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1. Introduction

In Part ] (JosepPH, 1976 A) of this paper in three parts, a recently developed
algorithm (JOSEPH, 1976 B) for computing the motions of a simple fluid of integral
type which perturb the state of rest was applied to the problem of finding the
shape of the free surface on a simple fluid between cylinders undergoing torsional
oscillations. The analysis of this problem was carried out through terms of second
order in the amplitude . When the cylinder radii are arbitrary, the solutions may
be expressed in terms of Bessel functions but the resulting expressions are cumber-
some. Simpler solutions are possible when the cylinders are infinitely far apart
and when they are close together. In the first case. we are considering the change
of elevation of the free surface on a sea of fluid around a rod undergoing torsional
oscillations. In the second case. we are considering the change in elevation of the
free surface on a fluid between oscillating parallel planes which oscillate with a
velocity proportional to ¢sinwt. The first case was studied in Part] and the
second case, here in Part 1II. The predictions following from the analysis of
Part ] were tested in the experiments reported in Part I (BEAVERS, 1976). The
analysis of Part I could be criticized because the main formulas for the mean rise
of height were based on an approximation, however good, and though a unique
solution giving the secondary motion exists, it was not given. In the second
limiting case, oscillating parallel planes, approximations are unnecessary and
exact expressions are obtained for the mean rise in height, the oscillatory second-
ary flow and the oscillating change in the elevation of the free surface.

Four results of analysis appear to us to deserve early mention:
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(i) The predictions of the response of all simple fluids of integral type in
small-amplitude motions which perturb the rest state are completely determined
when two material functions G(s) (the shear relaxation modulus) and y(s;, s,)=
v(s,. s;) (the quadratic relaxation modulus) are given. Various methods of deter-
mining G(s) and y(s,, s,) from experiments can be evaluated using this fact. For
example, the same G (s) and 7(s,, s,) should be determined by comparing theory
and experiment for oscillating rods (Part I) and oscillating planes (Part III).

(i) The mean rise in height of the fluid between oscillating planes is propor-
tional to an unsteady equivalent N,(w) of the second normal stress. As w—0,
N,(w)=2a, +a, where 2a, +a, is the limiting value of the ratio of the second
normal stress upon shear rate squared. Observations of the elevation changes on
the oscillating free surfaces give rheological data which includes information
about the hard-to-measure second normal stress.

(i) The mean rise between parallel planes is interesting because no rise occurs
when planes are in steady motion and the shear rate is constant and uniform over
the whole field of flow. In contrast, there is an appreciable steady rise on a rod
rotating with even a small, steady, angular velocity. This contrast actually extends
to the oscillating planes because the rise between planes is an order of magnitude
smaller than the corresponding rise on the oscillating rod (compare H given by
Fig. 8 of Part 1 and Fig. 6 of Part I11). The big mean rise on the rod dominates the
whole rise, but between oscillating planes the mean rise is much smaller and
steady and unsteady changes in elevation can be equally important.

{iv) The solution of the fourth-order partial differential equation which
governs the motion at second order is of a type which arises in the vibrations of
elastic plates. We believe the nice eigenfunction solution which we construct is
new and of potentially wide application.

Before proceeding with the analysis, we list some of the symbols used:

(x, y, 2), (e, ey, €.) Rectangular Cartesian coordinates, coordinate
base vectors.
U, (U, V,W) Velocity, components of velocity.

o, T, p,u, e, 8=—¢, g.{ Frequency, surface tension, density, viscosity,
atmospheric pressure, gravity, and reciprocal of
the capillary radius.

Vid,y,t g)=¢sin wt Definition of .
4Y Maximum displacement of the oscillating wall at
‘ x=d (3.1).

G(s), (51, 53), n(w), A*(w) Shear relaxation modulus, quadratic relaxation
modulus, “complex viscosity ” (4.4), (4.3).

F(X, w), M(w) Functions defined by (5.21).
1\72 (w), & (w) Second normal stress function for time periodic
flows (6.2), (6.5).

42 = 42 A2 () Non-dimensional functions (Section 8).

Sns lns B, v, Eigenvalues (8.4), (8.5).

r?=d*A*(2 w),}
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o, 9P Y, Y Eigenfunctions (8.3), (8.12), (8.13),

AP, P AP (8.14), (8.3), (8.16), (8.17), (8.18).

¢ Y™, T(S,, I (8.10).

k,, k, (8.19), (8.20).
L h . L

H (A)——(mz— Normalized mean rise in height (6.7).

e h(x,t,e)—h(x, ¢ Normalized oscillatory part of the rise in
- (4Y)? elevation of the free surface (8.26).

