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A broad discursive review of bifurcation theory in fluid mechanics is given. The
review delineates the assumptions, methods and potential for application of bifur-

cation theory.

The problem of sequential bifurcation of flows into other flows and

finally into turbulence is considered and interpreted in terms of bifurcation theory:
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This lecture is a review of the applica-
tions of the theory of bifurcation to the pro-
blem of transition to turbulence. Most of the
material in this lecture can be found in detail
in my recent review [15], in other reviews in
the same volume and in the monographs [16]. We
shall discuss some new results having to do
with frequency-locked solutions and bifurcation
into higher dimensional tori in the transition
to turbulence which were not discussed in [15]
and [16]. Some of these results are derived in
the new book on bifurcation theory by Iooss and
Joseph [13]. To keep the lecture and this
written report of it discursive, I am not going
to do much citing and attributing of old
results; more complete citations for the older
work can be found in [15] and [16].

One traditional method of treating problems
of stability in fluid mechanics is called non-
linear stability theory. It involves explicit
analysis of basic flows whose structure can be
represented by explicit formulas. The goal of
nonlinear stability theory is explicit calcu-
lation of details of the motion arising from
instability. Bifurcation theory has a differ-
ent goal and uses different methods to reach
this goal. 1In bifurcation theory we classify
the possibilities qualitatively. Explicit
details of some basic flow are not required;
instead we make assumptions about the eigen-
values of the linearized stability problem and
classify the qualitative properties which can
occur under each assumption. For example, we
may discuss the problem of periodic solutions
which arise from steady ones, or of quasi-
periodic ones which arise from periodic ones
under the assumption that the critical eigen-
value is simple.

The method of nonlinear stability theory
cannot be used in most problems because it is
usually not possible to give formulas for most
of the flows we want to study.

Bifurcation theory has more generality but,
in most applications, like nonlinear stability
theory, it is limited to small amplitude
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Recent results, which I will discuss,
suggest that hydrodynamical problems can be
studied, without restricting the amplitude, by
projections, using Galerkin approximations,
into finite dimensions. The sets of ordinary
differential which arise from these projections
can then be treated by numerical methods.

II. UNIQUENESS AND GLOBAL ATTRACTIVITY AT
SMALL R

I will confine my remarks to a discussion
of the bifurcation of solutions of the Navier-
Stokes equations for an incompressible fluid
when the velocity Vg(x,t) of the boundary B of
the regionf) occupied by the fluid is pre-
scribed together with field forces G(x,t):
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21+ G(x,t),

divv=20, ) X e z,
V= Vplx,t) , x €8

We call the prescribed values Vg(x,t) and
G(x,t), the data. R is the Reynolds number, a
dimensionless parameter composed of the product
of a velocity times a length divided by the
kinematic viscosity. We can think of it as a
dimensionless speed.

The motion of the fluid must ultimately be
determined by the data. When the Reynolds
number is small the motion is uniquely deter-
mined by the data. The meaning of this is as
follows: given an initial condition

1.2) Y@ =Vx0 ,x¢49)

we may suppose that the initial-boundary-value
problem (1.1) and (1.2) have a unique solution.
When R is small, each of these different solu-
tions belonging to different Vg, tend to a
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ingle one determined ultimately by G and Vg
and not by Yy o when R is small we ultimately
get solutions which reproduce the symmetries
of the data. Steady data gives rise to steady
solutions, periodic data to periodic solutionms.

When R is large solutions are not uniquely
determined by the data. The relation between
the data and solutions is subtle and elusive.

