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Summary

In the lecture I advocate perturbing states of rest and rigid motion with
arbitrary motions. This procedure leads to general expressions for the relation
between stress and deformation and defines the parameters which must be
measured in order to distinguish one material from another.

1. Introduction

Rheologists do not agree on what should be measured in order to differ-
entiate one simple material from another. The reason is that so many rheolog-
ists have pet constitutive equations. So the definition of characterizing quan-
tities differs from rheologist to rheologist. This is not a very salubrious condi-
tion for the development of good rheometrical science.

We (Beavers and 1) have been trying to avoid the problems which arise from
using pet constitutive equations [1,2]. To avoid making overspecialized
assumptions we consider general constitutive equations but we consider them
only in a restricted class of deformations. This simplifies the constitutive prob-
lem because only a restricted set of responses are possible when the deforma-
tions are restricted. Everybody knows this, and mostly everybody agrees that
it is a good way to proceed, but not so many rheologists actually do proceed
in this way.

We have our best results for the class of deformations which perturb states

* Paper presented at the IUTAM Symposium on Non-Newtonian Fluid Mechanics,
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14

in which the extra stress associated with straining motion vanishes. This means
perturbations of states of rigid motion in fluids and perturbations of rest
states (of elastic deformations) in solids. The equations which govern the mo-
tions of a viscoelastic solid perturbing rigid motions are probably like the
ones I am going to describe for fluids, after the effect of elastic (that is, static)
deformations are taken into account.

In the lecture I will try to describe the application of the principles just
described to problems of viscoelastic fluids and solids. The theory of fluids
is taken from my 1977 paper on ‘“Rotating Simple Fluids” [3]. We shall be
interested in drawing the consequences of the equations; the details of the
mathematical derivations can be found in the original paper and will not be
repeated here. The theory of motions of viscoelastic solids which perturb the
state of rest is joint work of P. Dixit and myself [4].

II. Rotating simple fluids
The stress in an incompressible simple fluid is given by
=—pl+S, (I1.1)

where —p1 is a constitutively indeterminate part of T and § is the extra stress
given by

S =F=,[G(s)], 0<s=t—r< (11.2)

and ¥ is a response functional whose argument functions are histories
G(s)=C(t—s)— 1,

Ci(7) = F{(T)F (1) , (IL.3)
Fi(1) = VeXe(x, T) (Fij = 9x:/0%;),

where

£=Xe(x, 7), x = Xe(x, t) (I1.4)

is the position of the particle which is presently at x at an earlier time 7 and
s=t—T1€ (—»,0].

It is a generally accepted but apparently arbitrary procedure to prescribe
histories up to a certain time and to require that the further evolution of the
motion be determined by the dynamic equations governing motion. This is
called an initial-history problem.

We suppose that each instant ¢t > 0, the fluid is driven by a prescribed body
force f(x, t) in the region V(t) occupied by the fluid and by the motion of
the boundary o V(¢). Then

ploU/Bt+ (U- V)U]l =—Vp +V - F[G(s)] + of(x, 1) (1I1.5)
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and div U(x, t) =0in YV, ¢t > 0 and, on the boundary
Ux, t) = q(x, t), XEIV(L). (11.6)

I call the prescribed functions f(x, t) and gq(x, t) the driving data. When 7< 0,
the history of the motion of the fluid %V () and on the boundary are pre-
scribed arbitrarily.

U(x¢(x, T), 7) is prescribed in V(7),7< 0. (IL.7)

The relative position at time 7 < t of the particle at x enters into (II.5) through
the argument G(s) of the extra stress. It is then possible to regard (I1.5),

div U = 0 and the path equations U(x;(x, T), 7) = 0X;/07 as seven equations

for seven unknown scalars U, p and ¥;.

From a strict point of view it is not possible to prescribe (I1.7). The veloc-
ity at all times, even when 7 < 0, is determined by the equations of motion.
But we may suppose that given U we may always find the f and g which is
associated with the given U. So it is actually the prescribed driving data which
is prescribed when ¢ < 0.

It is not possible to say much about the response of simple fluids when F
is so generally specified. It is possible to give some special solutions on which
the motion is so severely restricted that ¥ reduces to a simple form. We can
make progress by perturbing the data leading to these special solutions.