2. Mathematical Formulation

The free surface problem studied in this paper is sketched in Fig. 1. The region
occupied by the incompressible simple fluid is designated as

v.={x,y,z: —d<x<d.z<h(x,t,¢), —co<y<oo].
Equations governing the motion of the fluid in ¥} are

divU=0 (2.1a)
and

-

p[";z] +U-VU]=V<P+V-S (2.1b)

where p is density, U is velocity, @ =p(x, z)— p,+ p gz is the head, p, is atmospheric
pressure, p is the constitutively indeterminate part of the reaction pressure, g is

z=hixt,eél

7

U=ex U+ ey V+e, W=cur (ey’l’)+eyv

Fig. 1. Notation and definition of symbols used in the study of the free surface on a simple fluid
between oscillating planes.
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the acceleration of gravity and S=T+p1 where T is the stress tensor. The fluid
velocity is prescribed at solid boundaries:

U=0 at x=-d, (2.1¢)
U=e,esinwt. (2.1d)

The following conditions hold on the free surface z=h(x, t, ¢):
a) The free surface is a material surface

w=h,+uh .. (2.1e)

b) The free surface is free of shear stresses
S;y—h,S,,=0, (2.19)
(S22 =Sc)h o +(1=h2)S,.=0. 21g)

¢) The jump in the normal stress is balanced by surface tension

h
S..—h S, — = T(;;%?)-mgn (2.1h)
Equations (2.1, g, h} assume that the viscous tractions of air on liquid are negli-
gible.

In addition, we require that the total volume of liquid be fixed and independent

of ¢
1

d
73 { h(x,t,e)dx=0. (2.1k)
—d

The solution is bounded and independent of z as z— — co.

To complete our formulation of governing equations, it is necessary to specify
some conditions on the line of contact h(+d, 1, ¢). To specify these conditions we
note the solution which we construct may be decomposed into a mean part and a
periodic part. The mean rise in height is defined as

2njw

h(x, &)= I Oj h(x,t,g)dt. (2.2)

We require that the mean angle of contact between the liquid and solid walls

should vanish, _
h .(+d, €)=0. 2.3)

The periodic part of the solution oscillates around the mean line of contact
h(+4d, ¢). It follows that

h(+d,t, e)—h(+d, e)=0. (2.4)

3. Perturbation of the Rest State

The solution of the problem (2) can be constructed in a series of powers of the
amplitude ¢ The amplitude ¢ is related to given and easily measured data by the
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formula
_ wdY

2
AY=Y,—Y(0)

e (3.1

where

is the maximum displacement of the oscillating wail at x=d. Equation (3.1)
follows from the equation
—=¢sin wt

dt

governing the motion of the oscillating wall.

The solution is expanded into powers of ¢; the y component V of velocity and
shear stresses §,, and S,, are odd functions of ¢; and @, U, W, the other com-
ponents of § and h(x, t, ¢) are even functions of &. When ¢=0, the fluid is at rest
and the free surface is flat h(x, ,0)=0 in ¥;. The formation of the boundary value
problems which govern the coefficients in the series expansion of the solution was
described in PartI and, in more detail, in JOSEPH's book (1976) on stability. The
principal problems in the theory of perturbation of the rest state with arbitrary
motions concern the monitoring of the history of the motion and the reduction
of the stress tensor to canonical form. A brief summary of the algorithms for
computing histories sequentially by perturbations is given below. The reduced
form of the stress tensors will be assumed to be known. Detailed derivations of
algorithms for treating both problems can be found in the two works cited above.

The history of the motion is monitored through the history of the relative
position vector

Lxne=x+ Y 1" (x. 7)€" (3.2)

n=1
where
1" (x,1)=0.

The relative position vector gives the position at time 7 < of the particle X which
is presently at x. The particle labels are assigned in the rest state e=0. Hence,

Lx, T, e)=¢& (X(x, t,¢), T, s)

where (X, 1, ¢) is the position of the particle which is at X =¢&(X, 1, 0) when e=0.
Of course, £(X, 7,0) is independent of 7. The function X(x,t,¢) is obtained by
solving the equation x=¢&(X, ¢, ¢) for X. In the expansion (3.2), x and ¢ are con-
sidered independent. Then X=X(¢). In free surface problems, the domain ¥;
depends on e. It is useful to map ¥;(x) into the configuration ¥;(X) of the rest
state. The material mapping x=¢&(X, 1, &) may also be regarded as an invertible
domain mapping. When X and ¢ are independent, x=¢ (X, t, ¢) depends on &. The
history of the relative position vector may be expressed in the rest coordinates by
forming the expansion in powers of ¢ of the functions x™(£(X.t, ¢), t) which
appear in the last term of (3.2). This leads to

