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Free surfaces are sensitive to the state of stress in
fluids. The striking variations in the shape of free surfaces
induced by the motion of viscoelastic fluids chart the competing
effects of elasticity, normal stresses and inertia in the fluid.
We would like to know how to decipher these charts because the
deciphering challenges our understanding of mechanics and intro-
duces new methods of rheometry with good potential for charac-
terizing important properties of viscoelastic fluids.

The analysis of the shape of free surfaces on moving vis-
coelastic fluids is plagued by two difficulties: the domain of
flow is unknown and the constitutive equation is unknown except
when evaluated on certain asymptotic limits of allowed dynamic
processes, like viscometric flow and slow flow. And even in
these asymptotic limits the constitutive equations are known only
up to undetermined constants and functions whose values are the
proper goal of rheometrical measurements.

The problem of the shape of free surfaces induced by motions
of viscoelastic fluids which perturb the state of rest is the
most congenial to analysis because general, but tractable, repre-
sentations of the stress in terms of integrals (with unknown ker-
nels) may be assumed and because the nonlinear problem of free
surfaces perturbing the rest state can be studied by the method
of domain perturbations. We may describe this type of analysis
as the simultaneous perturbation of the domain and constitutive
equation. To explain the principle behind this type of analysis
we turn now to a conceptually simple problem, free of rheological
complications, in which the principles involved may be clearly
seen,

1. A MODEL PROBLEM FOR DOMAIN PERTURBATIONS OF THE REST STATE

We suppose that there is an analytic function %(¢) which is
not known except that in a neighborhood of ¢ = 0 it has a Taylor
series

=1 1
F) =35 a” + 3 be” + ... (1.1)

where a = F44(0) and b = F444(0). We may think that oF(4) is
representative of the nonlinear part of the stress in some fic—
ticious material. Our idea is to find the Taylor coefficients
for (1.1) by measuring the free surface induced by a dynamical
process

Fix) = 9% + S(4) =0 in [ (1.2)

subject to the condition that

G(x,e) = ¢(x) - g(x,e) on 37/6‘ (1.3)

where */5 is a bounded region of space depending on a parameter
8 and g(x,¢) are given data depending on a parameter e.

It is instructive to carry out our analysis in easy stages.
First we perturb e, leaving § fixed and assume that

2
¢(x,e) = %T b, (x) Loa)

T
0

where, in ~pgl
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W2 g, + F(og) =0

12 4, + F, o)ty = 0

6.)6,2 =0
02 g, + F 000, t Fyyltg)ty

and, on Bﬁ/%:
(]
= - (x) =0,
G, = ¢n(§) 9,

= 0. If we could
i rivative of g(x,e) at ¢ uld
whire %E(§% ;idn?? 2? for ¢g we could ilnd ¢1it¢£éu§gcéeaiard .
olut ) i ’ lue problems. > .
i oundary va : ard
soigzlﬁz gflflgszi ?f we knew % (¢.), because it is nonlin
so .

. : ma .
except as a power serlgs in a s 2 4 as the otate for which

" e . . . .
The rESE.StZZ couple this definition wi

g4 (x) =
tgat &i?g?l has no solutions ¢g # 0 when ¢0(§)|3'V%

0 in %/} and, replacing (1.5),,3 we get

= 0. Then

$pglx) =

=gy 3

0., ¢4 =
Law, (

2 =
v¢1‘%

0 ’ g2

2 2 _ ’ _
v, + ady 2‘3
? Ly Vi
4 easy to solve even when a

where ¢1 and ¢22 are inde-

etc. These problems are linear an
on which perturbs the

own (in fact ¢ = ¢21 + ad22. .
;::gent é; A o tana, ug:htgﬁr:oiggi we can get expressic
find a and, wi Work , 7 oLl
re?thSFa5§132 t;e other éaylor coefficients of (iné)suppose
which in uppose that e is fixed and § vgrle:. I SPp oS on
Nowt:ag 4 is some convenient domain w 02 Sp ey, we
52;§:§Ze is, sag, that “p has a high dig;izmoin ¥$§ try. e
i solve the dynamicC p sex
a;e gozggfzgcizitzocan be determined from boundary value p
whose 3 °
tric domain 0- ) . e to one
posed O e ve nap i /% with an invertible ©
e % a i i on ¥
'ﬂ;rsihgzhmig ;Kglytic in 6 and which takes points A
mapping,

into 3%47:

n I :
§ [n] nalytic in §)
= x(xy8) = I g7 X2 (o) (analy

1%

= 5(50,0) (identity)

%,
X, = 571(5,5) (inverée) '
Wy w3
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Let H(x,68) be any functi i i
(% on def i i
and introduce the notation: tned in the family of domains

H(8) = H(E(go,é),d) .
[n] a& o=
H (§ ) = —— H(0)
0 as®
and
<n> BnH(x §)
H (2y) = —2"='
5D | 6=0
Efxq

Connection formulas (the chain rule) connect H[n] and H<n>-

[o]
B xg) = B (k) = H(x,0)
1
ul ](50) = H<1>(§o) + xHoy<0>,
B (xg) = B () + 2x o<l 4 4 (21, <0

+ (xtloy 20>,

etc. It follows from the equations that

F(s8) = Fx(x,,6),8) =0

when 55"1/6', 305‘1/('), and that

7(n) (n]

(0) = F (§0) = 0 in “VE .

y easil establi
Y sh by
We ma a t 1 mathematical 1nduct10n, using the

<n>
F = i
(xy) = 0 in °V’0

For example, F (x,) = 0 in M [1] <1>

1 0 X and F (x,) = F (x,) +
xHer ® ) = 2Ty 20, 7 . %)
boundary Since G(§) = 0 on ;;»1/:s glm!

tial derivatives of G[m]
need not vanish.

<0>

(50)

It follows that on 3 %7

0
[m) - 2 3 m
G T xy) = (5o + v 3n) Glx,e)} _, =0
x=x0
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It is a bit more complicated at the

" ﬂpﬂ . = 0 on a"VB and tangen-
n 0 must vanish but normal derivatives

(1.12)

Ve
where n is the outward normal to V;, v = E[l]'ﬂ and n-v = 3/sn
We may seek the solution of (1.2) and (1.3) in “?g as a
series defined in “j
_ g 8%, ;
¢ (x(x4,8),8) = z ar ¢ (x4) (1.1
where, in ”VB,
v20 b7 6°%) =0
2.<1> <0> <1>
v = 1.1
¢ + Fge e 0 ({
P2
2 <2> <0> <2> <0> <1>
v + + =
¢ 97¢(¢ K 9-’M(¢ yé 0
(1.9) " etc., and on 34/6
[n] _ ,[n] _oqnl
G = 4¢ (zo) g (50) (1.1
The problems (1.14), (1.15) are like (1.5) and (1.6). Ve can't
solve them because % (¢) is given only as a Taylor series (1.1)
with unknown coefficients and an unknown circle of convergence.
The "rest state" for the domain perturbation, like the "res
state" for the perturbation of the boundary data may be define? ?yt
condition gl[0] (50)“4,, Z 0. This condition implies that ¢10" =
69> =0 on 347+ hence, $<0”> = 0 in ¥y and
<1> <1l 1
(1.10) V2¢| =0 ., ¢| > = g[ ](50) (1.1
% a7
2 <2> <1>2 [2 <2> ) <1> [2]
LA ] + a¢l =0, @l =4 + ZVn ETY =g (EO
e
1) 0 (1.:
(1.11)

etc. The linear problems (1.16), (1.17) and higher order probl¢
are solvable and not too hard to actually solve, even when a is
unknown.