IiI. BIFURCATION OF STEADY SOLUTIONS

Let us consider what happens when the data
is steady as we increase the Reynolds number.
For technical reasons we suppose now and here-
after thatﬂb is a bounded domain, or it can be
made bounded by !devices such as restricting
solutions to Bpatially periodic ones which can
be confined to a period cell. We suppose U(R)
is a steady solution which is the continuation
of the unique steady solution which exists when
R is small. When the equation satisfied by this
solution is subtracted from Navier-Stokes equa-
tion, we get equations for the disturbance u of
U(R) which has zero data and nonzero initial
conditions

u ey g v 4+ L2
et U Vu+tuW+uVu=-Vp+pVu
(1.3) divu =0 in)

u=0,x€B
(1.4) u(x,0) 40, x €%

If the null solution u = 0 of (1.3) is stable,
then U(R) is stable. It is stable when R is
small. We want to catalogue what can happen
when u = 0 loses stability as R is increased.

For simplicity we first write (1.3) as an
evolution equation in some space, say a Banach
space

du
a.s) o =ERw , ER,0) =

It does no harm to think of (1.5) as a system of
ordinary differential equations inf@RR.

To study the stability of u = 0 we linear-

ize (1.5) and introduce exponential solutions in
order to derive the associated spectral problem:

d—V-F(R|_>

=E® +in® € IF R,

where LF, means the spectrum of F,. If 0 is in
the spectrum so is . When 1is a bounded
domain the spectrum of F;, is all of eigenvalues
and when R is small all of the eigenvalues are
bounded by a parabola on the left hand side of
the complex ¢ plane. As R is increased past
its first critical value some eigenvalues cross
into the right side of the complex 0 plane. In
the usual case a single eigenvalue or a complex
conjugate pair of eigenvalues cross over.

We state the foregoing conditions, which
are sufficient for bifurcation, in a precise
mathematical sense as follows. R = R, is the
first critical value of R such that E(R) < 0
for all eigenvalues belonging to Eu(R[-) when
R < R, E(R ) =0, 0(Ry) = duwg (where wg =
n(Re) is an algebraically simple eigenvalue of
Fy (R I ) and the loss of stability of u=20at
Rc is strict; that is,

E'(Rc) >0.

Given the assumptions made in the last
paragraph there are two possibilities:

(1) wy = 0 and one real eigenvalue crosses
at critically. A steady solution which breaks

RO - P

the spatial symmetry of the data, bifurcates.

It is usually enough to consider three
possible types of bifurcation into steady
solutions (see Figure 1). Transcritical bifur-
cation occurs when the projection of the quad-
ratic part of the nonlinear terms into the null
space of Fu(Rcl') is nonvanishing. When this
projection does vanish, hifurcation is con-
trolled by cubic terms. When these terms do
not vanish, -here are two possibilities: bifur-
cation to the right (supercritical) and bifur-
cation to the left (suberitical). Solutions
which bifurcate supercritically are stable;
subcritical solutions are unstable.

(II) A complex pair crosses. The
quadratic projection vanishes automatically and
we never get the transcritical case

R(E) = R(_e) »

w(e) = w(-€),

du

E? = F(u,R), study the stability of u = 0,
dv _ l _ ot _ (R, )
d——-F(Rv),x—e z, —F“ 7).
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For the complete story we need global results.
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A real simple eigenvalue passes tlirough zero

as R is increased past R.. A one parameter

( —amplitude) family of steady solutions bifur-
cate .

£ /3/
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For example even

in one dimension we can get isolated solutions like F2 = 0 and F3 =D in Figure 1.
8 (6 RF, (u,R)F, (u,R)
dt 1R M RIE SR A u
Fl(u,R)=0
u=20
e ——— _—- e e w - - steady solution
F,(u,R)=0 R
Neoo?F, (u,R)=0
~.;__.-.. 2
~
Figure 1. Bifurcation of steady solutions. Dotted lines are unstable

As R is increased, new steady solutioms,
with different patterns of symmetry may bifur-—
cate. After some number of these steady bifur-
cations a periodic solution will typically
bifurcate.

