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My lecture on bifurcation and stability of solutions which branch from
forced T-periodic solutions is based on the recent work of G. I00ss
and myself [1] and on my forthcoming paper on factorization theorems
[2]. In general, forced T-periodic solutions bifurcate into subhar-
monic solutions with a fixed period t (t=nT; n=1,2,3,4) independent of
the amplitude or into a torus [1,3,4,5,6] containing solutions whose
analytic properties are not yet fully understood. The subharmonic
bifurcating solutions with n=1 are the T-periodic equivalent of a
symmetry-breaking bifurcation of steady solutions with other steady
solutions. The symmetry breaking flower instability of the axisym-
metric climb of a viscoelastic fluid on an oscillating rod {[7] which
is shown in the movie "Novel Weissenberg effects" by G. S. BEAVERS and
myself is one example of such a symmetry breaking T-periodic bifurca-
tion. The solutions on the torus are very roughly the T-periodic
equivalent of a Hopf bifurcation,of a steady solution into a periodic
solution; like the Hopf bifurcation the solutions on the torus possess
frequencies which depend on the amplitude but in the nonautonomous,
T-periodic case the variation of these frequencies need not be smooth.
A good example of smooth variation of frequencies on a two-dimensional
torus appears to describe the observations of SWINNEY, FENSTERMACHER
and GOLLUB [8,9] of the oscillatory regimes of flow which follow wavy
vortices in the Taylor problem when the Reynolds number is increased.

1. Stability and Repeated Bifurcation of Solutions of Nonlinear
Evolution Equations in a Single Variable [2,10]

To clarify some aspects of the mathematical nature of bifurcation
theory we shall first construct a simple theory for evolution equa-
tions in Rj. 1In this theory we give complete and rigorous results for
stability and repeated branching which actually apply to the repeated
bifurcation of steady solutions in a Banach space at a simple eigen-
value. In the general problem of bifurcation of steady solutions we
have in mind steady equilibrium solutions to nonlinear equations pos- .
sessing different patterns of spatial symmetry. These solutions are
points in a Banach space and the families with different symmetries
may be projected as plane curves {bifurcation curves). In R1 the pro-
jections and the solutions coincide and the theory simplifies enorm-
ously.

We are going to study the repeated bifurcation and stability of
solutions of the evolution problem

Ve + F(u,V) =0 (1.1)

where F(u,0) = 0, F(0,V) # 0 when V # 0 and F together with its first
two partial derivatives are continuous functions of y, V€R1; in
particular we have



F(HIV+V') = F(UIV) + FV(UIV)V' + J2:' FVV(U:V)V'Z + R(u-lvlvl)v'3 (1-2)

for any V,V'eRl.

Bifurcating solutions arising from autonomous evolution equations
in R; are necessarily steady. This means that the study of bifurca-
tion in R} is equivalent to finding branches of solutions of the equa-
tion

F(UIV) =0 . (1.3)
Suppose that V = ¢ and 4 = u(e) is a solution of (1.3). Then

. F(u,e) =0 = Fu(u,e)du + Fv(u,e)de (1.4)

We define a point of bifurcation to be a double point of (1.4); that
is, a point through which there are two solutions of (1.4), possessing
distinct tangents. At such a point

F =F. =0 | (1.5)

FVu - FVVFuu >0 . (1.6)

A disturbance w of V = ¢ with y = u(e) satisfies the equation

%% + Fv(u(E).E)w + 0(w2) =0 .