II1. The difference between perturbing the stress and perturbing the driving
data

It is well known and easy to show that F[0] = 0, and G(s) = 0 when
x¢(x, T) is the history of the motion of a rigid body. Obviously, perturbations

of 9[G(°§)] must be in powers of G. Hence
L d

FIGE)) = F1[G(E)] + F2lG(5y) G Ga)]

§1=0 =0

+F3[G(51)I1G(s2)iG(s3)] + ..., (I11.1)
51=0 §2 53

where %, is a linear operator, %, is bilinear, ¥; is trilinear and so on. Usually

we express these multilinear operators in terms of integrals. Since F[G(s)] is

the stress in an isotropic fluid, the multilinear operators must likewise be iso-

tropic and when expressed in terms of integrals, the kernels in the integrals

must be isotropic tensors [5,6].

In general, it is not possible to perturb G(s) arbitrarily. The history is deter-
mined by the equations of motion, ultimately through the driving data. When
the data is a small deviation, proportional to €, from that giving rise to rigid
motions, then the history G(s, €) may be assumed to be a small deviation from
G(s, 0) = 0. In fact, our problem is to determine how G(s, €) perturbing
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G(s, 0) = 0 is induced by the dynamics when the given data is perturbed. Our
main results are canonical forms of the stress and the equations of motion,
free of redundant terms, which can be solved sequentially to predict the mo-
tion and evolution of the history once the material functions which appear in
the expressions for the stress are known.

There is a big difference between just saying that G(s, €) is small for nearly
rigid motions and actually computing the G’s that arise from perturbing the
data which gives rise to rigid motions. To dramatize this difference we note
that even though G(s) = 0 when evaluated on the history of any rigid body
motion, only certain rigid body motions are compatible with the equations
of motion. To prove this we should imagine that the data depends on a param-

atar ¢ A tha yhh =N
eter ¢ and that whene = U,

0)
p {:ag]; + U . VU<0>] = —yp@ + div F[G® (5)] + pfO(x, t) (IT1.2)

and div U©(x, t) = 0 in the region of space V(t) occupied by the fluid. In
addition

UQx, t) = ¢z, t), XE V(). (I11.3)
This problem is incompletely spemfled because the response functional ¥ is
unspecified. But if Um(x,\x 1), 7) = QT A X (%, 7) then G = § and

F[0] = 0. So if f@(x, t) = 0, then (II.2) reduces to
pQax =—V(p +1ipIQax(?), (I11.4)
showing that Sol AXx is a gradient; that is,

200=0. (1IL.5)

So the data f‘@ = 0; o = 2ax for x € 3V leads to rigid body motions of the
fluid in Y(t) only if 2 is a constant vector; that is, the spin of V(t) is con-
stant in time and there is no precession of the axis of rotation.

IV. Canonical forms for the stress

We are interested in the stresses which arise when the data giving rise to
steady rigid rotation is perturbed by arbitrary data. We call the coefficients
S, induced by the expansion of G(s, ¢€),

F[G(s, €)] = €S, + €285, + ..., (Iv.1)

canonical forms of the stress at order n. We are going to call attention to some
of the properties of the canonical forms, emphasizing §, and §,, without
repeating the details [ 3] of the mathematical derivations.

The theory shows that derivatives of the Cauchy strain

9, e)”% G(s,e)=vU-TF, + F - vU, (IV.2)
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where f/'(x, 7, €) = U(xs(x, T, €), T, €)) = 3%, /07. 9(s, €) is a better kinematic
variable than the Cauchy strain G(s, €) because 9(s, €) leads to a canonical
theory framed in terms of velocity rather than displacement:

9(s, €) = €9V(s) + €29P(s) + ..., (IV.3)
where
9P(s) = QT(QW)[AV(s) + BP(5)1Q(R2s), 1=1,2,..., (IV.4)
cos s sin Qs 0
[Q(£2%s)] = | —sin £2s cos §2s 0],
0 0 1
A(s) = v UP(E, ) + transpose, 1v.5)
BY(s)=0
B2(s) = (x'V - v)AV(s) + (A - v x'Y + transpose) . (IV.6)

Equation (IV.4) shows that 9‘”(s) is defined in terms of U‘" and lower order
quantities. It seems to us that 9 is the right kinematic measure for fluids be-
cause 9 leads to problems framed in terms of velocities whereas G is the right
kinematic measure for solids because G leads to problems framed in terms of
displacement.