IV. FLOQUIT THEORY AND THE STABILITY OF
PERIODIC SOLUTIONS

Now we ask what happens when a periodic
solution bifurcates. There are, in general,
two possibilities: another periodic solution
with a longer period may bifurcate, or a doubly
periodic solution with two frequencies may
bifurcate. For simplicity, suppose that we
have a periodic solution with velocity
u(t,R) = u(t+T;R), periodic with fixed period
T. Typically such solutions arise from forced
T-periodic data. In bifurcation problems the

period T = T(R) changes with R. We suppose T
is independent of R at the expense of some fine
points, but-the qualitative results are nearly
the same. A small disturbance v of V satisfies
the linearized equation

v

5 = F,Rut,R) v

which can be studied by the method of Floquet.
We may represent v(t) solving the linearized
equations as

v = EO(R)t

Z(R,t), L(R,t) = L(R,t+T)

where O(R) = E(R) + 1R(R), the Floquet expo-
nent, and {(R,t) are eigenvalues and eigen-
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vector of the operator
J- -——+1= (R,u(t,R)| )

whose domain is of T-periodic functions and
Jz = of. For each and every ¢ in the spectrum
of Jthere is a Floquet multiplier

A®,T) = S RT

If R < Ry, where Rp is the critical R for which
E(R ) = 0 for some exponent G, then, E(R) <0
for 0 and

AR,nT) = eG(R)nT <

and, in fact tends to zero as n + «, This is
the stable case. At criticality R = Ry and we
assume that £'(Rg) > 0 for the eigenvalue for
which £(Rg) = 0. This gives rise to the
situation exhibited in Fig. 2 in which a pair
of multipliers

Ao = e + iQ4T

escapes from the unit disk

iQ T
A plane A0 h 0
Ep = 0
'
£ 0
>‘0 0

Figure 2: A conjugate pair of multipliers
escapes from the Floquet circle at criticality
[INSTABILITY]

V. BIFURCATION OF PERIODIC SOLUTIONS

Now we see what bifurcates; that is, we
classify all the possibilities for bifurcation
in the simple eigenvalue situation depicted in
Figure 2. The classification is parameterized

by the points on the Floquet circle at which
the conjugate multipliers escape. All points
on circle

)‘0 _ eiﬂoT

are given in terms of

r =

the frequency ratio at criticality. At
criticality solutions of the bifurcation
problem are in the form

~

!O(tl;tz)

~ 21
= XO(QOt’iT t)

where 74(t) = Lg(t+T) and 2y = 27mr/T.

[4)) 4] 0
_0(t1,t2) is doubly periedic, periodic with
period 2m, jointly in t; and tj;.

(1) QD(tl,tz) is quasi-periodic if r,
0 <r <1, is irrational.

(11) io(tl,tz) is nT-periodic if
r=m/n <1, 0 <m/n <1, is rational.

These properties (I) and (II) are not
preserved when the linear problem is perturbed
with the nonlinear terms. We construct an
asymptotic (at least) approximation

v@EeAE Y,

doubly periodic with period 27 in each place,
with a smooth 2(g€) which bifurcates for each
fixed r, 0 < r < 1, even for r = m/n, provided
only that n # 1, 2, 3, 4. At these special
rational values we get subharmonic, nT periodic
solutions with §2(g) = 2mmt/nT, independent of
€. We call the points n = 1, 2, 3, 4 where
subharmonic solutions bifurcate, points of
strong resonance. The T-periodic bifurcating
solution (n=1) is transcritical; it bifurcates
on both sides of criticality. The 2T-periodic
solution (n = 2) bifurcates either entirely to
one side or to the other. And in both cases
supercritical bifurcating solutions (R > RO)
are stable and subcritical solutions (R < RO)
are unstable. The 3T-periodic solution is
transcritical and it is unstable on both sides
of criticality. Two 4T-periodic bifurcate (if
a certain inequality holds) and if the two
bifurcate supercritically, one of the two is
unstable.

S0 Frequency
= —— <r«<
re o 0sr ratio at
criticality
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Figure 3: Classification of points on the
Floquet circle. The Floquet circle at criti-
cality is given by X, = e2Tir, (I) r is
irrational, (II) r = m/n < 1 is rational

AR = eZﬂim = 1.