I n our rheological problems the boundary data (e in our
first example) perturb the poundary (& in our second example).
So we may put € = 6 and construct a simple example of a domain
perturbation of the rest state with a free surface. By a free
surface we understand that there is a one (e) parameter family
domains ~¥; which are unknown. Supposing now that our dynamica
process (1.1) and (1.2) hold in % we might expect solutions i
each and every <% corresponding to some possibly small ¢ inter
val of the origin. But no, this will not be possible because i.
addition to (1.2) we pose an additional boundary condition, whi
is analogous to, but much simpler than, the condition that the
jump in the normal component of stress is balanced by surface
tension times mean curvature. Becauss we have this extra condi
tion we can't solve (1.1) and (1.2) in every "¥%; the extra con
dition can be satisfied only when "% is properly chosen.
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. . i .8). For the shifting
As an example of the foregoing consider the two dimengional having aélftﬂiaﬁigﬁegﬁlii rigu;§§§q0§a;: 2;d .
problem specified in polar coordinates (r,6) in Fig. 1.1 where map the defo 0
the boundarg data g(6,c) are given and correspond to a rest state
g(8,0) = g*0>Tg) = 0. The dynamical process ¢(r,6,e) and the (n) _ M0} _ . o f[n](e ).
function f(6,¢) which gives the boundary r = 1 + £f(6,e) of & X =& =r 0 0
are unknown, ¢

Note that for any function f(8) of & = eq
flnl(6). Using the connection formulas (1

1
¢ g0 = ¢ rg0p)
. and ‘1>
[1] 3¢ TTr,,8,) .
¢[2](r0,e0) = 0 P (xgi0q) + 20gt M (0 s 7ot

= 1.18), that
V2¢ + F) =0 On the boundary of ﬂ/bi T, = 1 we héve, from ( . 3 eind that
Fo(0o (1,0 - £t () = 0. since F,(0) = 0, we fi

<n>
alone, we have £ "7 (e) :
.9) we find that

. <1l>
fll](eo) = 0. The boundary value problems satisfied by ¢ (ro,e

. b ' and ¢<2>(ro,eo) are given in Pigs 1.2 and 1.3.
7
W
Gy(x,8,e) = ¢(r,8,¢) -g(8,e) = 0
Gz(r,e,e) = sf(¢) - £(8,¢)

(1)
F () - £(6,¢) = 0 (1.18) ¢ ey =gty

on r =1+ f(6,¢) v2p<tro

Fig. 1.1 Model of a free surface problem

fofs <1> 6 )
Fig. 1.2 The problem satisfied by ¢ (ro, 0

We remind the reader that our aim is to show how to find % (¢);
that is, the Taylor coefficients in (1.1) by (fictitious) experi-
mental measurements of the (made up) boundary r = 1 + £(8,¢).
First we solve (1.18) when ¢ = 0 and we find that V2¢ +
F(¢) = 0 in 43 with ¢(xr,8,0) =0 onr =1 + £(6,0) has ¢ = 0 in
~0%- Then, since F(0) = 0,£(8,0) = 0 so that the reference
configuration %% is the unit circle ro = 1. We seek the solution
of (1.18) in powers of ¢

plrie,e)) - o["](ro,eo)
£(6,¢) o ™! f["](eo)

: . <2>
Fig. 1.3 The problem satisfied by ¢ (ro,eo)

where f[ol(eo) = ¢[°](r0,00) = 0 and ‘V: and ‘V% are related by a
shifting map We find from Fig. 1.3 that

Vo T

These problems are easy to solve.

e=eo 12
(21 = as (1,8

r0(1+f(6012)) : £ (60) as (1, 0

"
]
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where¢<l>(r0,00) is the solution of the problem shown in Fig. 1.2. that for n = 1,2,3,4, we get
It follows that the first approximation to the shape of ”Vz is o

given by 57(1) = J z(s)G(s)ds , (

2
7,062 + 0(ed) . s

r=1+f(6,e) =1+ ap"

The next approximation depends on b as well as a. We may there-

fore deduce the values of derivatives of S (¢) at ¢ = 0 by moni- (2) (1) .
toring the changes in the shape of 1€ when ¢ is near to zero. F = F * {8(51'52)9(51) E(SZ)
0 0
2. CONSTITUTIVE EXPRESSIONS WHICH PERTURB THE REST STATE OF A
SIMPLE FLUID + a(sl,sz)[tr g(sl)]g(sz)}dsl dsz, {

In our rheological studies the role of the non-linear func-
tion &% (¢) is assumed by the nonlinear functional

F3 = F#2 { j ( (¥ (s,,5,:85)G(s)) *G(s,) -G(sy)

FIG(s)] =T +pl (2.1) A

s=0

+

. -G(s
giving the constitutively determined part of the stress T of an W2(51'52'53)[tr E(Sl)]-G—(s2) a( 3)
incompressible fluid. The argument functions in the domain of &

are symmetric tensor valued functions of s=t-tv for fixed t and X,

called histories, + ¥3(sys8,,8;) [er Gls)][tr G(sy)1G(sy)

= T - — =
Gls) = F "()-E (1) -1, G(O) =0 . w4(51152,93)tf[§(51)'9(52)]9(53)}dsld52d53’

which are defined on the relative deformation tensor F, (1) =

Vx Xt(x,7) where X¢(x,7) = £(X,7) is the position veckor of the o e

particle X which is presently at x. Equation (2.1), which as- ®

sumes that the stress depends only on the first spatial gradient 5(‘4) = 51(3) + [ ] J [ {¢1(51152'53'S4)§(81)'9(82)'9(53)%
of the deformation, is still too general to be used to solve the

problems which lead to understanding how viscoelastic fluids re- 0o 0 0 O

spond to applied forces.

It is well known that the extra stress vanishes on the zero . -G(s.)
history % (0) = 0. It is then natural to seek expansions of + b,(s,,5,,83/8,) [tr G(s))1G(s,) "Gls3) Glsy
F (G(s)) in terms of functional expansions on the rest history

+

(s,,5,,58,.5,) [tr G(s,)][tr G(s,)]1G(s;)G(s,)
F (6(s)] = F(0:G(s)] + F[0:6(s),G(s)] 93(81:8,,838, 1 2 3

+g72{o:g(s),g(s) /G(s)) + ... (2.2)

+

¢4(51,52,s3,s4)[tr g(sl)][tr §(82)][tr §(53)1§(S4)

where

+

-G(s,))1G(s,) -G(s,)
F 101G, (s),G,(8) ,...,G (s)] bg(s)08,053:8,) [Er(G(s)) -Gisy))1G(s,) 65,

. G
is an n linear form. We shall assume (Green and Rivlin (1), + ¢6(51,52,53,54)[tr(§(sl) Glsy)1ler Gls;)1G(sy)
Coleman and Noll (2), Pipkin (3)) that these n-linear forms may
be represented by iterated integrals of the form . ¢7(sl,52,s3,s4)[tr(gﬁsl)'§(52)'§KS3)]§(34)}

[ e [ Kijkl...mv(sl’sz""’sn)sz(sl)"’va(sn)dsldsz"‘hﬁf dsldszds3ds4
0 0 h d
B(s.,5,), ¥(s8,,5,,8,) and ¢(s,,S,,5,,8,) are unchange
It is very easy to find the isotropic forms of these integrals where ,lf 2 172! 3. g%s 25 $'=4B(s ,8.). Highe
from invariance theory for a single tensor G(s) (see Exercise transposition of arguments; e;g., 1’72 271
94.7 in Joseph, (4)). If we introduce the notation S‘(")(g(s)) order expressions giving 5F(“ (n > 4) may be written down:

for the partial sum of (2.2) after n terms it is easy to show

spection.
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A distinction i
s usually made between sma%%)strain expan-

sions which lead to integral expressions for %

expansions which lead to and slow motion
1
FI oA,
8y (2.7)
s (2) _ 2
“By oy (2.8)
FO _pa s
1=3 Bz(ézﬁl + 5152) + 83“11-' éZ)Al v (2.9)

FY oy (A.A 2
= a Y + A
124 2838 + AA5) + oA, (2.10)

2 2
+ 74(52_1 + 51 52) + ys(tr 52)52
+ vy _(tr A )A 2, [y, tr A +
6 =2'=1 7 =3 ¥ 8 (tr ‘5152) 1 5.1

where u, a.,...
' %y ' YB are constants and én = énlg(i’t)] are Rivlin-

firicksen tensors,

A an U,
455 < o
J 1
and
a. ) =14y 2 30 3u
241! U, == 1A )., + 2 2
ij at 2 axl =n’ij (én)il axj + (én)jl %
1
(2.11)

We think that the ex i
i at t pansions for small s i
?Z;;ogg ?;e3n2t5dé?tIDCt because (2.7,8,9,10) ;i?;gsa:ng ﬁgz §1iw
: .3,4, when the moti i on
nean a velocity %ield of the fg;;OH 7o slov. By a slow motion we

Ulx,t,e) = eu(x,t') t' =
X . ’ et
(2.12)

/here t' derivatives of u

. x"
he nth acceleration (x,£') of all orders are bounded fields.

n

aux,t,e) 3

= = (_ ; y.y\ _ _n+l,3

" GE+rUmM U= G vuny
ends to zero as en+1 as e+0

Slow unsteady motions a

: nd slow
ty that their velocity is given
their nth acceleration by en+l

-teady motions share the

: . proper
'Y € times a bounded field agd
imes a bounded field.