Linearizing for small disturbances w = e-th', we find that y(e) =

Fy(u(e),e). The function y(e) is nicely described by a factorization
theorem for the stability of the solution Vv = €, u = u(e):

u_ y(e) = u {-¢ F_ (0,0)

€ € Vu
+ 0(e?)} (1.7)

m

y(e) = Fv(u(e),e) = - Fu(u(e),e)

The second equality in (1.7) follows from (1.4),;. The third equality
is a definition of y(e) and the fourth follows from expanding F(u(e),¢)
in powers of e. We note that the stability of the solution v = 0 of
(1.1) is governed by V¢ + Fy(u,0)V = 0. Then, with V = e-0ty', we find
that ¢ = Fv(u,O), so that o, = Fy,(0,0). If V = 0 loses stability
strictly as p increases pas% zZero then FV (0, 0) < 0. It follows from
(1.7) with Fy, (0,0) < 0 that locally, near e = 0, subcritical bifur-
cating solutlons ue < 0 are unstable, y(e) < 0, and supercritical
solutions u. > 0 are stable, y(e) > 0.

A point at which u, = 0 is a statlonary point of the bifurcation
curve. A point at which p. changes sign is a critical point of the bi-
furcation curve. If Y(e) # 0 at a critical point then y(e) changes
sign when ue does. If y(e) # 0 at a critical point, then Fy(u,e) # 0
and (u,e) is not a point of bifurcation (see Fig. 1.1)

Now we show that points at which-y(eo) = 0_and y.(eg) # 0_are points
of bifurcation. At such points (1.7) shows that (1.5) holds and

Ye(eo) = Fvv(u(eo),so) + us(eo)FVu(u(eo),eo) = - ue(so)FuV(u(eo):eo)

2
- H Fuu(u(eo)'EO) . (1.8)
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It follows that at ¢ = ¢

0
2 2
de” Fyy + 2 dedp EVh + du Fuu =0 . (1.9)
The discriminant of (1.9)
2
FVu - FVV Fuu >0 (1.10)

is not negative. Suppose equality holds in (1.10). Then the second or
third term in (1.8) must vanish which is impossible since y¢(eg) # 0.
It follows that the inequality is strict and (u(eo),eo) is a point of
bifurcation

As one example of the foregoing, consider the equation

v, + V(nv=-9) (n+2v-v?) = 0 (1.11)

The bifurcating solutions are

(i) V=0 uERy,

v2 .- 2y

I

(ii) v
and
(iii) w = 9/V.

The curve (ii) has two bifurcation points and one critical point at
(n,v) =(-1,1). The stability of various branches of (1.11) are indi-
cated in Fig. 1.1. It is almost a miracle that examples of secondary
bifurcation in R] as simple as the one just given seem not to have
been discussed in the literature on bifurcation. Of course, everyone
knows that F(u,V) = 0 can have multiple solutions.

Our understanding is that bifurcation in R} is equivalent to the
continuous branching of solutions F(u,V) = 0. This conventional use
of the term "bifurcation" is restrictive since it excludes isolated
solutions of F(u,V) = 0 which are not ultimately connected to the
solution V = 0. The hyperbola u = 9/V in the third gquadrant of Fig.
1.1 is just one type of isolated solution which can occur.
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\ Fig. 1.1 Stability and bifurcation
\ ' of equilibrium solutions of
\ v, = v(9-uv) (pt+ 2v - v2)
\ £

2. Bifurcation and Stability of Solutions Branching from T-periodic
Forced Solutions [1]

We turn now to the problem of stability, bifurcation and repeated bi-
furcation of the nonlinear, nonautonomous, evolution problem
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av
gt tFEu, V) =0 (2.1)
Here, F(t,u,V) is a nonlinear, T-periodic (F(t,-,-) = F(t+T,+,-)), map
from R x € x H into H, where H is a Hilbert space with natural scalar
product (u,v)y = (u,v)y, which carries real vectors VEH into real vec-
ters when uC is real. It is further assumed that F(t,u,V) is an
analytic operator with a Fréchet expansion

F(t,u,vtw) = F(t,y,V) + Fv(t,u,Vlw) +1F v(t,u,Vlw,w) + 0(w3) (2.2)

2

for t€R, V, we¢X = domain (vapH(compactly) and 1 in a neighborhood of
a real interval of €. It is assumed that F(t,u,0) = 0 so that V=0
is a solution of (2.1).