0

Some elementary methods of analysis of

bifurcation of periodic solutions are given in
[13]. To get such results one may use an exten-
sion of the "method of averaging' to reduce the
T-periodic problem to an autonomous one. First
we decompose the bifurcating solution into a
part spanning the null space ofJJ-0 and the
other part w(R,t):

u(R,t) = z(R,t)Z(R,t) + z(R,t)T(R,t) + wW(R,t)

where L (R,t) = [(R,t+T) is the eigenfunction of
Jwith eigenvalue

g = iQO + po(u), v =R - RO .

Then we do may changes of variables which shove
W into higher order terms. The main action is
in the projection described by the equations
governing z(R,t), rather y(R,t) where y is
introduced by a change of variables in the form

N
z=y+1 2P (c,0).
ptq>2

The truncation number N is completely arbitrary,
it may be as large as one likes. It is neces-
sary, however, to retain higher order terms
because we haven't proved convergence and don't
yet know if and when these expressions converge.
In the expressions below we suppress the higher
order terms of 0(]y|¥t1), but they are under-
stood. If the frequency ratio r at criticality
is irrational we get an autonomous equation

- ~ 2
y=uwmy+ I yly qaq .
@1

If the frequency ratio r = m/n = Q4/(27/T) is
rational, and n > 5 we put

ifnt
= xel 0

and find another autonomous equation

b
]

ua(u) + I x|x|2qaq +
1

T b |x]2q(x1+kna Kt =1, 2
K0 20 q a4,

po (W)x + x|x|2a1 + x|x|432

—n-1

+ X + ...

ao,-l

VI. THE BIFURCATING TORUS AND QUASIPERIODIC
SOLUTIONS

We may deduce the following conclusions
from these autonomous equations.

(1) The cross-section of the two dimen-
sional torus is a closed curve p(8,c) in the
(p,8) plane of mean radius

yail

L | 0e,e)d0 .

€ = EF

(2) If r is irrational, then

p(6,e) = € is a circle

and
u(e) = uzez + u464 + ...
(3) If r = m/n, then u(E) is as above and
p=e+ e )+ (0 + ...
where

o 2m
02(6) = 02(6 + }T) , [Opn(e)de =0 .

In this case the torus is an n lobed figure of
mean radius € (Fig. 4).
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(4) Steady solutions x correspond to nT-

_ periodic u(t,R). If n > 5, exceptional condi-
tions are needed to realize steady solutions.

If the exceptional conditions are realized,
there are two steady solutions on the torus, one
of which is unstable (Fig. 4).

(5) Periodic solutions x(s) = x(s + 2m),
s = £2Q(e2)t correspond to doubly periodic
solutions g(téR) with a smooth (in €) frequency

A

Q(e2))/ (2m/T).

ratio (90 + £

Figure 4: The cross-section of the torus in the
case n = 5. If the ratio a;/0y of complex
numbers is real (an exceptional condition), the
"trajectories" on the torus are two sets of five
fixed points, one of which is unstable.

VII. THE CONJECTURES OF LANDAU AND HOPF

After having established conditions under

which we get bifurcation into an invariant two

- dimensional torus with two frequencies, it is
natural to inquire about the conditions under
which solutions with three frequencies bifurcate
from those with two. Indeed Landau [18] and
Hopf [12] conjectured that turbulence arises
through such a sequence of bifurcations with
new frequencies introduced at each point of
bifurcation as the Reynolds number is increased.
In their view turbulence is multi-periodic flow
with a finite number of discrete frequencies

_varying continuously with amplitude. In the
end, as R tends to infinity, the number of
frequencies could tend to infinity leading then
to "almost periodic" turbulence. Exact mathe-
matical conditions which suffice to guarantee
the bifurcation from an n-dimensional to an n+l
dimensional torus have given by Chenciner and
Iooss [2], Haken [10] and Sell [27]. These
conditions are not inevitably realized in fluid
motions, though three frequencies have been
observed in convection [8] and four frequencies
with some noise in the flow between rotating
spheres ([31].