An encapsulated derivation of the canonical forms of the stress S, for per-
turbations of rigid body motions of fluids is given below

F(G(s, €)] = F1[G(s, €)] + Fo[G(s, €)G(s, €)] + ...

f - Gls, e)ds + f f {a675(3;’82)0(s1,e)6(s2,e)

8 a(sl, S3)

3,089 [tr G(s1, €)1G(s2, E)} ds, ds, +

= f G(s) 9(s, €) ds + ofw of {Y(s1, 52) (51, €) V52, €)
b

+&(sy, 82)[tr 9(sy, €)1 (55, €)} dsy dsg +

= 5,196, €)] + F2[9(1, €) I (s3, €)] + .. = FI9(s, €)]

= F[e9W(s) + €29D(s) + ...] = € F[IV(s)]

+e2[F[9D()] + Fo[9V(s1), ITV(s2)]} + .on
= €S, + €28, + O(e?), (IV.7)
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where

F,[976)] = | Gls)9™(s) ds (1v.8)
5

and

F,[9 Vfsy), 9V(s,)] = Of of Y(51, 55) 9(s1) 9(s3) dsy ds, . (Iv.9)

The canonical stress S, is completely specified when the shear relaxation
modulus G(s) is known. The second-order stress S, is completely specified
when G(s) and y(sy, S2) = Y(S2, $1) are known. The material function &(s,, s,)
does not enter into the second-order theory because tr 9’ = 0.

Many persons swear by constitutive models which depend on the shear
relaxation modulus G(s) alone, and not on the other moduli like v(s,, s2).
Despite some demonstrations of agreement with experiments, I would guess
that these G{(s) models are not good.

Though the fluid is isotropic the perturbation stresses S, have a preferred
direction, defined by the axis of rotation through the orthogonal matrices
Q(82s) defining 9V(s) (see (IV.6)).

In our derivation of the canonical form of stress perturbing rigid motion
we assumed that the canonical forms of the stress could be represented by
integrals. A good mathematical justification for ¥, = §,, given by (IV.8) can
be constructed along lines laid out by Coleman and Noll [5]. This representa-
tion may be justified when F[-] is Frechet differentiable on the zero history
in Hilbert space topologies defined by weighted integrals (with weights which
vanish at infinity). An integral representation for ¥, is then implied by the
Riesz representation theorem.

An integral representation for the higher order stresses may be partially
justified as a ‘“Weierstrass’ approximation to the true stress [7].

V. Four perturbation equations and four unknown fields

The canonical forms of the equations of motion are the perturbation equa-
tions which arise by identification of different powers of €. At zeroth order

Xo(8) = X{P(x, 7) = Q(Ss) - x (V.1)
and
U (xo, 7) = U9(x0) = QAx, - (V.2)

When £ = 0, U® = 0 and ¥, = x describes the fluid in a state of rest.
At order n > 1 we find that

div U™(x, t) = 0in V(t), (V.3)
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p[a U/ot + U(O)VU(n) + U(n)v U(O)] + vp(n)
— [ G(5)QT(Rw)VZ, U™ (xo(s), t —5) ds
0

+ lower order terms = 0 in V(t), (V.4)

where U™(x, t) takes on prescribed values on the boundary 3%V of <. Equa-
tions (V.1) and (V.2) are four equations in four unknowns. As in the Navier—
rrin) Yot PR Y S,

Stokes theory, we can find U " and p ’ ™ by solving four equations in four un-
knowns. The particle paths x'™ satisfy

ox™(r)
oT

X™(t) =

x'™(7) is needed for the forcing terms in the equations which determine
Um*D and p**V. But U™ is independent of x‘™ and x‘™ is given by quadra-
ture involving U™ and other terms of lower order. The history of the strain
(given in terms x‘™) is passive; that is, it enters into the equations of motion
through forcing terms computed on solutions of lower order. But the history
of the velocity is active; that is, it enters into the dominant term from the

stress in the linear operator which needs inverting at each stage of the pertur-
bation. The computation of the coefficient fields ff(")('r 1), n(")ﬁr t) and

x\™(x, t) may be carned sequentially. The perturbatlon equatlons take on a
simple form in cylindrical coordinates (see Section VII).
Suppose that there are two solutions U‘"™, p'™ of (V.3) and (V.4) satisfying
the same equations and boundary conditions but with different initial histo-
ries. The difference between the two solutions satisfies divV = 0 and

pldaV/ot+U® - vV + V- VU + Up

= U™ (xo(1), T) + X™ - Vo U© + lower order terms, (V.5)