21X, 1, 8), 7. 8) —x= ((€")e
+((E) — EX. ) e gD)ed 4
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where
(&) =&r(X, 1) —EM(X, 1)
and
1 o0"¢

&g =———(X,7,¢)| holding X fixed.
n! Jde 0

In the computational algorithm for perturbations of the rest state, we first com-
pute U’ (X, 1) as the solution of a well-posed boundary value problem. We may
then compute

()= [ U (X, 1) d

Given U<!” and ((£M)), it is possible to solve another boundary value problem for
U<?’(X, 7). Then we can calculate

(@)= [ LU (X, )+ S (X, ) B UD (X, 7] dr

In this way, we may generate the functions U™ and ((£()) sequentially as in
other well-behaved perturbation theories.

In the work to follow we shall compute the perturbation through order two.
The perturbation problems are all posed in the domain ¥4 (X) of the rest state.

We shall find that
V(x,z,1,e)=V (X, )e+0(),

P(x,z,t,6)=PP (X, Z, 1) +0(e*),

D(x,z2,1,8)=D (X, Z, 1)e2 +0(e%),
and
hix, t,e)=h? (X, 1)e* +0(e*).

The functions on the left are defined in ¥;(x), the functions on the right in ¥5(X)
and X and x are related through the mapping x=¢(X, ¢, &). We shall find (see (5.3))
that ¥<2>, $<2> and h<?> may be split into a mean part which is independent of Z,
and a time-periodic part. We show that there is no mean motion and we compute
the mean rise and the time-periodic motion and change in elevation.

4. First Order

Following the derivation of the first-order problems given in Section 5 of
Part I, we find that

oy
P =[GV (X, 1—s)ds, (4.1a)
4]
V< (—d, 1)=0, (4.1b)
and
V< (d, t)=sinwt. (4.1¢0)

The solution of (4.1a, b, ¢) is given by
VX, D=v(X)e' +5(X)e " 4.2)
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where the overbar designates complex conjugation,

sinh [(X +d) A(w)]

2isinh[2d A(w)] ’ (4.3)
A*(w)=ipw/n(w)

o(X)=

and

n(w)= FG(s)e"'“’“ds (4.4)
5

where G(s) is the shear-relaxation modulus and n(w) is the “complex viscosity ”.
The solution given by (4.2), (4.3) and (4.4) may be regarded as a superposition of
waves; with

Alw)=4,(w) +i4;(w),
we may write (4.2) as

V<X, 1)= (e X +3 gin (@t + A, (X — d)]

1
4(sinh24d|
+e- X3 5in (w1 — A,(X —d)] (4.5)
+e~ X -dgin[wi— A,(X +3d)]
+etrE=dsinlwt+A,(X +3d)]}.

The particle paths at first order are given by

(@) =ey fr V(X ) dT'=ey (F1),

v(X)

((@[1]))=(eiw(t—s)_eiwl) : _(e—iw(t_s)_e_im,) E(X) )

iw iw

The following quantities, defined on the first-order solution, appear in the
inhomogeneous terms of the governing equation at second order:

AO=T UL + (R UDY =(exey ey e VP,
U< Vx U =0,
Vx((f[”))= €y ex((@m)),x,
(&MY - A =((@F") A4 y=0,

A Wx((EUN) +(A - W((EM)) =2exex VS (F™M) x
and
A(sy) - A(s))=(exex+eyey) VY (X, 1—5) VY (X, 1—s5,).

5. Second Order

Following the procedures of Section 6 of Part I, we find that

divU® =0, (5.1
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pUD + &P - [G(s) U (X, t—s)ds
0

=h F G(s) [((M) - Py A(s)+ Als) - Pxl(§H ) +(A(s) - P (E")"] ds

8

ey

+
oy

I
)
¢
— A
N
Ctemg oo,

P(Sy,55) A(sy) - A(s,) ‘151‘152“i‘7U(1> R U® (5.2a)
GE) VY (X, 1= (FM) x] xds

Y051, 8) VR (X, 1—5) VX, 1 —5,) ds, dsz}

+
Oem g
Cem g

where 7(s,, s,) is called the quadratic shear relaxation modulus. At the side walls