VIII. BIFURCATION INTO NONPERIODIC (STRANGE)
ATTRACTIONS

The point against turbulence as almost
periodic is that unlike true turbulence almost
periodic "turbulence" is not phase mixing. That
if u(t) is a fluctuation with mean value zero

JOSEPH

and is almost periodic, then

& -id t
u(t) ~ L ue T, A #0.
- -t n

-0

The autocorrelation for this is

T
g(1) = lim %f u(t + Dult)de
Te - Jg
@ -ix T
=2 Ju lze n
o -1

and g(T) does not vanish for solutions of the
Landau~Hopf type, as it must for true turbu-~
lence. In true turbulence events at distant
times are presumably uncorrelated. In some
experiments [20] a noisy part of spectrum
coexists with a peaked part. In these cases
the autocorrelation function will decay as the
noisy part of power spectrum grows larger, but
it will not decay to zero.

Lorenz [21] and Ruelle-Takens [25]
suggested that turbulence could occur after a
finite number of bifurcations. This picture
is in much better agreement with experiments.

IX. POWER SPECTRA AND TRANSITION TO TURBULENCE

To detect the dynamical events leading to
turbulence experimenters use power spectra.
These are obtained from Fourier transforms of
measured data. Usually the data is the time
sequence of some component of the velocity.
The use of power spectra in experiments on
turbulence has a long history. But power
spectra were not used to detect bifurcation
events leading to turbulence until the impor-
tant work of Swinney and Gollub [5]. In the
short time since the appearance of their paper,
the method of power spectra analysis of bifur-
cation has become standard. The way which
power spectra can be used to reveal the quali-
tative structure of observed flows can be
partly understood by studying Fig. 5.

By turbulent flow I mean a flow (in the
ordinary sense of fluid mechanics and also 'in
the more general sense of trajectories for an
arbitrary dynamical system) which has the
following properties.

(1) It is sensitive to initial conditionms.
Two turbulent flows with nearly equal initial
conditions will undergo different time
evolutions. No two realizations of turbulence
are exactly the same, even if they have some
common average value. This sensitivity to
initial conditions is in sharp contrast to
laminar flow at low Reynolds numbers where all
initial conditions are attracted by one flow.

(2) It has a continuous spectrum. We
sometimes say such a spectrum is "moisy" and
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Small box of fluid Flow between rotating cylinders and spheres
heated below ’

In some experiments [1], [5], [7), [8], [9], [22], [29], [31] a component of the velocity at a point
is monitored. Then power spectra is obtained from Fourier analysis of the time series.

Power (a) Periodic solution with one sharp frequency plus
harmonics

\ ‘ 1 Frequency

(b) Doubly periodic solution in which all the sharp
spectral lines are of the form mw + nf2, where m
and n are positive integers

mo + nf

.\‘lh‘l'\‘.

8w (c) Continuous spectra. In such flows the autocorrelation
decays to zero .

(d) Continuous spectra with sharp spectral lines. The
autocorrelation decays but not to zero

\

Figure 5: Power spectra associated with different kinds of flow. Flows with continuous spectra, even
in the presence of sharp peaks are turbulent. The four types of spectra exhibited can be found in
experiments on convection and Couette flow between cylinders and spheres and in other experiments.
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mean dynamical rather than accidental or back-
ground noise.

(3) It is "mixing"; that is, it has a
decaying autocorrelation g(T). In the absence
~F ahawvn ocrnantwal Fasriiraos ofT)Y o N amd e
Gi Snarp Specirai icatireés gy i,/ 7 v, ana twd

velocity fluctuations which occur a long time
from one another are uncorrelated.

