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Introduction

In this paper we model the Stokes flow in a long driven sector, using
finite differences and a biorthogonal series expansion to compare the
results. The problem is chosen from a modified Couette flow including
a sector cavity [1]. Our aim is to examine closely the results of the
approximate finite difference solution and to advertise the biortho-
gonal series for solving biharmonic boundary-value problems in do-
mains where separation of variables is possible (a very common
problem in fluid mechanics and elasticity). The analytic method is
elucidated in {2, 3]. New aspects concerning the computation are
developed here.

Mathematical Formulation
The slow motion of a Newtonian liquid, neglecting gravity (Stokes
flow) for two-dimensional flow is described by

Vi¥ =0 (1)

where ¥ is the stream function and V2 is the Laplacian operator.
Using polar coordinates (r, ¢, 2),

2
wolof2), 12
ror\ or] r2dp?

and the velocity v = rot (¥e,). In our model there shall be viscous
nonslip at the solid walls ¢ = £8 and r = r¢. At the outer radius r =
r1 = 1 we prescribe the vorticity @ = 1 — sin? (7¢/28), where Q =
~V2¥, and no flow through the surface shall be possible (Fig. 1). For
our comparison we chose r¢ = 0.05 and 28 = 10°.
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Stokes Flow in a Driven Sector hy
Two Different Methods

A biorthogonal series expansion and a numerical finite-difference approximation are ap.
plied to the problem of steady Stokes flow in a driven sector of 10° total angle, provid;,
mutual support of the theoretical techniques: For this problem the method of biorthogn_
nal series is faster, cheaper, and more accurate.

Fig. 1 The biharmonic sector problem

The Series Solution
The theory of biorthogonal series for biharmonic functions as de-
scribed in [2, 3] allows us to write the solution of (1) in the form
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Table1 The first five eigenvalues (note that A_, = X,
where overbar denotes complex conjugate)

n n

1 25.14114414 + 12.86408537i
2 62.38088865 + 17.74998684i
3 98.82482881 + 20.31681729;
4 135.06392018 + 22.08005326:
5 171.21595479 + 23.42596613i

¢l(nl (¢.)
Arl(xn - 2)
where ¢1(™ (¢) = cos (A, — 2)8 cos A — co8 Anf cos (A, — 2)¢, the
A are roots of sin [28(A; — 1)} + (A, — 1) sin 28 = 0 (see Table 1) and
Co = Dy = 0. The boundary conditions at ¢ = +£ are already satisfied,

30 that the constants C,, and D,, will have to match the conditions at
the inner and outer radius.

We introduce the biorthogonal sequence ¢*), $(}, where

2)

¥ = i Carin + D,,r"‘"“)

¢t = (¢1‘"’, ¢2(")) with ¢2(") = 6, () An(An — 2),

corresponding adjoint Y ) with
(An - 2)

An
= T cos (Ap — 2)B cos A — N —2
- €08 Anf8 cos (A — 2)¢g; Y2 (™) = ¢ )
such that
W’(")TA¢('"))
, v
= fﬂ"”M‘"" de=0 for (\s—1)2% (Ap—1)2
=F, for A\, =1)2=(\,—-1)2 (3)

and the biorthogonality matrix

0 -1
A= ( )

1 2
The “Fourier” coefficients C, and D, are determined by the bior-
thogonality condition

¥, +l v,

r

1 - sin? {“ﬁ)

¥mTA = —{ymTa 26

0

e

rery

(4a)
and

i)

sys“-‘!ther details of the theory can be found in [2]. We solve the linear
N\ tem (4) by truncation, i.e., replace the sign in (2) by a finite
;ﬂmbel’- At this point it is interesting to look at equations (4) in de-

re=ro

0. (4b)
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©
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"+Dn)Fn+ i N 5

m=—ow

2
Cm = X—Dm) (61", (m))

e
l—smz—ﬁ

=—{yT4 (5a)

Where

Fus gfBoos? M8 B cos? (A = 2)8
A (A —2)

1
—— A =28,
~n =2 sin 28 cos A, 8 cos ( )8
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Fig. 2 Sector solutions (streamlines); extrema at vortex centers, X; {(a)
biorthogonal serles solution; (b) approximate solution

Table2 Coefficients in the biorthogonal series (scien-
tific notation: the second number is the power of ten)

Real

C1=( 0.208369 + 01,
C2 = (—0.266598 + 00,
C3 = (—0.851842 — 01,
Cq=(—0.332293 - 01, 0.152098 — 01)
Cs = (—0.162217 — 01,  0.596175 — 02)

D, = (—0.201026 - 62, 0.686494 ~ 62)