- (V.6)
— [ G()QT ()9, V(Xo(s), t —5) ds = 0
0

in Y(t) and V=0 on 3%V (t). It can be shown that V(t) > Q as t > « if

G(s)> 0, G'(s) < 0 and G(s » =) - 0 exponentially. This means that solutions
of (V.3) and (V.4) are ultimately uniquely determined by the data, indepen-
dent of the initial history (see Refs. [3][8]). So if the theory is good we can
expect a one-to-one correspondence between solutions and experiments un-
complicated by problems of stability, bifurcation and nonuniqueness.

V1. Some other approximations are special cases of this one

When £ = 0 the perturbation equations govern small, but otherwise arbi-
trary perturbations of the state of rest [2,9]. Then

=0, x®=x QO=1 (V1)
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at first order, U‘V(x, t) is prescribed on 8V , div U‘Y’ = 0 and

oo

paUV [at =—VpV + f G(s)V2UV(x, t —s) ds . (VL.2)
0

When U‘Y(x, t) is determined from (VI.2) we may find x‘’ by integrating
xXPpr=U"1), xP)=0. (VL3)
At second order, U‘®(x, t) is prescribed on 8%V , div U‘? = 0 and

aU(Z) b
,0|: . + U(l) . VU(I{| = _Vp<2) + f G(S)VZU(Z)(x, t'_S) ds
0

+ div {f G) (Y - VIAY + AD - Uy 4 YTy . 4D] g
0

+ [ f o1 52)AM(s1) - AVsy) ds, dss}, (VL.4)
0 0

A(l)(s) = Vu(l) + vTU(1> .
When U‘? is determined from (VI.4) we may find x'? by integrating

3 (2)
X UP, 1 VUL, 20 =0. (VLS)

The so-called ‘‘slow motion” or ‘‘retarded motion” approximation arises
as a perturbation of the rest state when the perturbed data is steady. If the per-
turbed data is steady then the perturbed motion is steady, (VI.2) becomes

0= _Vp(D + uvZ U(l)(x), (VI.G)

where

u=f G(s)ds.
0

We may integrate (V1.3)

XV =—UP(x)s. (V1.8)
Using (VL.7) and (V1.8) we may write (VI.4) as

_U(1> . VU(I) - _Vp(z) + uvZu(Z)(x) + diV[OllAz + a2A<1) . A(l)] , (V19)

where

ay =— | sG(s) ds (VL.10)
0



21

and

oo

f Y(s1, 82) dsy ds, . (VI.11)
0

The same relations (V1.7), (VI.10) and (VI.11) arise for slightly unsteady
(retarded) motions [10]. The higher-order approximations in the theory of
slow steady motion of viscoelastic fluids arise from the higher order theory of
perturbations of the rest state in a similar way. The stresses S, which arise in
the theory of slow steady motions of viscoelastic fluids are called the stress
tensors for ““fluids of grade n”’. For example,

S1 = #A(l) ,
52 - FLA(D + 0111‘12 + OtgA(l) . A(l) ,
A2 = (U(l) . V)A(l) + A(l) . VU(I) . A(l) .

It is useful to call attention here to a criticism of constitutive equations
which are assumed to depend on G(s) alone. Such constitutive equations

should logically be independent of material functions like y(s;, s5), among

others, which are presumably independent of G(s). In the steady case this
means that constitutive equations which depend on G(s) alone cannot depend
on a,.

