25757 1.00738
9099 —2.87300 1.00695
9100 2.93368 1.00716
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Now consider the behavior of the Cesaro sums

1 N
(9.6) CSywi(y) = WMASI Sun(»)-

Numerical calculations of the partial sums Sy(y) given by (9.4) and of the aver-
aged sums given by (9.6) are displayed in Table 9.1 and Figures 9.1-9.4. Of course,
these results show that the Sy,(y) diverge. On the other hand, they show that the
CSy(v) converge with apparently small Gibbs oscillations near the point y = 1/2
of discontinuity.

20

Suly)

MMMM \ MM

10 : ! I :
0 05 10

Fig. 9.1. Graphs of f(y) given by (9.3), the partial sums Sy(») given by (9.4) and the
Cesaro sums CSy(y) given by (9.6) for N =100,0 <y < 1.

100 terms
0

Suly)
CSyiy)

-10 {

04 0.5 05

Fig. 9.2. Graphs of f(y) given by (9.3), the partial sums Sy(») given by (9.4) and the
Cesaro sums CSy(») given by (9.6) for N = 100, 0.44 < y < 0.56.
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Fig. 9.3. Graphs of f() given by (9.3), the partial sums Sy,(») given by (9.4) and the
Cesaro sums CSy(y) given by (9.6) for N = 200, 0.47 < y =< 0.53.

1000 terms
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Fig. 9.4. Graphs of f(») given by (9.3), the partial sums Sy(y) given by (9.4) and the
Cesaro sums CSy(») given by (9.6) for N = 1000, 0.494 < y < 0.506.
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