Dy = ( 0.760589 — 112, 0.229382 — 111)
D3 =( 0.459605 — 159, 0.613469 — 159)
D4 = (—0.258214 — 206, 0.221233 — 206)
Ds = ( 0.697736 — 254, 0.252238 — 254)

1maginary

—0.219573 + 00)
0.440204 + 00)
0.559270 — 01)

and

(¢1(") ¢1(m)

« ) )
Am = (n) g, (m)
2. ro*Cm ol ~ D) (Y1 ))

(2('13:(")432‘";)) +
ma—e
+ ro-*mDm(zr&(m‘"’osz‘m’) - {3 (1M ™)

- roz(ll'l(’")th(”'))) =0. (5b)

For the chosen S, the real parts of the eigenvalues A, are very large
(Table 1), so that for ro = 0.05 the coefficients in (5b) suggest that the
Cm are large compared with the D,,. Therefore (5a) or (4a) can be
solved for the Cn,, neglecting the D,,, which then can be easily found
from (5b) or (4b) (ot find D,, = rg~*»D,). Thus the system (4) or (5)
is split into two systems that can be solved consecutively. This reflects
the fact that the boundary condition at ro does not have any signifi-
cant influence on the flow, except very close to ro where the D-r=2a+2
term in (2) is dominating (even when the D, are small). Note that the
D, =0forro=0.
Result. Sufficient accuracy of the truncated series can be obtained
for five terms in the series. The coefficients C, and D, converge
rapidly as n increases; see Table 2. The residual error in the boundary
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Table3 Boundary values at the inner and outer radius; a,, by, ¢;,and d; are the indicated values at the bounda,y

they are compared to: a; the prescribed vorticity at r = 1, b, = ¢, the zero stream function values and d, the

gradient value at r = 0.05

o

ay az by b2
¢ Qr=1) 1 — sin? gw/10° Vir=1) ¥(r=1)

L]

‘d\
2

€ c2 - d; aV/or (r
¥(r = 0.05) ¥(r =0.05) 2¥/or (r=0.05) 0.05)

0° 0.9990 1 -0.659-10~7
1° 0.9056 0.9045 0.552:10~7
2° 0.6530 0.8545 0.204-10-7
3° 0.3481 0.3455 —0.452:10~7
4° 0.0910 0.0955 0.129-10-

g —U.Uvos v v

DOOOOO

0.141.10-39 0.231.10-3 0

~0.149-10-3 -0.220-10-35

0.156-10-% 0.182-10-%

~0.11510-% —-0.103-10-35

-0.337-1040 —0.757-10-36
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Fig. 3 Comparisons of the velocity and vorticity in the outer region; —
biorthogonal series; - - -0- - - approximate solution

conditions is insignificant; see Table 3. The ¥ boundary conditions
are satisfied exactly on the sidewalls, § = £5°. The stream function
¥ (Fig. 2(a)) and vorticity (Fig. 3) show details of the solution.

The Numerical Solution

Now the same problem is solved numerically using finite differ-
ences. A successive over-relaxation method is used, alternating be-
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Biorthogonal series

tween ¥ and {I with a fixed relaxation factor for each as describeq in
[4]. The relaxation factors were not optimized. In order to work ing
rectangular plane a new radial coordinate # = In r is intrody,

Compromising between the desired accuracy and the cost of the

‘computations, we use meshes of h, = 0.023404 and h,, = 0.005454

Result. The stream function ¥ (Fig. 2(b)) and the vorticity Q oy,
calculated until their residual values are less than 10~2 and 1076 o
spectively. Asymptotic theory,! utilizing the first eigenvalue (afte,
Moffatt [5] with Burggraf correction [6]), is used to fill in the inn,
part of the sector where  residuals exceed the functional valyg,
Results are shown in Fig. 2(b) and Fig. 3.

Comparison

The profiles of the center-line velocity are compared in Fig. 3, Tp,
velocity at the center of the outside arc is 0.0201 for the approximat,
numerical solution and 0.0196 in the analytical result.

1t is obvious that the result of the biorthogonal series solution i
more accurate and because of the easy, straightforward computation
its use should be preferred for similar problems. The computation of
the numerical solution was carried out on an IBM 360/91 requiring
about 66 sec of computing time compared to only fractions of a second
for the series (on a Cyber 74). However, this test has shown that the
numerical results may be goed enough for many applications (within
the two top vortices, where the liquid flows fastest, the streamline
error lies within the mesh length) and the method can be applied to
more general, nonseparable domains. The truncation error can be
reduced by a finer mesh computation.
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! Neglecting the boundary condition at ro which cannot be satisfied.
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