VII. The perturbed constitutive equation is not isotropic but is axially sym-
metric. Equations of motion in cylindrical coordinates

Of course, the fluid is isotropic and the constitutive equation is isotropic.
But the rigid motion of the fluid introduces a preferred direction in the per-
turbed constitutive equation which is most conveniently expressed by intro-
ducing coordinates with axial symmetry, say cylindrical coordinates (r, 0, z).
In these coordinates it becomes apparent that there are two effects, an inertial
and a viscoelastic effect, of the steady rigid rotation. The inertial effects are
very well understood but the viscoelastic effects are new and best understood
by examining the dynamic equations in cylindrical coordinates

3, + N3y —20 0 Ui™(r, 0, z, t)

0128 3, + Qg 0 Us™(r, 9, z, t)

0 0 3, + Qg (UM, 0, 2, 1)
9,

+ —1—69 PV (r, 6, 2, t)

9,
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21 2 1 rrem \
vi—5 — =0 0 [IU™(r, 0 — s, 2, t—s)
r r
2 2 2 1 (n)
—f G(s) | 9 Vi——= 0 | |U™(r,0— s, 2,t—s)|ds
0 I i
L0 0 v? _Ué")(r, 0 — s, 2, t—s)]

{ ™ (r, 6, 2, t)}

- Jén)('ri ’0? Zi t)

7, 6, 2, t)J

The f‘ are inhomogeneous terms which depend on lower orders, £’ = 0,
f¢? is quadratic in U‘?’ and the hereditary integrals in ‘™, n > 1 have inte-
grands with arguments (r, § — s, 2, t — s). The main viscoelastic effect is the
appearance of the argument § — {2s in the hereditary integrals. This is because
the history of the Cauchy strain is computed on a particle and is evaluated at
the positions that the particle occupied in the rigid rotation, that is on the
ci(r$les of fixed radius r = r*?’ height z = 2'®’ at the variable angular position
69 =6 — Qs.

VIII. Reduction to “fluids of grade n” is possible only when the perturbation
of steady rigid rotation of fluid is steady and axisymmetric

(VIL1)

Fluids of ‘“grade n”’ are the form of the stresses which perturb the rest state
with slow steady motions (see Section VI). Since we may write our equations
relative to an observer rotating with an angular velocity {2 = e,{} and a steady
motion would appear to be ‘“slow’’ relative to this rotating observer it is plau-
sible, but not correct, to take fluids of ‘“‘grade n” for approximations of steady
perturbations of steady rigid body motions of fluids.

We can take fluids of “‘grade n”’ as the correct perturbation stresses of
steady rigid body motions of fluids when the perturbation is steady and axi-
symmetric. Then (VIL.1) becomes

2 pﬂ U(n)(x) + Vp(n)(x) — MV2U(">(x) = f(n), f(l) =0
[2=—pUT - YUY +div(a; A, + @, AV?),  ete.

But when perturbed motion is steady and not axisymmetric, the integrands

are a Fourier series in e/’? which reduce to a single term [ = 0 in the axisym-
metric case. For example, since u(r, 0, z) is periodic in § with period 2 7, we
have

(VIIL1)

%0 o0

[ G, 0 — s, 2) ds = 20 uy(r, z) &0t (IQ), (VIIL2)
: <
n*(1Q) = [ Gls) e e ds. (VIIL3)

0
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IX. The complex viscosity
Rheologists frequently work with the “complex viscosity” n*(£2) defined

by (VIIL.3) when [ = 1. The function n*(-) arises from (VII.1) when solutions
are decomposed into Fourier series in § and ¢

U<n>(r’ 01 z’ t) o0 o0 Ulm(rr Z)

P 0,2, t) | = 20 27 0| b 2) | (IX.1)
m=—® |=—o

f(n)(r’ 6, 2, t) flm(rs z)

We are assuming that solutions are 2 w/w periodic in ¢. The values m = 0 and
1 = 0 are included in the summation and the series are real-valued.

If all the coefficients with [ # O are zero, then the flow is axisymmetric. If
all the coefficients are zero then the flow is steady. The Fourier coefficients
of (IX.1) satisfy

{i(com + QI) —20Q 0 ] (Uzm(", z) ] {arl
. N
o ] 20 i(com + L) 0 vimir, 2) |+ i~ Pimlr, 2)
L0 0 i(wm + Q) | [ wim (r, 2) | Lazj
V2—r1—2(12+1) —21';[‘2‘ 0 ] Putm("’z)ﬂ
. Ny 21
—n*(wm + Q1) 21; v —r_g(l +1) 0 Uim(T, 2)
12
‘0 0 VZ _ﬁJ Lwlm(r’ Z).
frlm(rt Z)
= felm (r, Z) 3 (IXZ)
lem(r: Z)
where

n*(wm+ Q)= [ G(s) e Hmras gs 1
0

It is clear that the complex viscosity *(+) is an important quantity which
always arises when time-periodic motions perturb steady rigid ones. The
argument of 1%, however, depends on the prescribed forcing data for the prob-