U (+d, Z,1)=0 (5.2b)
On the free surface, Z=0,

S<2>—§G(s YJ[UP(X,Z, 1—s)+ WP (X, Z,1—5)]ds=0, (5:2¢)

W =@, (5.2d)
and

— P 1L2{G(s) WP (X, Z, t—s)ds+p g h'» =Th'}x. (5.2¢)
0

Since US® =e, U ¢, WS¥, it is possible to eliminate (5.1) by introducing
the stream function ¥,

U<2> =Curl(ey qj)z(— q‘_z, 0.. qlx)= Vx qIA ey,
satisfying

pcurl(ey ¥)].,— [ G(s) F§ curl(ey W)ds+ Py &%
0

=ex2(v x%). { 2{ G sSmos ds+ [ [7(s,,82) cosw(s,—sz)dsldsz} (5.21)
00

0
+ex[F(X, ) eziwl+F(X’w e—Z:wx]

where
F(X,w)=M(w)(v?y) x,
2 aoao
M(w)=m(n(2w) n(w))+ j (8, 5,) e~ et dg ds,
and

A3 (@) sinh [2( X +d) A ()]

@2y x=— 4sinh2[2dA (w)]
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Solutions at second order can be decomposed into a mean part and a time-
periodic part: PO 14k, @20t 4Ly e 2ion

O =3FLgy e +L e 53)

h<2>=_2L2+i_%l e2iw1+%gle—2iwz

where a single overbar denotes complex conjugation and the double overbar
denotes the time average over a cycle of period 2n/w (see (2.2)).

6. The Mean Motion and Height Rise at Second Order
Substituting (5.3) into (5.2) we find that
Vg =0 in 75,
J:Ipx at X=+d
z,zz—z.xx=17"x=0 on Z=0.

¥=0 in ¥ 6.1)

so that the mean forcing terms in (5.2a) may be balanced by the mean head.
Introducing now the second normal stress function for time-periodic flows

and

It follows that

0 0

SM@S ds+ | [7(s;,5,) cos w(s; —s,)ds, ds,, (6.2)
00

Ny (w)=-2 foG(s)
0

we find that

14 x=2(v x1») x Nyl in¥%(X), (6.32)

—Q+pgh=Th yx on Z=0, (6.3b)

% =0 at X=+d (6.3¢)
and [

37 #dX =0. (6.3d)

a8,

It follows that the mean pressures and the mean rise in height are proportional
to N;(w). When w— 0 this function may be identified with the second normal
stress N, (x2) for viscometric flow with shear rate x:

lim Ny(w)=20; + o, = lim N, (x?)/x2. (6.4)

Equations (6.3b,c,d) imply that the mean value of @(X) must vanish. It
then follows from (6.3 a) that

d
5:2%(@){|coshA(X+d)|2— [ lcosh A(X +d)|? dX}
—d
d

=4 (w) {cosh 24, (X +d)— | cosh24,(X +d)dX (6.5)

—d

d
+c0s24;(X +d)— | cos24,(X +d) dX}

—d
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where )
L NP
A0 =3 1dinh 2.4 4|
and
A=A(w).

Using (6.5), we may integrate (6.3b) twice. The solution which satisfies (6.3¢)
and (6.3d) is found in the form

%(X)=

N(w) {cosh2A4,(X+d) cos2A,(X+d)
T [2—44? 244t
2cosh{(X +d) [A,-sin4Aid A,sinh4A,d]
{sinh2{d (24442 (2—442
e [sinh 4A4,d sin 4A,-d]
g2 24, 4 A,

where
r2 pg

k] T N

The normalized mean discrepancy of rise in height,

ﬁ(d)—?(—d)N[2(d)—=(—d)]w2
AY)? 8

N(w) {[coshd4A,d]—-1 [cosdA;d]—1

T { YT [P+4n?

[2cosh2{d]—2 /A;sin4A;d A,sinh4A4,d\| o?
{sinh2{d (;2+4A,.2 = )}T

H(d)—H(—-d)=

6.7)

should be easily measurable in experiments.