To obtain (2.7,8,9,10) f
& not ; r3, rom (2.6) when the moti i
e that since A_[U(x,t,e)] satisfies (2.11) ton 1s slow

A [U(x.t,e)) = " A [u(x,t")] (2.13)
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where én[g(g,t')] satisfies

3A
= _.n . . . T
Agyy (] = elgpr + W VA + A0+ (AT ]
n st
G(s,e) = nil(--l) ﬁr_l}n[U(_)g,tIS)]
n(es)n
= nil(—l) _HT—— én[g(i,t Y1 . (2.14

Substituting (2.14) into (2.6) we find that (2.7) arises as the
coefficient of €, (2.8) as the coefficient of e<, (2.9) as the coef-
ficient of s% and (2.10) as the coefficient €7, where the con-
stants arise as moments of the material functions *. For example
(see Coleman & Markovitz (5)),

L8

p= - i sz (s)ds, ay = J s2 t(s) ds

0 0

|
0

3. CANONICAL FORMS OF THE STRESS FOR THE PERTURBATION OF THE

REST STATEZ

and

[ a(sl,sz)slszdslds2 .
0

We turn now to the problem of free surfaces on viscoelastic
fluids in arbitrary time-dependent motions which perturb the res
state. We consider a one-dimensional family of problems dependi
on an externally given parameter c¢. When € = 0, the fluid is at
rest. For example, in the problem of the free surface on top of
viscoelastic fluid induced by rotation of a rod the angular velo
city of the rod is given by cf(t) where f(t) is a prescribed

! This reduction was carried out for the fluid of second grade I
Coleman and Markovitz (5) and for the fluid of third grade in
steady flow by Schowalter (6). To make the reduction at third,
fourth and higher orders it is convenient to use trace identitic
for the Rivlin-Ericksen tensors evaluated on isochoric flows (s«
Spencer & Rivlin (7)).

2 The material in this section gives a simplification, due to
Joseph, of the theory of domain perturbations of the rest state
with unsteady motion (Joseph (4), Chap. XIII). In the old theo.
we used the material mapping, X++Xg,defined by E(X,t,e) = X,
5(5,t,0)= X, as a domain mapping. In the present, improved the
e do not Introduce E(X,v,e) but work exclusively with the rela
tive position vector xy(x,t.,e). We are then able to define sim
pler mappings of the domain, like (3.16), which are not materia
mappings and are just like the domain mappings we use to study
steady flow.

69



function of the time t The coordinat
f ion t . es of the rest state may b
1dent1f1ed.w1th the particle labels X. The domain e (t) occipi:d
by the fluid depends on t,e but 5 is a fixed domain independent
of t.

We begin by introducing kinematics for i

: perturbations of

rest state. The relative position vector is given by the

n
= <n> €
Xe(ZeTve) =X+ 8 x0T b (3.1)
When € = 0
Lt(il‘(lo) =X (3-2)

is independent of Tt because the fluid is at rest. Moreover, since

xt(g,t,ﬂ) = X (3.3)
it follows that
<n>
X (xs8) =0, n>1. (3.4)
The velocity of the particle at time t which a i i
h t time t
place x (the particle at X when e = 0) is given by © e At
- ay, (x,7,¢)
Uy, (x,7,€),1,€) = U(x,1,6) = ar—t =
<n>
~<n> n 3y (x,7)
=Ty (x E - %t
Ty X, 1) I i T 37 . (3.5)
Hence
t
<n> ~<n>
Xe (x,1) = [ U (x,t')dt* , (3.6)
T

where, by d4iff i i i
wher ; by differentiating (3.5)1 with respect to ¢ at =0, we find

<

~<1>
UV = 0 x,0)

T<2> ’
u (§,1) = g<2>(§’1) 2 x;li VU<

1>
(_’5:1)
etc. We note that since
VE.H(LtIE) =0, &= _x_t(il‘rlc)

is an identity in %

Vg'g<n>(£:T) =0
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in "¥”and, taking e=0, § = x we have
v-u ™ (x,1) = 0

for n > 0 .

With these kinematic preliminaries aside we turn next to th
stresses. We conf}ne our attention to the second order theory a:
seek to purge Jr(z of redundant terms. We first rewrite (2.4)

&2 - { G(s)Jf (t-s,e)ds

]
0
3
+ [ J v(s s, (e=s,,€) Tt-s,,e)ds,ds, + 0(c) 3
J
o O
where
Tt-s,e) = £, T(t-s,c)-p (U(E,t-s,e) ] °F (E-s,¢) 3
. - g, [aum . L L . ag, U, i
i) x4 351 EX3 Ix axi IxX xl axj

The material constant a(s ,52) does not appear in the second ord
theory because G(s,e) = 0%6), tr G(s,0) = 0 (for incompressible
materials) and tr G(s,e) = 0(e?).  The material functions G(s) a

Y(sy,82) are, respectively, the linear and quadratic shear relax
ation moduli,

2

3°B(s,,5,)
aGc _ _ 1'72
ds = r(s) , 7(51:52) = ggzasz

G(s) and Y(s,,s.) vanish with sufficient rapidity to justify the
integration %y 5arts leading to (3.7). These moduli are related
to the constants of the fluid of grade two by

p = [ G(s)ds ,

0
@) = - [ sG(s)ds, (2
0

a, = [ { Y(sl,sz)dsldsz.
0 0

The canonical forms of the stress for perturbations of the
rest state arise from the perturbation of the equations of motior
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U
F(x, = — .
X€) = ozp + U-VU) + Vp - V-F[G(s)] = 0. (3.10)
Since (3.10) is an identity i “n>
ntity in y*, F n = i
n>0. To expand &, at constant'x we é;ite 0 In ¥ for a1
86(x T, 0
(I)ij - a—_ X, €) i ait(i”[’s) N a_[-l aLt(EITIC)
= X, %,  ax,
i ij ij Sxi (3.11)
and -
:_9_(5,1,6) A (x,,e) U1t e
X, X, = IIT 3%
i xJ l=12! Bxi
m+e  au <t axt<m>
+ 1 1@ £ = -3
g=1m=1 MIE! Bx, *5
Collecting results we find that in %
‘.
<1>(x t) o
2 X, ‘1> <l>
pos + v - 2
3E P G(s) Vv'u (x,t-s)ds = 0 (3.12)
and 0
ag<2> L o
plyg  + 20"V .wpl> <2
s U]+ 9% - G(s) v (x, t-s) ds
. 0
- 27- Gs){ <1>'VA <1l> T
( Xe A, (s) + A (s)-vx, "+ vle) *A, (s) }ds
0
—ZV'J ( vy(s,,s. )A(
178,)A(s,) *A(s,) ds.ds, =
| Als) ,)dsyds, = 0 (3.13)
0 o
1>
where x< - P
X St = <1
s e T Xe et (o) = A 07 (k6000 ana vog P -
U = 0. Equations (3.12 a

to boundary conditions -12) and (3.13) are to be solved j
" arisin ed subject
data. When this data isstea;;from the pert;f?3t1°n of given

we find that

<1>
_ uv29<1>

p (x) =0 (
3.14)
and
ng<1>_‘7g<1> + vp 2> uV2U<2>
- 2V~(ul§2 + a,B } =0 . (3.15)
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The perturbation problems may be solved sequentially. First we
find U-L” from (3.12). Then we compute e T (x,1) from (3,6).
Then we compute US2” from (3.13). We may then compute Lt<ﬁ’(§,r)
from (3.6) and proceed to higher orders. Recent work of Slemrod
(8) guarantees that, for the type of boundary conditions occurrin
in the applications, these perturbation problems are uniquely
solvable.

In treating free surface problems which perturb the rest
state with unsteady motions we confront two problems. We need
an iterative procedure for computing the free surface like that
described in Section 1 which will allow us to simultaneously
generate the history of the deformation tensor F, (t,e) which is
necessary to compute the stress. An iterative Efocedure of this
kind has been given by Joseph (4) and applied to the problem of
the free surface on the top of a fluid between cylinders urder-
going torsional oscillations (Joseph and Beavers, (9)). 1In dis-
cussing this procedure it is best to separate the problem of com-
puting histories from the domain perturbation. We therefore
start our discussion by considering problems in which the region
occupied by the fluid is constant. As in the model problem of
Section 1 this assumption restricts the preliminary analysis to
a perturbation of boundary data at a fixed boundary, independent
of ¢ and t.

We now suppose that the domain occupied by the fluid depend:

on e as in the rod climbin problem shown in Pig. 3.1. The anal¥»
sis of this difficult problem closely follows along the lines o

Q(a,t) = €f(t)
g=-eg §-__4:)
=z U=eU+teW+eV
= X ~z =
z = h(r,t,e) (Equation on the
free surface)
% -
Free surface oconditions:
Field equations: 3
h
s, -22s5_=0,
veu=0, z6 or ré (zer
- - she.
2 str:
30 sh h —
p[g% +U- _] =% + V- a—r(szz—sn)*{l— (__f) ]srz_o
5=p+opgz (head) w=23, 8 (inematic conditi
— at . x
S = FIG(s}] (stress) 3hg -

P, =+ 8, T3 Oz

%%F [r —:// 1+(3h/3x) 2]

(the jump in the normal stre
balances surface tension)

Fig. 3.1 Governing equations for unsteady rod climbing. The constants
[p,g,pa,T]=[density, gravity, atmospheric pressure, surface tension].
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ion of he P -
the discuss t model roble aly ed in Sec on 1 We
blem analyz ti

1€(t) = [r,8,z: r>a, 0<6 <21, 2 < hir,t,e)]

’

= [rg:84:25: 19 2@, 0 <6 <21, z < g]

- 0 - 0
with a shifting transformation
0 =
60,
r=rx,,
(3.16)

z = ZO + h(rortrﬁ).