* Abbott and Walters [11] derived the equations for m = 0,1 = 1 by a different
method and applied the method to the theory of rheometers [11,12].
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lem which selects the values of | and m. So n*(+) is a special type of material
function arising for periodic perturbation of steady rigid motions. The values
which n* takes in a certain problem do not depend on the material alone but
they also depend on the prescribed data of the problem. So n*(+) is not a mate-
rial function like the shear relaxation modulus which depends on the material
alone.

Finally we note that *(0) = u is the viscosity of the fluid. When £ is large
the asymptotic expansion

oo

n"(Q)= [ Gls) e dx
0

- G0) G0 —3
+

Q Tz TORT

is useful, for example, in the study of boundary layers of Ekmans type which

can occur in viscoelastic fluids when 2 is large.

X. Perturbation of the rest state of a viscoelastic solid

My purpose is to show how the approach we use to characterize fluids can
be applied to viscoelastic solids. The theory for solids has been worked by

P. Dixit and me and the details of the analvysis will re renorted elsewhere [A]

A LRIV QLI AT QiU WiIT UMT VRS Ui viil QUiGL y S0 211 AT LTPLI VTN CISTVVLITIT

Here we shall confine our attention to certain aspects of the theory of incom-
pressible solids.

The constitutive equation for an initially isotropic incompressible simple
solid was found by Green and Rivlin [13]. It may be written as (see Ref. [14]).

T =—pl + F[B(t), s(}és)]. (X.1)
T is the stress, G(s) is the history of right-relative Cauchy—Green tensor (the
same G(s) which we used for fluids) and

B(t) = F(t) - F*(t)

is the left Cauchy—Green tensor defined in terms of the deformation gradient
F=9x(X, t) (Fij = 0x;/0X}),

where x = x(X, t) designates points of the body in its deformed configuration
and X designates material points. Our convention is that X is a coordinate
point of the reference configuration *. p is a reaction pressure associated with
incompressibility

det F=1, (X.2)

and p is constitutively indeterminate. We determine p from the solution of

* The tensor G(s) is based on the relative deformation tensor Fy(x, t), see (I1.3).



25

the equations governing the deformation. We shall define the zero level of
stress by requiring that the body be free of stresses in its undeformed or
“natural” state,

F=1=B(t), G@)=0,
F[1,0] =0, T=0.

Now I shall make some categorical statements which hold strictly for simple
solids. All static deformations are elastic. In a static deformation G(s) = 0 and

T =—pl + F[B(t), 0] (X.4)

defines the relation between stress and deformation in an elastic material.
Static deformations are the special case of dynamic responses corresponding
to states of rest. So perturbing states of rest.is the same as perturbing elastic-
ity. If the material has not come to rest G(s) # 0 and the constitutive response
is not elastic but instead depends on history. There is no such thing as an
elastic material. A viscoelastic material will undergo an elastic response when
the deformations are independent of time. Of course, it is always possible to
imagine that the constitutive equation is independent of G{s) # 0. Then we
get an elastic material, which can be studied in its own right. It may be useful
to study “‘elastic” materials because elastic responses and nearly elastic
responses of viscoelastic materials are important. But it is not so good to
define “‘elastic materials” in the context of material science because elastic
materials arise only in static deformations of viscoelastic ones. For dynamic
responses we need information about the dependence of ¥F on G(s). Now I am
going to show how to get some of the kinds of information we need.

(X.3)

XI. Perturbations of the rest state

The rest state is the class of elastic responses of a viscoelastic material. We
shall now perturb the rest state with small time-dependent data and derive the
perturbed constitutive equations and the perturbed equations of motion.

In the rest state G(s) = 0. As in fluids, we perturb G(s) = 0 with powers of
G. Then

FB(t), G(s)] = F[B(2), 0] + F,[B, 01G(s)]
+ F,[B, 01G(sy)1G(sy)] + O(||G||3) ,

where the dependence of ¥, on the history of G(s) is understood, and not
explicit.