7. The Edge Problem Governing the Time-periodic Secondary Motion

To obtain the equations satisfied by ¥, ¢;, and #; we substitute (5.3) into
(5.2) and set to zero the coefficients of e?'®!. For example, from (5.3) and (5.2f)
we find that

2ip wcurl(ey ¥,) —nRw) V¢ curl(ey )+ Vx ¢, =ex F(X, w). {(7.1)
The inhomogeneous term in (7.1) is irrotational and the curl of (7.1) leads to
2ipw Vi, +nRw)Vy ¥, =0 in¥;. (7.2a)

Combining (5.3) with (5.2), we find that
Vi=y1.x=0 atX=+d4d (7.2b)
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and, on Z=0,
N2w) (W xx—V¥.22)=0, (7.2¢)
Vix=2iw, (7.2d)
=01 +2nQ2w) Yy xz+p gt =Th xx. (7.2¢)

A further reduction of the conditions on Z=0 is useful. First, #, 1s eliminated
from (7.2¢), using (7.2d). To eliminate ¢,, we differentiate (7.2¢) with respect
to X then we replace ¢, x using the expression

b x=F(X,0)=nQw) Ry ;+2ipo ¥,
for the X component of (7.1). This leads to

PEWL. xx _ T

Ywi 2in1.xxxx=F(X>CU)- (7.21)

MR [(3Yy xxz+¥1.2zz2]1-2ipwy, 2+

It is convenient for computations to eliminate Yyy and Yyyxy, using (7.2a)
on Z=0 and (7.2¢), from (7.2f). This gives

M(w) A3 (@) sinh 2 A (w) (X +d)
4sinh? 2dA(w)
pg  TAQw)

_ T
=2ipwy, z+ [m ‘T] l41/1,22'*‘65 Yi.2222-

=nQ2w) [3Y xxz+V¥1. 2221
(72¢)

Equations (7.2a, b, ¢, g) govern the motion of the fluid at second order.

8. Solution of the Edge Problem

The problem defined in Section 7 is an edge problem of the biharmonic type
and it may be solved by biorthogonal series of the type used by JosepH (1974,
1976 C), JosePH & STURGES (1975) and JosePH & STURGES (1977). The equations
governing the edge problem, expressed in dimensionless coordinates (x,z)=
(X/d, Z/d) with Yy =y, IT'*=d* A?(2w) and y?>=d? A% (w), are listed below:

Vi -T2y =0 in 5, (8.1a)
V(1 2)=y (+1,2)=0, (8.1b)
l//,xx_l//.:zzo OIIZZO, (823)

. T T [{2d I?

20) (3¢ ., “dipwd? A S b

1000 3V stV o] =210 8 b e b [T
_ M(w)y?sinh 29(x+1) 0 (8.2b)
- 4sinh? 2y one=1

Each term of the series

© n 7 (n)
i~y [Cn q;(;J(x) e D, ¢{"(x) eP,,z] (8.3)

2
ne- E
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where
& (x)=S2[cos u, cos S, x—cos S, cos u, x],
o=V Si—T?2
and .
" (x)=PB2 [sin v, sin P, x —sin P, sin v, x],
Vo= 1/1—?13 - Fz

satisfies (8.1a) and vanishes at x= +1. ¢! is an even function of x and @ is
an odd function of x. S, are the eigenvalues of ¢{ (x) chosen so that ¢{",(+1)=0;
this definition implies that S =S, appear as the complex roots of

sin(S+p) sin(S — yl

-  u=y/S T 8.4
Sta S5 u=y (8.4)

P, are the eigenvalues of ¢\"(x) chosen so that ¢{,(+1)=0; hence, P=F, are
the complex roots of
sin(P+v)  sin(P—v)
P+v  P—v

v=)Pr-T2 (8.5)

Bounded solutions of the form (8.3) must have eigenvalues with positive real
parts. Hence, for problems in the semi-infinite strip ¥;, we need the first and
fourth quadrant roots of (8.4) and (8.5). The eigenvalues are numbered according
to the size of their real part. For example,

S,=X,+iy,, X <X;<Xz<-- and X_;>X_,>X_3>--.

The magnitude of the imaginary part of the eigenvalues increases with the real
part but at a slower rate; the modulus and real part of the eigenvalues increase
with n. Since I is complex, S, +S_,.

When I'=0, u=S and v=P. In the limit " — 0, (8.1 a) reduces to the biharmonic
and ¢ (x) and ¢{"(x) become biharmonic eigenfunctions of Papkovich-Fadle
type whose eigenvalues satisfy (see JOSEPH & STURGES, 1975)

sin2S=—-2S, sin2P=2P. (8.6)
When I'=0, S,=S_, and B=P_, and when n is large

S,,=(n—-})n+%log(4n-—l)n, E,=(n+%)n+%log(4n+1)n. (8.7)

The same asymptotic distribution of eigenvalues holds for (8.4) and (8.5) because
as S, and P, get large, u,— S, and v, > P,.