The differentiation rul i
) : es discussed i i
The nti : 1 in Section 1 i
progigz €ﬁ21§;§?§19ns introduced by the fact thataggl{hge;:e:;tt
A B 1s along vertical rather than radi i "
e, h "](ro,t)x The solution in 47 (t) ?slgitiigzg a
s

a series in %/} e,
; 0 Whose coeffi A
following the mapping cients are subst&ntial derivatives

U(r,z,t,e) g[n](ro,zo,t)
X (o2, t,0 L 1™ gz 0
?(r,z,t,c) =1 nl wln](ro,zo,t)
h(r,t,e) h[n](ro,zo,t] ,

Th . . .
e substantial derivatives may be written in terms of partial

1 s h ldlng f thro h co C o f
d‘ erivative (o} X ixed
h <ug nnection ormulas like (1. 9).

(.)[2] <2>

= (-) + 25[l]~v(-)<l>

<2>

it

(5% 4+ 2p0) 2 )<1>
39z )

The e i i
quations which govern the partial derivatives in ¥} are
0

(3.12) and (3.13) wi -
surface, rg = a with x = X0 and p = ¢ (the head). At the rod

o<l = <n>
oA ejaf(t) , U =0 (n>1)

The equations which h

: old on the f
2ﬂ/b in terms of partial derivati
ormul:s as in Section 1.

This completes our deri
) v eriva
induced by time-dependent mot
perturb the rest state.

ree surface are expressed on
ves through the connection

tion of the theory of free surfaces

ions of a viscoelastic f1
! uid which
We turn next to applications and results
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4. STEADY ROD CLIMBING3

Here we consider the well-known fact that certain viscoelas-
tic fluids will climb rotating rods of small diameter. The mathe-
matical problem is that shown in Fig. 3.1 with f(t) =1 and the

analysis follows along lines laid out in Section 3.
4.1 Symmetry

From symmetry considerations following a change in the sign
of € it is easy to establish that the azimuthal velocity and shear
stresses are odd functions of €, while the secondary motions, head
and free surface are even functions of €.

4.2 Physical Description

There is a neat sorting of the different characteristic
physical effects into an association with the different powers
of ¢ in the series solution. When there is no rotation, the free
surface is flat and the pressure is hydrostatic. At first order
in e, there is a z-independent flow in circles with no change in
the pressure or flat free surface. At order two, the pressure
must equilibrate the central forces arising from centripetal ac-
celerations and normal stress. The free surface acts as the
parometer of the interior pressure distribution, rising where the
interior pressure is greatest. The free surface can remain flat
only if there is no motion. The departure from flatness of the
free surface at order two requires that the azimuthal velocity,
at order three, 'should come to depend on z. This is a consequence
of the fact that the azimuthal component of the shear stress S =

FIG(s)]

- —ht
Sne = Sze h Sre

14

which vanishes automatically for z-independent fields when the
free surface is flat, can vanish when the free surface is not flat
only when Szp = h'Syg does not vanish. The z dependence of the
azimuthal field at third order is generated without changing the
pressure or the shape of the free surface. The z-dependent azimu-
thal field, generated at order three, is associated at order four
with forces that also depend on z; such forces inevitably exert
torques in an azimuthal plane, and they lead to secondary motions.

4.3 Steady Rod Climbing at Second Order

1f we assume that the free surface at the rod surface makes
a flat angle of contact it is not hard to show that

p_<1> -, a2/r , g<2> =0 in ~vﬁ0 ,
and
4 . 4
l¢<2> _ 2a g - pa (a.
2 4 2
r 2r

where 8 = 3a; + 2¢2 is the climbing constant. The coefficient
h[2](r), which gives the first deviation of the free surface from

flatness,

3Joge§h and Fosdick (10); Joseph, Beavers and Fosdick (1l):; Beave
and Joseph (12), (15/% -
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inates.

matical fluid, g 203),
was nearly flat and that
secondary motions could b
lected.
deduced a cri

anl2) (r.) /ar

rod climbing is that the norma
like 1/r4 when r is large.

h(r,e) = h[2]

(rye? + o(eh

is determined from the problem

>
L8]

1 4 . 4
Lenl?] y'o- pghlz] = - 22 B+ 22,
r 4 2
o 2r
! L [2)
h[2] {a) =0, h*""(r) + 0 as
4.4

(4.3)
Y + o

n(21

The Critical Radius and the Effects of Surface Tension
The fluid will climb the rod whenever ¢ is small and wherever
r) > 0. To see this,

it is convenient to set T = 0.
the free surface will rise if and only

Then
if 3 > 0
2y if 2
~ 4
r2 < 4B/p.

anad
v ana

(4.4)

Otherwise, inertia dominates, and the free surface sinks.
gentative experimental values for

B =~ 1 for STP,

and Joseph

{(12)).

Repre-
8 near room temperatures are
and £ & 0.8 and 1.4 for polyacrylamide, (Beavers
It is easy to verify that the ratio
R U
]T(rh[zl)'/pgrh[zl

> 16T/pgr2

as r » 0 when h{2) is given (4.3) with T = 0. This ratio shows
that when r is small surface tension should not be neglected (see
Fig. 4.1{. To determine the way in which the parameters a,B,e,q,T
affect hl2), Joseph, Beavers and Fosdick (11) derived an accurate
approximation to the problem (4.3).

write (4.3) as

In the approximation, we
L
Tr(rhlz] )' - pgazh[zl = - a2Q<2>

)
+ (r - az/r)T(rh[2] )'.
The last term of (4.5) is zero when r

(4.5)
= a. We set this term to
4Equation (4.4) gives a critical radius

r

c = 2/8/0

corresponding to h[2]

(4.7)
(rc)=0 in the absence of surface tension.
For r < rc normal stresses dominate and for
The first theoretical anal
to Serrin (13) and Giesekus (14).

r > ro inertia dom-
a Reiner-Rivlin_fluid with constant

yses of rod climbing are due
Serrin studied the problem for

coefficients (for this mathe-
on the assumption that the free surface

the z dependence of the solution and the
e neglected.
He interpreted a negative slop

e at r =

Surface tension was neg-
to climb and a negative slope at r = b as a tend

a as a tendency
ency to fall.

He
ondition that

tical radius corresponding to the c
0 when T = 0. The physically dominant feature of

1 stress effects die very rapidly
When a vi

on the top of a Newtonian fluid,

down into the Newtonian fluid (se
free surface has no critical radi
close to one that does.

scoelastic fluid is floated
the viscoelastic fluid will climb
e Section 4.7) and though the

us it has a shape which is very
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Fig. 4.1

The free surface on STP motor o0il additive
of radius a =

0.320 cm rotating at 3.8 rev/sec, (8
experimental profile; — — — — gecond or
face tension; o 0 0 0 sec

near a rod

= 0.63):

der theory neglecting s?r
ond order theory including surface tensic
(Joseph, Beavers and Fosdick (11)).

neg-
zero, and solve the remaining problem; then we rgigozirzteappZOM
lectéd term through successive gpproxxmatlzﬁs.rOd e Hirst 2P
imation is very accurate, especially near e
Joseph, Beavers and Fosdick (11)):

1. (2] a 48_ Qéi] “
sh%~ i35 oy ~ o e
= a%s5 and S = pg/T.
small, hl2]

This expression showg that, whin argzor
is proportional to a and 8, and is inversely P
tional todT.

R €
4.5 Rheometrical Measurements of the Climbing Constan
. i of
We uge the second-order theory to determine the values
constant B from

- - 2 4
h(r;szlalp,T) % hlz](r;B,o,T)e + 0(e’) .

(4
When h,T and p are given,

we may compute é from (4.8). In Fig.
4.2 we have plotted typical exampleslof.thewhe

against the square of t ular velocity
is nearly linear in o

for values of w
suggests that there mig
order theory given by (

ight rige at r =
he ang

= ¢2/4n%. The ri

less than about 10. Th
ht be good agreement between

the second-
4.8) and the experimental observations.
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/ h ‘} (b)

I(ay

5

Fig. 4.2 (a) Method of slopes. (b) Method of profile fitting.
— — —. second order theory;

¢ experiment. Observed rise at
I = a never seems to lie above second-order theory. Static rise
in height hg computed using observed contact angles. When the
fluid does not wet the rod, hg = 0 and h'(a) = 0. In second-
order theory B8 is computed from (4.6) by method of slopes. Theo-
retical profiles computed numeric
using observed values of h'(a), and values of 2
of slopes. (Beavers and Joseph (12)),

—
r

taken from method

Such agreement was attained in Joseph, Beavers and Fosdick (11),
even though in those experiments the condition h'(a) = 0 was not
satisfied; neither was h'(a) small.