We may identify (2.1) with a partial differential equation in which
V is the difference between two solutions driven by prescribed T-
periodic data. One of the two solutions is T-periodic and it accounts
for the appearance of t in F(t,u,V). The solution V = 0 of (2.1)
corresponds to a forced T-periodic solution of the original problem.
When the data is steady, the same type of analysis leads to an
autonomous problem

dav _
It + F(u V) =0 . (2.3)
The evolution problems (2.2) and (2.3) have very different properties
[21.

The stability of the solution V = 0 of (2.1) to small disturbances
may be determined by Floquet analysis of the variational equations

dz
at + Fyltrus0fz) =0 . (2.4)
According to Floquet theory we may determine the stability of zero by
studylng the Floquet exponents -o(u) of the representation z =

o(ult t(t) where z(t) = ¢(t+T) and o(u) = E(u) + iw(u). These ex-
ponents are eigenvalues of the operator J(u):; that is,

-oz + J(u)z = 0 (2.5)

where J = d/dt + Fy(t,u,01 ), The operator J(u) is a Fredhom operator
(with a compact resolvent) taking T-periodic vectors in X into T-
periodic vectors in H; that is J(u): Xp +Hp. The scalar product on
Hp is

T

[u,v]y = %fg (u,v) 4t (2.6)

The Floquet exponents are the exponents of the Flogquet multiplier

A(n) = exp(-o(u)T) = exp(-c(u)T+2rik). The Floquet multiplier is an
eigenvalue of the monodromy operator. This operator is the analogue
of the monodromy matrix for ordinary differential equations (see, for
example section 7 of [7]). The monodromy matrix is the fundamental
solution matrix whose values at t = 0 coincide with the unit matrix.
This matrix can be regarded as a map z(0)+zZ(T). The same type of map
has been defined by I00SS [5] for evolution equations on Banach spaces.
In this case, A(p) are the eigenvalues of linear compact operator Su(T)
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in X mapping z(0) into z(T).

When £(u) > 0 for all eigenvalues of J(u), then V = 0 is stable.
We assume (H.1l) that v=0 loses stability strictly as p is increased
past zero: o(0) = o9 = iwg, £,,(0) < 0. At criticality (u=0),

J(0) = Jg and A(0)= Ap is of modulus one. We may represent the
Floquet exponent -gg = -iwg at criticality with

wy = %1 (r+k), 0 < r <1, k=0, +1, #+ 2, ...

Without losing generality, we may set k = 0 [1] because repeated
points on the imaginary axis of the complex ¢ plane correspond to
unique points

>‘0 = e-21Tir/T (2.7)

on the unit circle of the complex A plane. Problems with k # 0 may
always be reduced to the one with k=0; if g(t) = ¢(t+T) is an eigen-
function of (2.5) with k # 0 the z(t) = £(t+T) = e2mikt/Tr(t) is also
an eigenfunction of (2.5) with k = 0.

We now study bifurcation under the hypothesis (H.1l) and (H.2):
Assume that -27ir/T is an algebraically simple eigenvalue of Jj.
(Then i is a simple eigenvalue of Sp(T).) If t¢(t) is the eigenvalue
of Jg belonging to og = 2nir/T, then T(t) is_another eigenvector of
Jg belonging to Gy = ~2mir/T. Hence z (t)=e~2mirt/T,(t) and z(t) both
solve (2.4) when yu 0. 1In the analysis of bifurcation we must con-
sider all values of 1g on the unit circle; that is, all values
r, 0 <r <1l. If r is irrational then z(t) and Z(t) are independent
and zero is a sémi-simple double eigenvalue of the operator

_da(-)

¥y = gp— * Fy(t,0,0]-) (2.8)

in a space of doubly-periodic functions f(E%E ’ E%EE). In this case,

we get a bifurcating two-dimensional torus. When the amplitude ¢ of
the torus small, the principal part of the solution on the torus is
doubly periodic function with a frequency 2#/T and a frequency w(e)
which varies with ¢ and is such that wg = 27r/T [5,11]. The variation
of the frequency w(e) of the solutions on the torus need not be smooth.
The analytical properties of solutions on bifurcating tori in Navier-
Stokes and other problems are not well understood.