(8.3) is our candidate for the solution of (8.1) and (8.2). It remains to be
shown that C, and D, can be selected to satisfy (8.2). For this selection we need
adjoint eigenfunctions and a biorthogonality condition. These are derived below.

Consider the even eigenfunctions ¢{" (x) and note that

Voa=D ¢ (x) e

n
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and

Uoe= 2 0 (x) €%,

Since lp.xxzzzl/j.zzxx’ We have

P =Sz Y (8.8)
and, since V*y =T? V2, we have
W+ S2Q2Y + ) — w2 (Y + 0" =0 (8.9)

where ¢ (+1)=@{".(+ 1)=0. We may write (8.8) and (8.9) as a vector equation
for the vector ¢™ with components ¢{" and ¢

AT, 1) - ¢W=0, ¢ (x)=9¢, (£ 1)=0 (8.10)

where the matrix of tensor T(S, T) is given by

0 - 52
(SZ—F2 282—1”2)'

The adjoint eigenvalue problem for (8.10) in L*[—1, 1] is obtained from the
bilinear concomitant

1
j ll’(") : [¢("A)x + T(Svn F) : ¢(n)] dx
-1
1
= l//(ln) (i)gl.)x - (Zn.)x ¢(2n)]1~1 + j ¢l") ' ['/’("ix + TT (Sm F) ' ‘#mj dx.
-1

It follows that the problem adjoint to (8.10) is

™ +T7(S,, D) -y =0, Y (£)=y§ (£1)=0 (8.11)
where T7(S,, I') is the transpose of T(S,.I'). We find that
PP =—\W—TI?cos S, cos p, X, (8.12)
WM =@ —I'? cos , cos S, X, (8.13)
and
Yo =\, (8.14)

The biorthogonality conditions now follow in the usual way. From (8.10)
and (8.11) we find that

0= j} [.l,(m) -T(S,,I)- "W —¢™ . T(S,,. ) Y™ dx
-1

]

U (TS, )= T7(5, 1)} 6 dx (8.15)
-1

1

=(S2—5%) [ Y™ A ¢ dx
-1

a-( )

where
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The same type of biorthogonality condition (8.15) holds for odd eigenfunctions
with eigenvalues P, and

¢y =~ —T?sinP sinv,x, (8.16)
and P =" —T?sin v, sin P x (8.17)
Py =g, (8.18)
Summarizing, we have found that
! 0 —1\ /¢™
Fwreen () () dx=ak, (8.19)
where B ! 2
r’s, .
k,=I? {Sf [cos® S, —cos? u,] +——sin S, cos S, cos> un}
and 1 R 0 qa(nl o ’
| (1 ) (¢W) dx=35, (8.20)
where

‘P
. .
5—SIn B, cos B, sin® v, ;.

n

- r
k,=TI? ! P?[sin? B —sin?v,]—
(

We turn now to the computation of the coefficients C, and D, in the ex-
pression (8.3). In preparation for the application of the blorthogonallty conditions,
we rewrite (8.2a) and (8.2b) as a vector equation:

o [ sz (o (G- ). ()

12w Y CS, (¢(‘"”:)3¢3”)+D,,B (qS 1:)34)‘"’)

“2ipw?d@Y CS, (¢(M)+D,,/P,‘,( ) 8.21)

T 5 ¢(nl>
T Siwd & OS5 ( 0

=M(w)

3 sinh 27 (x + 1 )
4 sinh? 2y (

The biorthogonality conditions (8.19) and (8. 20) are now applied to (8.21). For
the even functions we get

T [{*d I? S
Q ¢(nl l/,(1) S",k)_E [H——] {Clk(— 2‘ Cn Cnl}

2 3d

i = TS}  2ipw?d
n _ 7
+100) T C,S, B, + Xe, [mw _ e ] A, (822

n

M 3 1 )
=% f w9 sinh 2 (x+1)dx
-1
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where for n+/

n 2 1 1
A, = j YO P dx =287 5% cos COS#,,{S!z_Sﬁ + S2 i} B S,Z—/t,z,}

{§,sin§,cosS,—S,cosS;sinS,},

1
B, = [ Y9 +3¢5"1dx =25} cosp cos p,
-1
3t — S} 28} SZ+3uy : .
S22 TR siis? {§,sin S, cosS,—S, cosS;sinS,},

1
Cnl = J‘ ¢(l”) [2 !l/(Zn ‘p(“] dx zsn COS j1; COS Uy,
-1
283417 S? S+17?
{ S%'—Sﬁ + Sf—luf‘ o2 {S,sin S, cosS,— S, cos S, sinS,},