X. MANY ROUTES TO TURBULENCE

There are bifurcations which frequently
occur before the transition to turbulence.
Bifurcation into periodic solutions followed

by bifurcation of doublvy neriodic solutions

by bifurcation of doubly pericdic secluticns
with two continuously varying frequencies is
often observed in experiments. Bifurcation of
T periodic solutions into NT periodic ones with
= 2 and 4 is sometimes observed and bifurca-
tion into a three frequency solution has been
observed in one experiment [9]. All persons in
fluid mechanics have some awareness of the sud-

“A
\.
4 ‘\“--____;~—_..

den direct transition to turbulence from steady
shear flow in pipes, boundary layers and the
Couette flow problem when the outer cylinder
rotates. Heikes and Busse [11] have given a
theory and reported an experiment on rotating
layers of fluids undergoing convection which
give yet another type of chaotic behavior
called weak turbulence. A few detaiis of some
typical experiments exhibiting different
sequences of bifurcations into turbulence are
given below.

Yavorskaya, Beleyaev, Monakov and
Scherbakov [20] have carried out bifurcation

exneriments for the »nroblem of flow hetween
experiments ICY neé preocaem OL T.i0W Delween

rotating spheres when the inner sphere rotates
and the gap is wide. 1In Figure 6 I have
sketched the frequency versus Reynolds number
graph given as Figure 1 of the paper. They get
their results by monitoring the fluctuating
velocity at a point and they also measure the
autocorrelation function.

S ——
2t — %2
,_wzll&
Lt [\ [} —F::’ 1 4{>,
400 895 1201 R
Figure 6: The flow between spheres is periodic when there is one frequency at a given R. The
solution is doubly periodic when there are two frequencies present. Just before R = 895 where
the autocorrelation function starts to decay there is. 4(2m/wp) subharmonic solution. The first

decay of the autocorrelation never does decay fully because the sharp spectral component coexists

with dynamic noise for the range of R considered.

Gollub and Benson [9] and Maurer and
Libchaber [22] have done many experiments on
bifurcation of convection in box of fluid
heated from below. In the French experiments
with liquid helium a first frequency w, assoc-
iated with oscillating rolls appears for a
Rayleigh number around 2 x 104, then at about
2.7 x 107 a second frequency uw,, much smaller

is observed, two frequency locking regimes are
" observed, with hysteresis, for frequency ratios
wy/wy = 6 5 and wl/m = 7. The transition to
turbulence in the experiments of Libchaber and
Maurer [19] is triggered by the generation of
frequencies wy/2, wy/4, wy/8, wy/16 > turbu-
lence. A mathematical model for repeated 2T-
periodic bifurcation into turbulence has been
discussed by Tomita and Kai [28] and Ito [14].
A general theory of repeated 2T-periodic bifur-
cations of one-dimensional maps has recently
been given by M. Feigenbaum [4]. His results
seem to apply to mathematical models involving

differential equations like those of Tomita and
Kai [28] and to the equations of Lorenz [20].
Some features of Feigenbaum's predictions have
been observed in the experiment of Gollub,
Benson and Steinman [7].

The number of possible routes to turbulence
is large and the possible routes cannot now be
classified. The sequences of dynamic bifurca-
tions which lead to turbulence are different
when the spatial organization of flow is diff-
erent. Since nonunique solutions are typical
in hydrodynamics the number of possible
sequences may be at least as great as the
number of spatially distinct motions at a given
Reynolds number.

People in fluid mechanics believe that
flows are always turbulent when R is large
enough. This type of property is not true for
simple dynamical systems like those governed by
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the equations of Lorenz. In these equations a
turbulent attractor can degenerate into a limit
* cycle as R is increased. More typically one
observes a noisy spectrum with sharp peaks
which can be matched to one, two or three
frequencies [31], [29), [20].

XI. FINITE DIMENSIONAL (GALERKIN) APPROXIMATION

T
THE EQUATIONS WHICH GOVERN TURBULENCE

In our book [13], Iooss and I studieg the
problems which could be projected into<. That
is, we confined our attention to cases in which
at most conjugate eigenvalues pass through crit-
icality. Even for this case there are many
possible types of bifurcation ranging from
steady symmetry bifurcation to two dimensional
bifurcating tori containing asymptotically
quasiperiodic solutions and frequency locked
solutions. In three dimensions, even apparently
benign systems of three nonlinear ordinary
differential equations, like the Lorenz
equations [21], give rise to very complicated
dynamics with turbulent-like attracting sets
which defy description in simple terms. It is
fairly obvious that the uniqueness of solutionms,
which prevents transverse intersections of
trajectories 1nR has much less force 1n&3
where attracting sets of fractal dimension smal-
ler than R3 can be quite complicated.