The complement of the set of irrational numbers on 0 < r < 1 is the
set of rational fractions m/n, m<n. Of course these fractions are
dense on (0,1). It would be unfortunate if the bifurcation results
depended in any important way on the difference between the irrational
values of r and the rational fractions. Fortunately, this difference
does not exist as a general feature; only the values r = 0, 1/2, 1/3,
2/3, 1/4, 3/4 are special; they lead to subharmonic periodic solutions
with the property that their period is a fixed multiple of T, inde-
pendent of e.

We can organize the motivate the study of subharmonic bifurcation
at a rational fraction in the following way. A subharmonic solution
z(t) is an nT-periodic function; hence

-2rir
—————(t+nT) o
T 2w1rnz(t)

z (t+nT)=e  (t+nT) = e = z(t).
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if and only if

-2wirn _ _ ,nh _ =n
e =1-= Ao = Ao - (2.9)

It follows that the subharmonic solution z(t) can exist with 0 < r < 1
if and only if Ag is the nth root of unity and r = m/n, m = 0,1,2,...;
n=1,2,..., m < n.

To construct subharmonic bifurcating solutions we introduce the
domain space Xpp = domain Jg and the range space HnT with scalar pro—
duct defined by (2.6) with nT replacing T. There is an adjoint Jo
relative to [-,-]nT and, if

-27imt/n

z* = z* (t), (2.10)

where
*
2mif g% + T o* = 0, TH(E) = g (t4T),

is complex, then z* and z* span the null space of Jo. It is easy to
verify that [z, z*] = 0 and we may take [z, z*] = 1.

We may take z and z* as real-valued when ig = e—2n1m/n is real;
that is when n = 0, Ag = 1 and m/n = 1/2, X9 = -1. When m = 0,
z = g (t+T) is real ayg T-periodic; that is n=1l. When n/m = 1/2,
z = e~Tit/T ; = ermit z is real and 2T-periodic. 1In these two cases,
and only these two, Jo has a one-dimensional null space.

Now I shall indicate how the subharmonic solutions can be con-
structed by analytic perturbation theory. The detailed demonstrations
are given in [1]. Assume that there are subharmonic bifurcating solu-
tions v = U(t,e) = U(t+nT,e), ¥ = u(e) which are analytic in some
neighborhood I(e) of the origin. Then introducing the notation
(+)p = dn(-)/de? and for short, Fyl(u,U|U;) = Fy(Uj), etc, which sup-
presses the dependence of the operators on t, U(t,e) and nu(e), we
find that

% + F(t,u,U) =0 , | (2.11)
dU1
H_E— + FV(U].) + Ul Fu = 0 ’ (2.12)
dU2 2
I + FV(UZ) + FVV(Ul,Ul) + Zul Fvu(Ul) + “1 Fuu + uzFu =0 ,(2.13)
dU3
I + FV(U3) + FVVV(Ul,Ul,Ul) + 3 FVV(Ul,Uz) (2.14)
+ 3ul FVu(UZ) + 3”1 Vvu(Ul'U ) + 3u2 FuV(Ul)
+ 3p 2 (U ) +u F +u, F =0.