! 1 1
le(nsmh2 v(x+1)dx=5? cosu,{4?2+slz — 4?2_““2}

{2y cos§;[cosh4y—1]+S;sinS, sinh 47}

and when n=1,

1
A= [P dx
-1

+u

nHn

S+
=5 {cos2 f,+cos? S, +——"sinS, cos S, cos* ,u,,},

1

Bu= [UPIH0+304dx
-1

S,—6u,

=§? {(S2 3u2)cos?S,—282% cos® u,+ S, sin S, cos S, cos? /1,,},

1
Cuu= [P L204— ") dx
—1

S (2S“ r4

=5%cos?S,+82(S2+ I'%)cos? u, + —7sin§, cos S, cos? i,.

'l

For the odd functions, we get

Q" Y. B, k)=0 (8.23)
where for n#1,

. 2 1 1
1) ) 2P2P2 ) S -
jl PoMdx= s1n\.Slnvn{Bz_az+gZ—xvf Pzz—vf}

{B.sinP, cosB— B cosPsink},
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Bnl

3vi-RB? 2R R,2+3#3}

g)[qb(ln)+3¢(2")]dx:2Plz Sinvl Sinvn{ Plz_v’zl - B'Z__VIZ Plz_Bnl

]
-1
{R

1
Cum (PRI P05 =28 smysin, |

sinP, cos B,— P cos Bsink},

2P,2+1"2+ P? P?4+r?
R2—R* " B’—v PR’-v,

n

1
{P,sinP, cosB,— P cosPsinkh},

L . 1 1
_‘W) sinh 2y(x+1)dx=R? s1nv,{4y2_+_P,2 - 4y2+v,2}
{2ysinB[cosh4y—1]— B cos P sinh4y},

and when n=1,

A . . P2 +v2 | .
Mo dx=PB? {sm2 B +sin?v,— "P 2 " sinP, cos P, sin?v, ;.
n-'n

=:k

|
—
<o

1
1
Bu= | U IH"+34¢" dx

2 2
. . vi—B* . .
=Pp2{(P*—-3v?)sin? B,—2P?sin’*v,+ P, % sin P, cos P, sin? v”},

n

1
Com [ BRI~ P
-1
PQPB*-T% . .
=P*sin? B+ P2 v sinv, —L"z——) sin P, cos P, sin? v,.
v

n

Equations (8.22) and (8.23) are of the form
Clk[+ Z C"D"IZE.

This infinite set of algebraic equations can be solved by the method of reduction
(KANTOROVICH & KRYLOV, 1958, p. 30). The truncated system

N
CMk+ Y CMD,=F (=+1,+2,...,+N)
-N

is solved for the 2N coefficients C{™ for increasing N. Numerical tests indicate
that C{™— C,, but a proof of convergence has yet to be given.

Given C{™ for large N, it remains to verify that the truncation of the series on
the left of (8.21) actually approximates the data vector given on the right of (8.21).
This is done in Figure 7. We note that the series on the left of (8.21) cannot converge
to the vector-valued function on the right of (8.21) when x= t1 because the
boundary values of ¢{" and ¢$ are incompatible with the boundary values of the
function prescribed on the right. In the canonical edge problem, this incompatibil-
ity of the edge data and eigenfunctions at the boundary implies that the conver-
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Fig. 2. Mean pressure distribution. The mean rise in height (neglecting surface tension) is proportional
to §»? (Equation 6.5). When d =1, the maximum and minimum mean pressure are on the walls.
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Fig. 3. Mean rise in height when the effects of surface tension are included (I:unation 6.6). The mean
rise in height and the mean pressure distribution have a similar variation over the channel except
near the walls. In this figure and the others, the variation in mean rise in height may be regarded as
due to the variation in the mean pressure. When d= 1, the maximum and minimum mean rise in
height are on the walls.

gence of the series is conditional and not absolute (JOSEPH & STURGES, 1977). In
fact the numerical work shows that the convergence of (8.21) is conditional.
Given C,, the stream function y =, is completely determined by (8.3) and

£1=

1 0

1
2iw V.x= 2iwd 2

=-®

Co yor 4 D 5
5 Ot O

(8.24)
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The real-valued, time-periodic part of the stream function is given by

FH Y (x, 2)e® +y(x, 2)e 2 w?(4Y)? (8.25)
and the real-valued, time-periodic part of the rise in height is given by
h(x, 1, &)= h(x, &) ~ 15 [ 4, (x) 2"+ 4, (x) e~ 2T w2 (4 Y)2. (8.26)