The problems which are encountered in
dimensions higher than two, when we have
turbulent attracting sets, are evidently not so
easily treated by analytical methods which work
well in problems which can be projected into two
dimensions. For these problems various methods
of topological dynamics are of theoretical
interest. From a practical point of view, many
problems of interest can be studied by Galerkin
methods. The method is to expand the spatial
structure in a complete set of functions with
time dependent coefficients aj(t), truncate the
set at a finite number N, and solve the initial
value problem for the coefficients aj(t) inRN.
This method sometimes leads to very good results
with even astonishing agreements with observed
bifurcations. Such agreements may be found in
the comparison of the 14 node truncation of
Curry [3] with the observations of convection
by Gollub and Benson {8] or the comparison of
truncated models for Taylor flow [30] with
experiments by Swinney, et al. [53].

It is necessary to caution the reader that
agreement between a finite dimensional approxi-
mation 1nl§ with experiments does not imply
that the approximations are valid. In the case
of the higher dimensional Lorenz equations the
good agreement between experiments and the
N = 14 mode model of [3] disappears as N is
increased. Approximations should not change by
much when N is increased past a certain value.
This type of consideration suggests two
questions: (1) Can finite dimensional approxi-
mations model infinite dimensional problems?
(2) 1If it is possible to have finite dimen-

sional approximations, what is the dependence
of the truncation number N(R) on R?

In an important paper on issues raised in
the last paragraph, 0. A. Ladyzhenskaya [17]
has established that for the two dimensional
Navier Stokes equations, with prescribed forces
and zero data on the boundary of a bounded

domain there is a compact set in an appropriate
space on which the Navier Stokes equations form
a dynamical system. The given set includes all
limiting (t - ®) requires. Moreover, there is
a certain sense in which this compact set is
finite dimensional. For example, Ladyzhenskaya
proves that if the solution of the finite dim-
ensional is almost periodic then so is the
solution of the full problem. In general, the
dimension N of the finite dimensional subspace
on which the problem may be faithfully project-
ed is an increasing function of Reynolds
number. Results of this same general nature,
going further in some directions and less far
in others have been given by Ruelle [26] using
results of Mallet-Paret [23] and Foias-Temam

[6] .

Even if it is possible to state with
certainty that the hydrodynamic problem can be
modeled by ODE's in®N there is mo reason to
expect that a small N will suffice in all prob-
lems. As an example, we can follow Orzag and
Kell [29] and consider flow induced by a
pressure drop AP down a plane channel. When AP
is small the flow is laminar, and the velocity
is unidirectional and varies across the cross-
section like a parabola. At larger pressure
drops there are alternate patches of laminar
and turbulent flow, at still larger AP the
flow is turbulent throughout. The bifurcation
diagram of Figure 7 is for an idealized two-
dimensional problem in which disturbances are
assumed to be spatially periodic. The bifur-
cation is subcritical. On general theoretical
grounds we expect the bifurcation diagram to
recover stability when the amplitude is large
(see "Factorization theorems" in [16]). 1In
fact Orszag and Kell [24] calculate a curve
like shown in Figure 7. They integrate the
initial-value problem inmN by brute force,
using interesting Galerkin methods. They show
that the large amplitude branch, which is stable
for two dimensional disturbances,is unstable to
three dimensional disturbances. Their numer-
ical results are in agreement with experimental
observations but they require N = 33792.
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E V This stable branch is
unstable to three dimensional
disturbance

Mass flux
?iﬁisi:ass subcritical bifurcation
laminar \ in periodic flow
flow - \\
\\
N

.
AP

Figure 7: Direct bifurcation into turbulence in Poiseuille flow. The diagram is for
the two dimensional problem.
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