1 Fouu 2"1 fuu 3 u

Existence and stability properties of the subharmonic bifurcating
solutions near € = 0 are determined by these equations and the equa-
tion for Uye

When € = 0, Fu(0,0) = Fuu(0,0) = 0 and the first two terms of
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(2.12), (2.13) and (2.14) may be replaced by ¥ Uy, n = 1,2,3. Since,
JoUy = 0 and zero is a simple eigenvalue of Jo (when n=1 or n=2) or a
semi-simple double eigenvalue of Fp we have

U, = az + az . (2.15)

When n=1 or 2, 2z=z and a = a is determined by the normalization as-
sociated with the definition of ¢. In all other cases this normali-
zation gives one relation between a and a and the ultimate values of
these quantities is determined by the conditions for solvability.
These conditions arise from the Fredholm alternative for Jg:

Let (H.l1) and (H.2) hold. Then there is u(XnT solving

S,u=¢£f€H, (2.16)

if and only if

[£,2%] o = [£,2%] o (2.17)

. If £ is real-valued one of the conditions (2.17) implies the other and

u=>bz + bz + o (2.18)

where o = Jo-lf is unique,

It follows from this statement of the Fredholm alternative that

U5L=azz+a£z+wz,9,>1
and, using (2.15),

J0w2 + Fvv(az + az, az + az) + 2u1 Fvu(az + az) =0 . (2.19)
(2.19) is solvable if and only if

2 * 32 z. .z * 2 z *
a®[Fy (z,2) 2% o + a[F,(Z,2),2%] o + 2]a] " [Fyy(z,2) . 2%] g
+ Zula 0u= 0 A (2.20)

where, by a standard perturbation result using (2.5) and (2.17)

5., = [Fy (2),2%] o (2.21)

We are assuming that the real part &,, of o,, is negative at criti-
cality; that is, V = 0 loses stability strictly as u crosses zero.

To evaluate (2.2), we make use of the following computational
lemma. Let g(t) = f(e) exp (2rimt/n) = g(t+mT). Then

[f,Z*]nT = [g,c*]nT =0 . (2.22)

(2.22) may be proved by direct computation. Application of (2.22) to
(2.20) leads to the conclusion that

Wy = 0 for all n except n =1 and n = 3 . (2.23)

We may conclude that if solutions with n = 2,4,5,6,7,... bifurcate
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and up # 0 they bifurcate on one side of criticality. 1In general,

uy # 0Owhenn=1o0rn-=3, (2.24)

The T-periodic and 3T-periodic solutions bifurcate on both sides of
criticality.

Supposing now that (2.23) holds we find that (2.14) is solvable if
and only if

*
3u2 ¢, a + 3[FVV(U1,U2),Z ]nT + 3[F (2.25)

* = X
vwv (UprUps0p) e 2%l = 0.
When n > 5 (2.25) we find, using (2.22), that (2.25) is in the form

2
go ¥ la]“€ = 0

which has no solution except for the special case in which f/0, is
real. Hence, in general, there is no nT periodic bifurcation for n>5.

Equation (2.25) must be studied when n=2 and n=4. Equation (2.20)
must be studied when n=1 and n=3. I have already noted when n=1 or
n=2, z is real and a=a is determined by normalization. In this case,
the analysis of bifurcation and the stability of bifurcation follows
along by now classical lines. For n=3, (2.20) is a cubic equation
and for n=4, (2.25) is a quartic equation for the real or imaginary
part of a. (We may eliminate, say, the imaginary part by enforcing a
normalizing condition connected to the definition of the amplitude e.)
Having once determined the number of real roots of the cubic equation
(2.20) or the quartic equation (2.25) for allowed values of a we must
then verify that the higher order perturbation equations are solvable.
This will be true at all orders if it is true at one order beyond
(2.20) or (2.25).

The results of the study of bifurcation and stability of solutions
branching from T-periodic ones is given in Fig. 2.1, see page 9.

3. Factorization Theorems for the Stability of nT-bifurcating
Solutions

We now relax the assumption that the amplitude ¢ of the t = nT
periodic bifurcating solutions is small and undertake the study of

the stability of these solutions under the hypothesis H.3: Ul(r,e) =
U(t+nT,e), ple) is a ¢t = nT-periodic bifurcating solution which 1s
analytic on some possibly large interval I(e) . I do not require that
I(e) be a neighborhood of the origin so that the factorization
theorems will apply to isolated solution branches and to branches

of solutions which arise from repeated bifurcations.