(XI.1) reminds us of the fluids equation (III.1) except here we have to
worry about the tensor B(t). We can identify §(B) = F[B, 0] as the elasticity
part of F[B, G(s)]; the other terms in the Fréchet expansion vanish when
G(s) does. Now we follow Green and Rivlin {13] and Coleman and Noll [5]
and assume, as in the case of fluid, that the Fréchet derivatives can be ex-
pressed in terms of integrals.

(XL.1)



FIB(t), G(s)] = §(B) + Jf K(B(t), s)G(s) ds
0
(XI1.2)
oo o0
r ro
+ ) ) T(B(2), 81, 52)G(s1) G(sz) dsy dsp + ...
o o

where K is a fourth and I is a sixth-order tensor. Since we are assuming that
the material is isotropic, §(B) is an isotropic tensor function and so are the
integrands. Methods for finding the most general gorms for isotropic tensor
functions can be found in the paper of Wineman and Pikin [15] and are
reviewed in Section 11 of the treatise by Truesdell and Noll [14] and in the
paper of Rivlin [16]. The reduction to isotropic form is like the Hamilton—
Cayley reduction of a tensor polynomial of degree m > 2 to m = 2. We find
that, modulo terms proportional to 1,

§(B)= §,B+ §,B%, (XL.3)
K(B, s)G(s) = B tr[(¢ool + ¢01B + 692 B%)G(s)]
+ B2 tr[(¢101 + ¢11B + 6,2B%)G(s)]
+(¢201 + ¢21B + ¢23B%)G(s)
+ G(5)(¢201 + 21 B + $22B%),
where the {’s and ¢’s depend on I, Il and Illg, the invariants of B, and the

¢’s also depend on s. The terms proportional to 1 have been absorbed into p.
The expressions (XI1.2—4) are general constitutive equations for the stress
in motions which perturb data giving rise to the rest state of viscoelastic solids.
Suppose F = F,, B = B,, on the rest state and the data perturbing this state is
proportional to €. Then we set B= B, + eBV + ..., G = eG‘Y(s) + ... and find
the canonical forms of the stresses and governing equations by identification.
The first-order theory, proportional to €, is dependent on the unknown func-
tions of §1, 2, $o0» P10, Po1> Po2> P11, P12, D20, P21, P22 Of the strain invari-
ants and appear already in the first-order theory. In fact, there are too many
unknown functions of many variables to have much hope of finding them all
for even one single solid. This same type of difficulty occurs in theory of mo-

tions of viscoelastic fluids perturbing viscometric flows.

(X1.4)

XII. Perturbation of the natural state of a viscoelastic solid

A more satisfactory theory for the purposes of material science can be ob-
tained by restricting the theory of perturbations of the rest state to the case
in which the rest state is the natural state. The natural state is the unstressed
and undeformed state of the body. It is the most simple of the dynamical
states of the body. By perturbing the natural state we derive the simplest pos-
sible dynamical theory for general classes of simple solids. In the incompres-
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sible case, we get the material characterized for small amplitude motions
through second order when we know two constants and three material func-
tions.

Suppose that € is a measure of the data perturbing the natural state. To be
definite let us suppose that the displacement eU(x, t) the boundary o V(t, €)
of the body V(¢, €) is prescribed:

x=X+eU(x, t),
xX€IV(, e€), (XII 1)
XEaW( 0)=0Y,

where 7V, is the boundary of the body in the natural state. We can do mixed
problems with tractions prescribed on parts of the body. But to keep things
simple here we stay with (XIL.1).

Now everything in sight is expanded in powers of:

x— X =eu'V(X, t) + 2u'P (X, t) + O(e®) = u(X, t, €), (XI1.2)
F(X,t,e)=1+Vu=1+eFVX, t)+e2FP(X, t) + O(e?), (XI1.3)
where

FW(X, te)=vu'™,  (F{ =3u™/eX)),

G, €) = FI(r, €)Fy(1, €) — 1 = eGV(s) + e2G‘¥(s) + O(e?),
where

GV(s)=2{EV(t—s)— EV(1)},

G?(s) = 2{E‘®(t—s) — E@(t)} + €P(t, 5), (XIL5)
E(n) =_§_ (F(n) + F’l‘(n))
and

EP(t, 5)= FT'V(t—s) - FU(t—s)+ FTU gy Fm(t)
— 9 FTD) | Em(t—s) + F<1>(t) - FU(1)
+ F‘I‘(l)(t) . F’I‘(D(t) —9 E(l)(t__s) . F(l)(t) .