Joseph, Beavers and Fosdick
(11) attributed the rise associated with the non-zero wetting
angle h'lr=a = = n to capillarity and replaced (4.8) with

h(r;ez,ﬂ,p,T,n) = h (r;e,Tm) + % h[2](r;6,p.T)52
+ 0((—:2n + 64)

(4.9)

hS is the static rise, computed from

[]
1
T | *Ps
r

l2 '/2
(l+hs )

- pghS =0, h'l = ~-n, hs+0 as roe

=a

(4.10)
The static rise vanishes when n =0,

(4.9) for computing h seemed to work,
since n was not small and there was no a priori reason to neglect
terms 0(e2n). 1In the experiments reported by Beavers and Joseph
(12) we were able to control n, setting it to zero.

There are two methods we use to determine £ from (4.9) and
the measured values of h = hexp: the method of slopes and the
method of profile fitting. The two methods are demonstrated in
Fig. 4.2. To use the method of slopes, we need only measure the
height rise hexp at r = a; from these measurements, we read off a
slope and equate the theoretical and measured values

The plausible procedure
but had an ad hoc character,

1.[2r - _ 2
3 h (a;B,p,T) = dhexp/de
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ally from first two terms of (4.9)

B The method of slopes does
i i is then solved for F. . lopes does o
Thlsdeq:iglgz éhe static climb hg, but the gnl{ g?sﬁlgzczx;eri—
Egse ?gr assuming that dheyp/de? is independen

. of B
mentaifu the method of profile fitting, we choose the value

i i i thod is
ives the best fit over the entire profile. zgéstgz hod
?hat i sful if, at a given temperatgre, one a e e s
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Fig 4.3 Profile fi tting for pol acry lamide solution Compari
‘ . .

son of obser ved with predlCted p!OflleS for low rotational speed

Temperature = 24°C.
? (a) (b) (c) (d)
a(cm) 0.317 0.476 0.635 0.794

(Beavers and Joseph (12))




of profile fittin i
= g requires that

from s one compute th : :

profifzefizggrlm?”tally measured values Of n. ihitiitﬁ deE s

method of slé;gsls ?ore accurate but more time»consuming tzﬁn th

most efficientic ang general, the determination of & is achi a

mothods.  Same Ze;nd accurately by simultaneous use of botg ieved

o oS- resentativ i

experiment are exhibited in ;i;omsaglsons between theory and

4.6 The Effect of Temperature

Be a
range 22v35558§g Joggph (;g) measured B at temperatures in th
is shown in Fig. 4.4 © Xﬁr?at1°n of 8 with temperature for STS
Py . 4.4, viously, temperature has a very big

0 l | 1 i |
24 28 32 36 40 v y

Temperature (°C)

Fig. 4.4. variation of 8 -1
Va B{gcm ) with tem
, empirical relation 8 = 20 exp(—o.llggf?tgge<(;Cl'sg?z STE-

Coated °
Uncoated D [e] ; : o
a(cm) 0.159 0.317 0.476 0.635 0.794 0.953

(Beavers and Joseph (12)).
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4.7 Normal Stress Amplifier

The perturbation analysis of rod climbing can be carried
through second order without complication when a layer of liquid
is floated on another immiscible liquid. Beavers and Joseph (1l5)
have given an analysis and reported an experiment testing the
analysis for the problem in which a non-Newtonian liquid (STP) is
floated on water. The STP climbs up the rotating rod into the
air and down the rod into the water. The down-climb is much
larger than the up-climb, roughly in the ratio

121 Ty [T e T
hy """ (a) . TT(p P, 4+av (p pa)g/?'T 1D
hpl2 (@) /TG a+allo m0)a/Ty

[2](a) is the down-climb a? the bottom STP-
water interface on the rod surface at r = a,npl2l(a) is the up-
climb at the air-STP interface,and p, py and pp are densities of
STP, water and air respectively, and TT and T, are surface tensio:
coefficients (see Fig. 4.5). Equation™ (4.11) is derived from an

where the gquantity h

\d‘b
o
1A
~
A
8

s N e
2= — L — = —— - — — —

2a

z=hB(r,n)

¥ig. 4.5. Schematic sketch of the free surfaces on STP floating

on water.
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analysis of the type that leads to (4.6) except that the dynamical
problem is solved in all three layers. Correct coupling condi-
tions for the continuity of stresses at each of the two interfaces
are prescribed, and it is not assumed that the interface is free

of tangential tractions.

The analysis shows that the effect of inertia and
to push the heavy fluid down near the rod. The normal
push the STP up into the air and down into the water.
inertia and normal stresses are in conflict at the STP-

gravity is
stresses
Hence,

air inter-

face and in concert at the water-STP interface.

In the experiments reported by Beavers and Joseph (15) the
values of the ratio (4.11) are, respectively, (3.7, 3.9, 4.3)
for three different rods of radius a = (0.479, 0.627, 0.951 cm).
The down-climb/up-climb ratio (4.11) may be further approximated

by hgt?) (a) /ng 120 (a) ~ [(0-pa)/(oy=p)122 = 2.7. The value of §
for STP was computed from the observed up-climb and the observed
down-climb. There is Presumably one and only one value of g for
STP at a given temperature. The value of 8 computed from the up-
climb, from the down-climb and from the independent measurements
of Beavers and Joseph (12) are in good agreement with one another.

The configuration shown in Fig. 4.5 can be regarded as a nor-
mal stress amplifier because the down-climb can be arbitrarily
amplified by making the density difference at the lower interface
very small. A similar analysis has been constructed when STP is
floated on a polyacrylamide solution instead of water. Experi-
ments of A. Siginer, completed but not yet reported, show good
agreement between theory and experiment.

4.8 Limits of Applicability of the Second Order Theory

Joseph, Beavers & Fosdick (11} developed an ad hoc criterion
to identify the region of validity of the second order theory.
They argued that the rise in height could be given as the leading
term of a power series in the Froude number F = ¢ L/9 ,

hir,e) = 220l e 4+ 0 . (4.12)

Here 4 is a characteristic length depending on the radius of the
rod and the fluid. This length is not uniquely given and Joseph,
Beavers and Fosdick guessed, using (4.5), that

12 = O[gh[2]] and gh[2]~éa(é%)l/2,

The criterion for the second order theory was that the Froude
number F should be less than one

2 2 . 1/2
- T 9,172 <

F 5 p [aa(oT) } 1. (4.13)
This criterion works remarkably well, though it is based on little
more than a guess.

The problem of error estimates for perturbation solutions is
very complicated. The problem is that even for steady flow, the
higher order terms depend on many independent constants whose
values and sign are unknown.
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4.9 Higher Order Theory: Secondary Motions

theory of rod-climbing thrggghbfoizggrizge
16) and wi e

en completed by J. Yoo (16 " ported

yas rggegté{sgzrtation presently under preparatég2%ic§§: ;roble

is v r .extensive because he has so¥ved a very di e

with yn parameters. Yoo's analysis treats.the p o e tho-

gitgdmisybetween rotating cylinders. He der;vesfiow ey
gogal eigenfunction expansion theory for Stokes

Gers Ko O ions which ¢ ¢ third and fourth order, when

The equations which governa: i A Ev Joseph and wher

i i eglected, w :
surfacehzegzégﬁdlzrgeg the f;ee surface changes sbapetw;ghzﬁ:
(é%L;ating secondary motions. The azimuthal componen
g

i on a

traction on the free surface cannot remain ;eige Ehe gzim
Soein imuthal velocity field when dh/dr f 0. eh the azin
ety igéity field at third order varies with degt ;zimuthal
tica vet atification of velocity induces torques in e e
tical str fourth order leading to secondary motJ..ons.<4> ® ranty
ptazzirig order is governed by the stream function ¥
a

(Joseph and Fosdick, (10))

The higher order

<3> <3> <1> <3>
3 4 v _Vv + pv v } =0
WY 8 i SBlapray) (7 e
0or (4
2 2 19
: 2 ] + 2 - Lo
= 3
in VO' where &£ or azoi r 3r
<4> (4
4 3 = = b
and ¢ = az =0 at r a,
2.<4>
awq): 2,4 9 =0 at z =0, -0 t
and 5t 5 2
d3r 20

4 v = Ar + B/r 1is the azimutha component of veloc
<] 2
In (4. 14), /

at first order,
2 2 2b2 1-2
bcr-a B = a’b?(1-2)

where A = ;5:;5‘ B bz_az

i lin
is the ratio of the angular ¥e}oc1ty of.thehogtigmcznzn
et f the inner cylinder; Vv is the azimutha ¢ dgnsit
ey’ t third order; u and p are the v15c951t¥ ancond pd
:§i°§i§{d? a1 and ap are constants of the fluid of se
;

It is found that

w3 o v31(r) + vbz(r,zo.s.p,T).