The stability of U(t,e) is governed, in the linearized approxima-
tion, by

d
a% + Fy(t,ule) ,U(t,e)|w) = 0 (3.1)
where F (t,-,-}~) is T-periodic and U(t,e¢) is 1t periodic. The spec-
tral prgblem associated with (3.1) may be obtained from the Floquet
representation w = e~Ytr(t) where r(t) is tv = nT periodic and

-y(e)T + F(e)T =0 (3.2)
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n=1l. A single one-paramerter n=2. A single éne-parameter family
family of T-periodic  solutions of 2T-periodic solutions bifurcate
bifurcate on both sides of on one side of criticality at a
criticality at a simple eigen- simple eigenvalue
value
re e
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n=3. A single one-parameter n=4. There are three alternatives
family of 3T-periodic solu- for the bifurcation of 4T-periodic
tions bifurcates on both sides solution at a semi-simple double
of criticality at a semi- eigenvalue: (a) Two solutions bifur-
simple double eigenvalue cate, each on a different side of

criticality and both are unstable,
(b) Two solutions bifurcate on the
same side criticality and one is un-
stable, the stability of the other
being determined by details varying
from problem to problem, (c) no 4T-
periodic solutions bifurcate

Fig. 2.1 Bifurcation of forced T-periodic solutions. The period of
nT-periodic solutions with n=1,2,3,4 is independent of the amplitude.
For all values of r # 0, 1/2, 1/3, 2/3, 1/4, 3/4 a torus bifurcates

on one side of criticality. The supercritical torus is stable and the
subcritical torus is unstable. The frequencies of the solutions on
the torus vary continuously with amplitude but the variation need not
be differentiable.

where F(e) (-) = (), + Fyl(t,ule),U(t,e) (-)) maps X, p into Hpp and
satisfies the hypothesis

H.4: J(e) is a Fredholm operator with a compact resolvent from X7
into itself.

Since F(e¢) has a compact resolvent its spectrum is of eigenvalues of
at most finite multiplicity and there is an adjoint J§*(e) into HnT
such that

-Y(e)T* + F* r* =0 (3.3)

where Yy is the conjugate of y. The number of independent eigenvectors
ry belonging to y(e) is the dimension of the null space of -y(e) + JF(e)
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which is the same as the dimension of the null space of the adjoint
operator -y (e) + J*,

The last hypotheses which we need to prove the factorization is

H.5: +vy(e) is an algebraically simple eigenvalue of J(¢) for all
e€I(e) except possibly on an exceptional set of isolated points across
which T (t,e) and T'*(t,e) are continuous. H.4 implies that vy(e) 1is
continuous across points in the exceptional set. We may normalize

[rle),T*(e)] o =1 (3.4)

at all points where y(e) is simple, and by continuity also on points
in the exceptional set.

Suppose H.3, H.4, H.5 hold and assume that

[Ue(e),r*]nT #0 . (3.5)

Then there is a unique continuous function y(e) defined on all I(e)
such that

y(¢e) u¢(s);(e) (3.6)

where

y(e) = - [F, (ule),Ue) , T*] o/ (U_,T*] o . (3.7)

Moreover,

r = b(e)(U€ + ueq) (3.8)

where b(e) is a normalizing factor for r and

g(t,e) = g(t + nT,¢) (3.9)

is uniquely determined by

;ue *F (ule),Ule)) + {y-F} g =0 (3.10)

and
[q(r*]nT =0 . (3.11)

Proof: (2.12) may be written as

JU8 + ueFu(u(e),U(e)) = 0. (3.12)