B(t, €)= F(t, €) - FT(t, €) =1+ 2 eEV(t) + €2{2 E®(¢)

+ FUt) - FTU(1)} + O(ed). (XIL.6)
Since det F(X, t, €) = 1 we find, using (XII.3) that
tr FV =0,
Hence
tr EV =trGV=0. (XIL.7)

We turn next to the expansion of the stress. Inserting (XII.4) and (XIL.6)
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into (XI.2) and expanding §, K, I' in powers of €, we find that ¥ is given in
terms of multinomials in the tensors B‘™(t), G ‘™(s) with tensor-valued coeffi-
cients which are independent of B and G. These tensor-valued constant coeffi-
cients are selected so that the expression for the stress is isotropic. After some
work we come up with the following formulas for the stresses.

T=€eTV +e2T? + O(e?), (XIL.8)

TO(t) = —pP1+ 29EV(t) + 2 [ ((5)EP(t—s)ds, (XIL9)
0

where

7=6—f §(s) ds.
0
T?(t)=—pP1+29E® +2 [ {(s)E®(t —5) ds
0

+ BFD . FT¢D 4 gI21BCL L LD 4 f ¢(s) E2(¢, ) ds
0

) (XI1.10)
+ f g.[z] (s)[B<l)(t) . G(l)(s) + G(l)(s) . B(l)(t)] ds
0

+ [ [ a(sy, 836V (1) - GP(sp) ds, dis, -
0 ]

The functions p‘*’ and p‘?’ are to be determined from the solution of the
equations at first and second order.

The first-order theory is complete when one elastic constant § and one ma-
terial function, the relaxation modulus, {(s) are known. The second-order
theory is complete when two elastic constants 8 and 32! and three material
functions ¢(s), {12! (s) and a(s,, $,) are known.

The coefficients in the expansions (XII.2—6) are to be obtained sequen-
tially from the solution of perturbation equations which arise equally from
perturbing either the Cauchy or the Piola—Kirchoff equations of motion.
There is a characteristic linear operator

32 °
()= po 373 — YV () —V? [ §6)C)E—s)ds (XI1.11)
0

to invert at each order in the perturbation sequence. For example, when dis-
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placements are prescribed
Jur + ypt = 0,
divu't’ =0,
u'P(X, t) is prescribed for X € 3V,
U2 + VII? = M,,

div U‘® = 0,, }

}in Y, (XI1.12)

(XI1.13)

~a

0V 0>
Initial history of u‘®(X, t), t < 0 is prescribed in %V,, where
M2 = F’I‘(l) R vp(l) + div{B[ﬂB(l) . B(l)

U‘# (X, t) is prescribed for X €

+ Jfo §’(s)[—G(1’(s) . B(l) + Z(Fr(l)(t__s) — FT(l)(t)) . E(l)(t '—S)] ds
0

+ fm §[2] (s)[B(l) . G(l)(s) + G(l)(s) . B(l)] ds
0

oo

+ [ f sy, )GV (s1) - GV (s2) dsy dsy)

The higher-order problems have a similar structure and higher-order problems
may be solved sequentially.

The theory just sketched presumably governs all small amplitude motions
perturbing the natural state of viscoelastic solids satisfying (XI.2). However,
the theory is almost completely useless without procedures to determine the
values of the material parameters 3, 82!, ¢(s), {21 (s) and a(s,, s3). As in the
theory of fluids, we need solutions of the perturbation equations leading to
the design of experiments to determine the values of the material parameters.
And, again as in fluids, we are presently studying the possibility of using free
surface problems for rheometrical measurements of solids. In such problems,
as in the examples sketched below, the shape of the free surface depends on
the material parameters and by measuring the shape we can determine the
values of some of the parameters.
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viscoelastic

Stress free surface

Fixed plate

The top and bottom plates are rigid and are rotated in their own plane

ef (1)

Stress free surface
of viscoelastic solid

Fixed rigid cylinder

Rotation of an annulus of viscoelastic material bonded to a stationary rigid
cylinder (a Weissenberg effect in solids).
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