.14) .
Hence, only Vi, enters into (4 )

i i height rise at
5 Yoo's analysis. including the
fog¥%hrg§ égswggl glso be p%bllshed elsewhere.
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Fig. 4.6 i
Ofgw<4>(r ?sr?a:i;nzzozf Fhe secondary motion. The level lines
T :heolo n in the reference configuration. Stream-
' w speed secondary motion can be obtained by i
verting the shifting map, r = Yor 2 =2_ + h(r_,¢) i e
o’€)s using the low

speed approximation h (r Lne 1
( )3 h ) (r)e2 +4—!h“](¥‘)e4 .

The following remarkable result follows from the argument
The secondary motion induced by the slow rotation o:
a rod in any simple fluid appears first at fourth order but the
viscoelastic contribution depends only on the constants § = 3a3
209 and ay + ay of the second order fluid. The streamlines of

slow secondary motion have the same shape in all fluids having t

same material properties (p,T,8,03 * 22).

In Fig. 4.6 we graphed the level Tines of the stream func-
tion for one case which occurs in experiments. We note that the
contrary t¢

secondary motion is dominated by one edge eddy which, contrary
intuition, makes the fluid wind up on the free surface of the
bubble and sink near the rod. This circulation is in agreement
with the observations of Saville (17) and with our own prelimina

observations at low speeds (see Fig. 4.7).

just given:

Sketch illustrating the upward motion of a fluid

Fig. 4.7
surface of the bubble.

particle on the free
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5. UNSTEADY ROD CLIMBING

Everything which is reported in this section was unknown be-
fore 1974 and was discovered by us.

5.1 Torsional Oscillations of a Rod

Interesting things happen when a rod in a viscoelastic fluid
is set into torsional oscillations. These things were discovered
first by analysis (Joseph (9, Part I)) and then verified by ex-
periments (Beavers (9, Part II)). The effects are not small in any
way and they may be verified by experiments even with crude, in-
expensive equipment. .

The equations governing the problem of the free surface on a
viscoelastic fluid outside of a rod undergoing torsional oscilla-
tions are given in Fig. 3.1 with f£(t) = ¢ sin wt. The analysis
is based on the perturbation theory described in Section 3. It is
a small amplitude theory with amplitude

|
NIE
(o}

where 0 is the angle of twist (see Fig. 5.1)

m Q(a,t) = ¢ sin ot

L"———-2a

Fig. 5.1 Torsional oscillations of a rod

A moments reflection will convince the reader that symmetry
properties which follow from a change in the sign of ¢ = Q (a) in
the steady case also apply in the time-periodic case being con-
sidered here. Of course, one could not have an unsteady rise at
second order in e¢ without secondary motions. But this possibil-
ity exists and is realized for the mean-value of the height rise
over a period of oscillation. The analysis shows that the first
deviation of the free surface occurs at second order in ¢ as a
superposition of a mean climb, independent of t, and an oscilla-
ting climb which oscillates with frequency 2«. It is very easy
to compute the mean rise but hard to compute the time-periodic
part. (The time periodic part of the rise of the free surface on
a fluid between oscillating planes has been computed by Sturges
and Joseph (18) and is discussed in Section 6.2). The experiments
of Beavers (9,II) show that the mean climb completely dominates
the total climb at each and every instant and at all oscillation
frequencies within the operating range of the experimental equip-
ment. This happy circumstance allows one to make fairly simple,
repeatable measurements of the free surface which can be compared

86

wit e simple t eoretical expression whic give the mean rise
h th 1 pl h L} h

at second order.

5.2 Brief Review of Theory

s . h
A summary of the theoretical expressions derived by Josep

(9,I) is listed below.

; - -iwt 3
ra(r,zt,e) = o) eX®t + T(rye e + 0T

1 -2iwt al(r'z)]EZ + 0(£4)

2iwt
w(rlzltle) = Z[e

wl(r.Z) + e

j —2iwt - 2
= 2ivt (r,z)e
o(r,z,t,e) = %[2¢(r) + e #,(x,2) + e )

? i -2i0t § 2, oY
h(r,t,e) = 512 Alr) + 2 A (x) + e A (01" + 0te

scill
where quantities with two bars are 2veraqel:ilggij3;:zea2ng
i i igni comp
i 4 2n/w, single bars gxgnl y : N A e
;tgnzpirtg is éhé stream function for axisymmetric flow
’ L] ’

function
v(r,t) = r{a(;)éimt + E(r)e_lwt) satisfies
2y 12 2 - 151 | e(s)vir,t-s)ds in Y3 (5.
T F3r 3r r
0

and

v(a,t) = a sin wt, V(e,t) = 0 .

and 'ﬁ(r) satisfy

=
—~
-
-

D=

o.|n-

Riei
|

2 sin ws
= - %[r3|m,r[ 1oy { G(s) =—F— ds

0

r

b ds,ds
+ 2[r2|&. lzl,r [ i y(sy,8,) cos w(s)-s,)ds,ds,
0 0

+ 2rl8]? in VG

and

- - .
-i&)+pgﬁu)=§(r%er

-Z,r(a) =0, Hh =0
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It is not hard to solve (5.1

) and (5.2) in terms of Bessel func-
tions.

But the properties of the solution are easier to see from
a good approximate solution which lead

s to the following expres-
sions:
a Ar a
vir,t) = a(;) sin(wt + Ai log ;) (5.3)
where
A = Ar + iA, = re/ l+a2m2 + i im v 1+a2m2
i

and

m2 = ipw [ G(s)e '“Sasg .

0
The height rise at r = a may be expressed in the same approxima-
tion
= 2
> [a+1{“8 2
fa) = 2 ¢ A - 22 } (5.4)
YogT (Ar+l)[2(Ar+1)+A] 2Ar(2Ar+X)
y _ .2
where X = pga“/T and
A o sin us
By (2Ar+1)f G(s) e ds
0
+ (Arfl)J f y(sl,sz)cos w(sl -sz)dslds2 . (5.5)
0 0

The solutions for the steady climb which were discussed in Section

4 may be recovered from those just given in the limit w+0. In the
limit A = Ay =1, and using (3.9)

By = B = 3a, + 2a, and f(r) = ()

Equation (5.3) shows that the azimuthal component of velocity
is a decaying wave as might be expected in a viscoelastic fluid.

5.3 Experimental Results

Equation (5.4) shows that for a fixed value of 52 = m202/4
the height rise at r = a is a monotone decreasing function of the
frequency w having a maximum value for steady flow (6-+e,u+0).

This property predicted by analysis is in good agreement with
experiments (see Fig. 5.2).
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is steady. (Joseph and Beavers (9)).

i 2 1 the
Equation 5.4 shows that when the amplitude ¢“ is smal
mean climb at r = a

ELELE) = H(a,uw)
]

: 3 s . :
is llldEPe!ldent of the a“gle of twist ©O. The universal functio
f!eque!lcy H(U) is shown as a dark line in Fig. 5.3.

5.4 Validity of Second Order Theory

To study the limits of validity of the secqgi oidig)tgzoi

the unsteady case we first usegazge gsﬁzhcgitzﬁé n Za) s
flow except that we rep A
i?;a %a). Then the condition F < 1 becomes

1/2]1/2 <1,

2 2 .
[ g
8g [BA(“)a(pT)
that is,
1/2
2.8 1 eT)1/2,
wo < ;% [aBA (w) (9 )
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frequency o ofng::?iizeq height rise h/0? as a function of
different angles of tS;;gn- Exgerimental points belongigg :ge )
rise at it " are shown. The i  Six
second-order is shown as a solid 1§z§erl$§2til ggrmallzed
M ertical bars

are values u associ i
Beavers ‘9))? oclated with the criterion (5.7). (Joseph and

The experiments show that é

4 maximum value 5,(0) = 3 a{w) is a decreasing function of w with

1 + 2a2. Hence the criterion

2 Qﬂ 1 1/2
w < = ( pT 1/2
02 @l ¥ ) R (5.7)

is a conservative estimate of i
orao on t of the region of validity of
criterio§°?¥'7)Tbe dlsgrepancy between the criterioi (5 g?e Sgcond
Criterion (5.6) 1S an 1increasing function of w. Hence 'if 23 ehe
corvetion ! é' is valid, then (5.7) will give increasin 1 o
stimates of the w interval of validi Y sacond-
order theoest idity of the second~
J .
(5.7) zzngénziazers and Fosdick(1l1l) showed that the criterion
o ayp s Son s:ezg; :;;2 th;i; observations of the height rise
of ) ase. This criterion is i i
se?v:gp:giﬁe?Fs summarized in Fig. 5,3. 1In th:és?iagsélgzble =
alized height rise is plotted for six digferenteaggies

of twist 0, and the i
v g
values of ertical bars indicate the corresponding
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0.l ss 112 200 368 786 3045 (rad/sec)’.