Since T'* satisfies (3.3) we have

W IR T*] = [8U_,T*] o= [U_,8*T*] . = y(e) [U_,T*] ., (3.13)

nT nT
Equation (3.12) holds at all points where y(e) is an algebraically
simple eigenvalue and also, by continuity, across points in the ex-
ceptional set where y(e) is not algebraically simple. Solving (3.13)
for y(e) we find (3.7). Now combining (3.2) and (3.8) we get
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- ueY(E)(UE+qu) + ¥0_+ u dg =0

Elimination of JU_ with (3.12) leads to

ue{YUe + Fu(u,U) + [Y-J]q} =0 (3.14)

The coefficient of u. in (3.14) vanishes when u. # 0 and, by continuity,
even when uy, = 0 at a point. This proves (3.10?. Since =-y+J is
Fredholm and (3.13) holds, (3.14) is uniguely solvable with [q,T*] = 0
wherever y(e) is algebraically simple. So we get a unique g when ¥y (¢)
is algebraically simple and, by continuity, at isolated points in the
exceptional set. This proves the factorization theorem for nT-periodic

bifurcating solutions.

Remark 1: If rey(e,)# 0 at a point ¢, where u(e) changes sign
(such points are calleg critical points 8r turning points), then

re y(e) changes sign as e crosses e€g. This remark suggests that in
most problems the bifurcating solutions will gain or lose stability
across a critical point

&
(4 /%//’
1
’ \u
8 yd i \‘\
z - - ———
A w $ /3 o
7/ 7
Fig. 3.1 Recovery of stability at
S critical points of bifurcation curve.
(a) is the conjectured form of the
\\ N global extension of 3T-periodic bi-

furcating solutions (b) is the conject-
ured form of any unstable subcritical

(a) (b) one-sided bifurcating solution; say,
n=4,

Remark 2: In most problems y(e) is an algebraically simple eigen-
value of ¥(e) for nearly all values of €. The stability of the bi-
furcating solution U(t,e) is controlled by the eigenvalue y(e) with
the smallest re y(e). The factorization may be used to calculate the

stability of the bifurcating solution at ¢=0 when ygp = 0 is a simple
eigenvalue of Jp; that is, when n=1 or n=2. In this case we find that
when ¢ > 0; ¢ > 0,

*

0.P0)+(z(t),z*(t)) = (z{(t+nT),z*(t+nT)),

(r

U(t,e) + ez + O(EZ)I
and

Fu(trUrU) > eFuV(t'O'O Z).

Since [z,z*]pp = 1, [U_,T*] e~ 1 and using (3.7) and (2.21), we find
that when ¢ is small n

Yle)= - elF (£,0,0 2),2%] = - co, . (3.15)
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Equations (3.6) and (3.15) implies the local (e¢+0) statement of sta-
bility for T-periodic and 2T-periodic bifurcating solutions: subcritical
solutions are unstable and supercritical solutions are stable.

When n=3 or n=4 the analysis of the stability of the bifurcating
solutions requires that one construct a perturbation analysis of a
semi - simple double eigenvalue to separate the branches of y(e).
Without such an analysis it would not be possible to specify the linear
combinations of (z,z) and (z*,z*) which give the limiting ¢+0 value of
F(e) and T*(g). '

Factorization theorems can be used to characterize points of
secondary and repeated bifurcation [2] at a simple eigenvalue.
Factorization theorems for autonomous problems may also be proved
[2,7]. It is interesting that the factorization theorem for periodic
bifurcating solutions of the Hopf type show that the eigenvalue y=0
is always an algebraically double eigenvalue of the appropriate oper-
ator. This algebraically double eigenvalue is geometrically simple
in the general case. 1In the special case the derivative of the fre-
quency ®(e) of the Hopf solution with respect to € vanishes when vy (g)
does. (¢=0 is a special case). If w, (¢) = y(e) = 0 then y(e) is a
semi-simple double eigenvalue [2]. €
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