9. Quantitative Predictions of the Theory

It is not possible to obtain quantitative results from our formulas without
further assumptions about the shear relaxation modulus G(s) and the quadratic
shear relaxation modulus y(s,, s,). In PartsI and II of this paper, these functions
were approximated by what was termed a generalized (N, M) Maxwell model. In
this model, Gy(s)~ G(s) is a 2N parameter exponential function and y,(s;, s,) is

0.0025¢
0.0020f d=3
~N
S'w r
|I$
4.0 -08 -06 -0.4 /
L — Bl T T T T 1
02 04 06 08 <
20 10
X/d
40 -0.00051
60
-0.0010f
80
-0.0015
100 )
-0.0020f
120
-0.0025}
0 -0.0030"
w?
-0.0035k

Fig. 4. Mean rise in height (Equation 6.6). When d = 3, the maximum rise in height shifts to the interior
as the frequency w of oscillation is increased. This shift is due to an identical shift in the mean pressure.
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-0.0025}
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Fig. 5. The mean rise in height (Equation 6.6) as a function of d. The position of the maximum mean
rise in height (and the maximum mean pressure) is a sensitive function of the gap width.
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2| 2 0.002}
£
o
©
-~
T 0.001+
3
I
c Fiut i 1 1 I W N | 1 Il
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w?

Fig. 6. The normalized mean rise in height as a function of the frequency w of oscillation for the (1, 2)

fluid described in Section 9. The (1, 2) approximation is expected to be valid when @? is not too large.

Comparison of this figure with Figure 8 of Part II shows that the mean climb between oscillating
planes is an order of magnitude less than the corresponding climb on the oscillating rod.
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Fig. 7. Convergence of the series on the left of (8.21) to the data vector on the right. The data vector
has been decomposed into its odd and even parts shown as a solid line in (a) and (b), respectively. The
dots give the values of the series with coefficients D, in (a) and C, in (b) after 100 terms.
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Fig. 8. The oscillatory part of the change of elevation of the free surface (Equation 8.24) with time as a

parameter when d=1 and w=S5. Comparison of this figure with Figure 3 shows that the oscillatory

part of the change of elevation and the mean rise in height are equally important in the computation
of the total change in elevation.

T
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a 2M parameter exponential function. The values of the parameters are fixed by
fitting the mean-rise curve for small amplitudes (in the present case, the mean-
rise curves are given in Figures 3-6) with the experimentally determined universal
rise curve. The fitting procedure has the desirable property that the number of
parameters needed to fit the universal rise curve is apparently an increasing
function of the oscillation frequency w. In Part IT it was shown that the (1, 2) fluid
could be fit to the universal rise curve for TL-227 when w? <450.

We now adopt the hypothesis that the (1, 2) model describes TL-227 in all
motions which perturb the rest state when the amplitude is sufficiently small. In
the present case, the hypothesis adopted implies that the rise curves computed in
this section are a quantitative prediction of the rise which would be observed in
TL-227 when w? < a?, where a? ~450.

In the (N, M) fluid

2 N

_ a |

Gy(S)= a Zb_"e(u/an(a,./bn)s’
1

% n

M
))M(Sl, 52)=(Z2 Z C"k'zl e‘kn(sl +52)
1

where p is the shear viscosity at zero shear, «, and «, are the constants in the fluid
of second grade and a,, b,, ¢, and k, are other constants. When (N, M)=(1, 2),

—u? ‘
G1 (s)= K e(ns/al)’
%

Yz(sls s2)=a2[01 kfe—kl(sl +sz)_|_(1 _cl)kge—kz(swsz)L

U
nw)=—-——,
e

p v

- 2a, ¢ l—c
2= 7, 3,2 1%
1 +af w*/u

_ Ny(@)|A()?
A @)= b2 A@) ]

For TL-227

p=0.896 gm/cm?3,
T =30.5 dyne/cm,

u=200 poise,
a; = — 50 gm/cm,
o, =85.9 gm/cm,
¢, =0.9735,
k? =14.50,

k2 =307.0.
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Fig. 9. The oscillatory part of the change in elevation of the free surface (Equation 8.24) with time as
a parameter when d=1 and w=10.
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Fig. 10. The total change in elevation of the free surface with time as a parameter when d=1 and
@ =10. This figure is a superposition of Figures 3 and 9.

Figures 2-10 have been computed for the (1, 2) model of TL-227. The inter-
pretation of the results summarized in the figures are given in the figure captions.

This work was supported by the U.S. Army Research Office and under NSF grant 19047.
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