The experiments support the argument of the previous paragraph
and lead to the conclusion that (5.7) is a conservative estimate
of the region of validity of the second-order theory, which be-
comes more and more conservative as w is increased (because BA(m)
decreases) .

To relate Fig. 5.3 to the second-order theory the reader
should mentally delete all of the experimental points which vio-
late the criterion (5,7). For example, all of the points marked
A for which w2 > 58 should be deleted. When this is done the re-
maining points define the curve shown as a solid line in Fig. 5.°
We interpret this curve as the experimental realization of the
universal funcyion

H(a,u) ~ woh(a,u)/8

whose values are given theoretically by (5.4). Returning now to
Fig. 5.3 we note that many of the deleted points also lie on the
curve. This feature becomes increasingly pronounced as the angl:
of twist is increased. We interpret this feature as a demonstra
tion that (5.6) is a more correct and less conservative estimate
than (5.7).

our conclusion then is that, as in the steady case, the
points which break away from the universal function are a mani-
festation of effects which are induced by the terms of order

higher than e2.

5.5 Measurements of the Shear Relaxation Moduli G(s) and Y(sl,s
Using the Universal Function of Frequency H(w) .

Joseph (9,1I) and Beavers (9,1I) proposed a method for ob-
taining approximations to the functions G(s) and Y(s,,s3) from
the rise curve H(w) of Fig. 5.3. They approximated é(s) and
v(sy,s2) with generalized Maxwell models chosen for consistency

with equations (3.9):

2 a
_ 2N a L 53 s
G(s) ~ G.(s) = =% & . g% Pn
N a b
1 1 ™n
2 -kn(51+32)

M
v(syesy) ~ ey b ep ¥y

where
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There are 2N + 2M ~ 3 unknown constants if the constants p, a

1
and a5 of the fluid of second grade be known. The simplest
approximation is associated with the values (N,M) = (1,1). We
found that
N (2A_ + 1)a (A_ + 1)a
B, = —= L, . 72 (5.8)
a.w 2 )
1 1+ ()
1+ ( 5 ) k1

In the simplest approximation the response of the fluid is deter-
mined when the values of four constants, u,a3,e2 and ki, are known

Three of these constants, v,a)] and ay, may be regarded as known
fram experiments with slow stex £ Ate o

low steady flow. The constant k1 may be
determined from H(w) .
The next approximation is associat

ed with the values (N,M) =
(1,2). We found that

R (2A_ + 1)a c e
f o= —x 71, (Ar + 1 5+ 1 2] . (5.9)
oaw 2 B .
1+ (_l_) 1+ (F’) 1+ (E-)
u 1 )

N

In the (1,2) approximation the response of the fluid is determined
when the values of six constants, Hsa1,a9,c +k1 and k,, are known.
The constants cj,k; and ky may be determined from H(mf.

In the (2,%) approximation the response of the fluid is deter-
mined when eight constants are known, and so on.

In Fig. 5.4 we compare the normalized mean height rise curves
given by experiments (the dashed line) with the theoretical height
rise curves for the generalized (N,M) Maxwell models when (N,M) =
(1,1) and (1,2). The values of the characterizing constants for
these generalized models are determined by requiring that the
theoretical and experimental rise curves should match over the
largest possible interval [0,w) of oscillation frequencies. We
did not compute values of the five parameters which appear in the
next member (2,2) of the sequence. We expect that when the five
parameters of the (2,2) member of the sequence of Maxwell models
are chosen optimally, the agreement between theory and experiment
will be extended to much larger values of w.

It is necessary here to explain what is meant by agreement
between theory and experiment. The (N,M) Maxwell model has 2N +
2M parameters. The values of three of these parameters are fixed
from experiments with steady flow. There are therefore 2N + 2M - 3
parameters to be determined. The equations for the height rise is
such that we may fit 2N + 2M - 3 points of the normalized rise
curve by an appropriate selection of the 2N + 2M - 3 parameters.
This does not guarantee that theoretical and experimental points
between 2N + 2M - 3 fitted points will lie close together. If the
fitted points are widely spaced, theoretical and experimental
values at intermediate points will not lie close together. Now
consider Pig. 5.4. Por the (1,1) fluid there is just one disposable
constant kj“. We fit the point at 42 = 25. There is a close fit
for I(l'l)}w)=[w:0 < w? < 30) (approximately) when
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kp2 = 15.43 .

2
i k k
- the (1,2) fluid there are three dlsposablg 2335t33;2;e %sla
ot oo® "W fit the points at w? = 25, 100 an .
and Cji.

i = :0 < 2 < 450] when
close fit for 1(1 2) (lt)) [u) w

= 0.9735 .
k12 = 14.50 , k22 = 307.0 , ©;

2 not change by much. 'We expect
to ??3313 Zimgizidegzggszén g?eihe interval of good fit for the
Eggher members of the (N,M) sequence. ls 1 (o) over which

The existence of increasing interva (ng%e e M ere

fit the curves (and not just p01pts)_1z he o o 15

ment b tween theory and experiment. This kind © Agsuming s
ment be Wetablished for Iy )(w) and 1(1’2)(u).b S by
a}ready'es that the inteévé}s of agreement mayf il N S onesp
dlscugslon, the (N,M) sequence, we come to.the o M? ety
Theca la an increa;ing sequence of genergllzgd (N, PP
The;e > gnch fluid represents an approxlwat%on to’a clase “an
i 12 fluids in small amplitude periodic mgt;g: e o
?eal simp but restricted, interval I(NrM{(“) o _fq encles
1ncrea81ng,t which are required to comple gly spgc; i cach ren
g cons:age:ce may be determined byAcomparlsog :;: caneert is
P th: n gimilar to that shown in Fig. 5.3. I'od' concept ot
o ?: ill be possible to predict otyer peri %cilar O os
gﬁ:d;o: czmpletely determined (N,M) fluids over sim

e dy Clin
5.6 Breathing Instability of the Axisymmetric Steady

i i tead
The rise of a fluid on a rod in steady rotation 1s s vy
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Tzi:gmmeiiic when the angular velocity e of the rod is not too
. a certain critical value of ¢ th i i
solution loses stabilit i fua e e isynmetric
utic e t 1ty to a small amplitude axisymmetri ime-
g:ttqdéc ?otlop in which the rise is alternately fglIZdr;ﬁdtlme
flgwle Tﬁe g};i?ngyaidpumpéng mechanism associated with secondary
. 1 emptying is analogous to th i
lung in breathing and we call i H cathing instirs
ung 2 the instability a b i i
bility. This instabilit Y mectoriodin b
. N y appears to lead to a time-periodic bi-
Eg;g:ﬁing solu?lon of Hopf's type in which the amplisude of tg;
Thggbiggtng f{equency change continuously with ¢
) ing instability may be a manifestation 5 i
. . . . Of R l "
;gz:gslltﬁg giggiggSS.for Eotatlng flows (see Joseph (4)).ayAil§g:
ds , ibution of angular momentum is the same as a
;igsta;ngoize:tﬁigz.b Ig s;cb §|f10w the angular momentum is cgn-
: " . Y Rayleigh's criterion The stead
motion is driven by normal stres p taks torm oY
1 ) ses. It appears to take f
a single cell which carries the lo n the
n wer angular momentum fr. t
outside of the cell near free surfa he he
ce toward the rod and th i
angular momentum away from the r o1t foes
: od near the bottom of
angu . of the cell
a;g i:.géfceita:lgggimigziqs thg secondary motion is more intenézee
for ion of low angular moment fluid i
the climbing bubble The adv i i i "ang S omare
¢ . erse distribution of a 1
in the bubble is unstable b i i i the nigher om
Yy Rayleigh's criterion; the hi
momentum fluid near the rod is ' teipere
; f pushed outwards by centri
acceleration. The result is a "b n it
. . ulge® of "thrown outward"” flui
supported from below by normal str vid 0
r esses and from the sid in-
gzisiéngly strong furface tension forces generated by ch E{g;n
dccumug;szdoglsgg iZuigggi _Thilbuige buildup proceeds until the
cur ¢ ciently heavy to be dragged down
xg:z1;¥.th£h§uggige Fgﬁn_falls into the body of tgg fluid d:ggging
m wi 1t. The depleted bubble is now ba
" Ck
go" and the same sequence of bubble growth, accumulation of igw

momentum fluid, and overturni i i
pomentun flu oéce doover ing by centripetal acceleration can

5.7 Flower Instability of the Axisymmetric Climb

on the Oscillating Rod

. freggsigyis(zlz? a cri?ical value e when the rod oscillates with
requ a,L) = € sin wt. In this case the basic time-

S?ié?g;i :ot3212§.15 axisymmetric but 27/¢ -periodic in t © At the

634 isymmetric configuration loses its stab'.'

\ i v C il

2gg§tgr 21/w -periodic flow with a different symmetry pattéig .

(oea izieanleoseph, (15)). The new .symmetry pattern has a cer-

Thé (it gral number of lobes, formed like petals of a flower

b tow arlslng.fyom thg flower instability appears to be an.ex-

amp oI supercritical bifurcation of a 2n/w -periodic solution

into another 2n/w -periodi : . .
pattern. periodic solution with a different symmetry

6. OTHER FREE SURFACE FLOWS

6.1 Second Normal Stresses in Steady and Time-periodic
Free Surface Problems

)f thzh:aizcggdsﬁgzgaihiziess is one of the three scalar functions
£ e of : are required to specify th t i
simple fluid in viscometrie flo o fons the
; w. Of the three functi
iecond normal stress is b iffi o measure:

: . Yy far the most difficult t
'ven its sign was for a time a matte Sroveray.

t for r of heated controvers
urfazénzman and P1pk1n'(19) discovered that the shape of Zﬁe free

n a viscoelastic fluid flowing down a tilted open channel
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would be proportional to the second normal stress at lowest O(8’
where 8 is the angle of tilt. They found that the free surfac:
bulges outward if the second normal stress is negative. Kuo anc
Tanner (20) reported experiments showing an outward bulge in th¢
fluids studied by them. Sturges and Joseph (21) carried out th
perturbation analysis through terms of 0(g4) ana showed that
secondary motion would not develop until 0(8%) when the channel
is infinitely deep or has a semicircular cross-section.

The second normal stress is, of course, a function which
arises only in viscometric flows. However, Sturges and Joseph
have shown that it is possible to obtain the limiting value of
second normal stress at zero shear from measurements of the frec
surface on a viscoelastic fluid between oscillating planes. Th
analysis of Sturges and Joseph (18) is like the analysis of the
oscillating rod discussed under Section 5.2. In fact, Joseph
(9,1) formulated the problem of the free surface on a simple fli
between cylinders undergoing torsional oscillations. The oscil
ting rod and oscillating planes arise as limiting cases of the
problem between cylinders when the gap between the cylinders is,
respectively, large or small. 1In the problem of oscillating pl:
it was possible to obtain exact solutions not only for the mean
height rise but for the oscillating secondary motions and heigh:
rise as well. Among the results obtained by Sturges and Joseph
(18) we emphasize the following two:

(i) The mean rise in height of the fluid between oscil-
}ating planes is proportional to an unsteady equivalent
N2 (s) of .the second normal stress. As w > 0, Np(w) =
20] + ap where 2u) + a2 is the limiting value of the
ratio of the second normal stress upon shear rate
squared. Observations of the elevation changes on the
oscillating free surfaces give rheological data which
includes information about the hard-to-measure second
normal stress.

(ii) The mean rise between parallel planes is interest-

ing because no rise occurs when planes are in steady

motion and the shear rate is constant and uniform over
the whole field of flow. In contrast, there is an

appreciable steady rise on a rod rotating with even a

small, steady, angular velocity. This contrast actually

extends to the oscillating planes because the rise be-
tween planes is an order of magnitude smaller than the
corresponding rise on the oscillating rod. The big mean
rise on the rod dominates the whole rise, but between
oscillating planes the mean rise is much smaller and
steady and unsteady changes in elevation can be equally
important.

6.2 Die Swell

Die swell is the enlargement of the diameter of a jet of
viscoelastic fluid which is extruded from a capillary tube. Th
die swell phenomenon is not well understood. Even the case of
low speed Newtonian jets leads to controversy about the limitin
(no speed) value of the swell.

Joseph (22) has studied the problem of the change in diamet
of a horizontal capillary jet of viscoelastic fluid with gravity
neglected. A unique motionless jet in the form of a straight
round cylinder held together by surface tension is an exact sol
tion of the jet problem. Joseph uses this solution to construct
a series solution, using the theory of domain perturbations, in
powers of a speed parameter. He shows that the perturbation
problem which governs at first order is, in the case of a plane
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jet, exactly the same as a problem solved by Richardson (23). The
problem at first order depends on the viscosity of the fluid; vis-
coelastic parameters do not enter at first order. The solution at
first order has an integrable lip singularity, but the first order
approximation to .the shape of the jet is a smooth regular function
of the axial coordinate.

The presence of an edge singularity in the perturbation analy-
sis raised doubts about the legitimacy of the series solution for
the jet problem; the rest solution has no singularity and though
the velocity and acceleration tend to zero with €, the stresses
and pressure at the lip are singular for any ¢ > 0 no matter how
small e. We believe the singularity is there, in the physics, but
the status of the mathematical solution at orders higher than one
is in doubt. It would be of considerable interest to compute the
solution of the perturbation problem which arises at second order
where viscoelastic effects first appear. Such computations appear
to be of more than ordinary difficulty.

Joseph (22) also gave an exact analysis of the momentum of
the jet. This analysis was used by Huilgol (24) to obtain upper
and lower bounds for die swell. The momentum analysis shows that
it is not proper to neglect surface tension in the discussion of
low speed jet.

Nickell, Tanner and Caswell (25) have introduced finite ele-
ment numerical methods to compute the shape of free surfaces with-
out perturbations. So far these methods seem not to have worked
out for viscoelastic fluids but they are promising. A review of
the finite element work can be found in the paper of Tanner (26).

6.3 Edge Effects in Rheometers

Nearly all of the instruments used in laboratories to make
rheometrical measurements are based on simplified theories in
which edge effects are ignored. These effects are hard to analyze
because the motions near the edge are complicated and the position
of the free surface defining the edge is unknown. Analysis of.the
motion and the shape of free surfaces defining edges may be stu-
died as a perturbation of the rest state. An example of such an
analysis is Joseph's (22) study of the free surface at the edge
of a torsion flow viscometer. Joseph solves the problem by per-
turbing the angular velocity w of the plates from zero and he
comgutes the secondary motions and free surface which arise at
0(w?). The solution is expressed in a rapidly convergent series
of biorthogonal eigenfunctions whose effect is to turn the flow
around at the edge. The secondary flow is driven, at second order,
by the vertical stratification of inertia (see Fig. 6.1). The
solution shows that turning at edges take place in a distance no
more than about three times the plate separation. If the edge is
extended to infinity a big inertial eddy remains. In the conven-
tional theory, which assumes that the motion is viscometric,
there is no inertial flow. At low speeds edge effects may be
neglected when d/a < < 1. Then, the normal stress on the top
plate is given by

22 49y + 3

= 1 2 _ 3p
Txx + const rcuw { 3 }

. (6.1)

There is a critical gap distance
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7. CONCLUDING REMARKS

i bation theories is
atel the potential of pertur
limitggfzgtggcal gésults. It is better to analyze problems of

chanics by global methods of analysis and numgiiﬁil ?:aiz;;s.

gich global methods are beginning to become avai achories e
branches of mechanics. The value of pergur@atloianCEd o e

i i ic fluids is en

the motion of viscoelastic f [ .

g;ziytggt general, tractable expressions Eelagézzrizzzzstzgg. :

i unknown except for motion of a e : _

form:ﬁ;:gfgiz perturb the data and constitutive equatlzztizile'

SZXeously under circumstances in which global represen

6 This formula may also be obtained from the formula

- 3p0 r
1 1 - "i‘"— (6.
r dr 0 [v (q) + \Jz(q)] q
dw

i .81). In (6.3) g=rgy
been given by Walters (27, Eq. 4

:gizﬁehizte of ghear and v] and v, are normal stress fuqctxon:.
Walters'formula is supposed to give the corgectlog zgnzligoggriz

due to inertia. It seems to us to be inconsis §o ¢ ‘
51:20metric flow assumed to be valid at a%l orders zf(glz)w;§2m
inertial correction valid only up to 0(23;¢). To ge t: ) from
(6.3) it is necessary to_expand the normal stress functio 1=
—2; q2 vy = (201 + “2)32- Then, to keep a consistent approxtm<
tio% v;lid through 0(24) set q = rQ;/d (use the shear rate a
first order).
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the constitutive equation, suitable for solving problems, are
simply unknown. The study of free surfaces induced by motions
of viscoelastic fluids which perturb the rest state is one ex-

ample of this marriage of analytical convenience with a point of
principle.
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