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0. Introduction and Review of Previous Work

This paper is a contribution to the theory of viscometry of slow steady motions
of a simple fluid and is presented as PartV of the work on slow motion and
viscometric motion which formed the subject of the paper in four parts of JOSEPH
(1974). The line of thought explored in all five parts, and in parts presently under
preparation, is as follows: the constitutive relation for simple fluids is general
enough to describe all motions of many fluids. The specification of the constitutive
relation for a single fluid, the “name” of the fluid, is the general problem of visco-
metry. The very generality which is required to describe all of the possible responses
of all simple fluids makes the solution of the general problem of viscometry
difficult, to say the least. To circumvent this difficulty, we restrict our consideration
to special motions on which the constitutive relation reduces to a manageable
form; that is, a form for which it is possible to do the experiments to find the
values of the quantities which name the fluid. We say that these manageable
restrictions of the motion define restricted problems of viscometry (see Part I,
Section 2). The two examples of restricted problems of viscometry under con-
sideration are the viscometry of simple fluids in viscometric motions and the
viscometry of simple fluids in slow steady motions. We are attempting to formulate



360 L. STURGES & D.D. JOSEPH

a practically useful theory of viscometry for slow steady motions: this comes
down to finding good relations from analysis to guide experiments to measure
the Rivlin-Ericksen (RE, for short) constants which appear in the expressions
(3.2y of Part I for the extra stress in slow steady flow.

The tilted trough viscometer, studied here. exploits the fact that the free
surface on a viscoelastic fluid flowing down an open channel which is inclined to
the horizontal will deform under the action of normal stresses induced by flow.
The trough is a companion to the rotating rod viscometer (JOSEPH. BEAVERS &
FospicK. 1974: BEAVERS & JOSEPH, 1975). Both the rod and the trough utilize the
idea that the shape of the free surface depends on material parameters. By using
the two instruments we can, at a minimum. determine the values of the two
Rivlin-Ericksen constants of the 2" order approximation relating stress to
deformation in the slow steady motion of simple fluid.

We propose to use the formulas derived here as the guiding theory for the
experimental determination of the special combinations of RE constants which
arise in the study of flow down a tilted trough. We calculate the solution in a series
of powers of the tilt angle f# and show that secondary motions do not appear until
sixth order when the trough is infinitely deep or has a semicircular cross-section.
For these troughs we give simple formulas relating the shape of the free surface
to the RE constants of the first. second. third and fourth-order fluids.

WINEMAN & PIPKIN (1966) were the first to suggest that the deformation of
the free surface on the liquid flowing in a trough could be used to obtain information
about normal stress differences. They expand the stress into a series of RE tensors
and expand the solutions into series of powers of sin § where f§ is the angle of tilt
(our f3 equals their (). They use the method of Stokes to treat the domain pertur-
bation and they neglect surface tension. WINEMAN & PIPKIN show that the {ree
surface on a liquid will bulge out if 2%, +a, <0. This combination of parameters
gives the limiting value of the second normal stress difference N, =2u, +a,=

lim N, (k),x2, where x is the rate of shearing. This bulging. observed in all non-
=0

Newtonian fluids so far studied. implies that N,(x)<0 when k is small. Our results
agree with those of WINEMAN & PIPKIN at the lowest order of approximation. At
higher orders the results are not directly comparable because our expansion
parameter is f§ and theirs is sin 8. Their second approximation corresponds to,
but is not the same as, our analysis at O(f*). At this order. our results are not in
agreement. They say, at the conclusion of their paper that “We have carried out
all of the details of the solutions (in the second approximation) in the case of a
trough of semi-circular cross-section, but since we did not find this exercise to be
particularly edifying, we shall not report the results here. Our main conclusions
are that the first approximation is particularly simple and the second approxi-
mation 1s excessively complicated.” We have already mentioned that the analysis
given in this paper shows that in semicircular troughs and infinitely deep troughs
there is no secondary motion at O(f*). This superficially surprising result is
actually in good accord with known results about the flow of simple fluids in pipes.
If the cross-section of the pipe is not an annular ring or a limiting circle or parallel
planes, a secondary motion. driven by normal stresses forced by the geometry
of the walls, will appear at O(B*) (GIESEKUS, 1961; LANGLOIS & RIVLIN, 1963).
This consideration led WINEMAN & PIPKIN to believe that secondary motions
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would exist at O(f*). In the annular round pipes, however, rectilinear flow is
possible at ail orders and the simuitaneous presence of a free surface does not
drive a secondary flow until O(8°), at least. The explicit solutions through O(B°)
for these special cases are not excessively complicated; they are relatively compact

—- PSRN I At o b e

and t:uurcry' crcxucular:y
The other studies of trough flow (TANNER 1970; Kuo & TANNER 1972, 1974;
PIPKIN & TANNER, 1973) use a different procedure which relies on what we shall

call the “cut awav” aroument. In the case of flow down a nrnr- this is equivalent

Lau wuav vul aviay LHUILVIL 01 UL LASU Ul LUV WUV G pPapt, WS S Vhuavaasiit

to imagining the top half of the fluid has been cut away wrthout changing the now
unequilibrated stresses which were present in the developed flow before the cut
away. The free surface on the cut away plane is then determined from the over-

burden which must develop to balance the unequilibrated stresses. PIPKIN &
TANNER (1973) say that this proceaure is accurate to within the first order in the
height. There is some ambiguity in this statement. The height is a dependent
variable;itisnota given quantity and it must be determined as part of the solution.
We ]i‘llt‘:f'pfel the “first order in the r‘lf:igut to mean G([)’Z) Then the statement of
PipkIN and TANNER is correct. However, if this is the correct interpretation, then

we think that the use of N, in their equations is misleading unless the further

rectrintinn =D 4+~ V12 g enecified and it ic not snecified In fact we think
TeSrICUIon 1‘2——\4. &y T Ay KT 18 SPOCHICA, and It 15 N0 SPOCIICd. 111 140, WO UK

that TANNER (1970), Kuo (1973) and Kuo & TANNER (1974) claim more for the
cut away argument than can be supported by analysis (see the discussions at the
end of Section 5). They use the cut away argument to derive an equation which
they say gives the second normal stress function. Our analysis shows that it is
possible to determine the second normal stress function but only through terms
of O(#%) and then only when the trough is infinitely deep within plane walls or
has a semicircular cross-section. The second restriction is stated clearly by Kuo
{i973) and Kuo & TANNER (1974} but, unforiunately, they have given the order
of terms neglected incorrectly and have omitted terms of same order (8% as
others retained (see Section 5). Their analysis is valid through terms of O(f?); our

vgig iq valid thr ~F N4

aﬁ“ 1y915 iS vaiia uuuusu l\(l ms O1 U\IJ ).
The analysis to follow is purely formal and mostly elementary. We should

like to call attention, however, to the theorem about Rivlin-Ericksen tensors
which is nrnvpd in Annendix 1: this theorem is used in our combutations but has

LR A up b} VI A AP peallin 1, Ui

a more general apphcatlon.

i. Mathematical Formuiation

We consider the motion of an incompressible simple fluid down an open
channel tilted at an angle § with the vertical. Troughs of rectangular cross-section
are probably of greatest practrcal value for free surface vrscometry It will be
convenient in Sections 1, 2 and 3 to develop the analysis for this convenient
geometry (see Fig. 1). The analysis of Sections 1 and 2 applies, with only slight
modifications, to flow down troughs of arbitrary cross-section, and, in Secno 5,

we aive hriaf cancidaratinn ta the nrahlam af flaw dawn traniche
WV miVWw Ulivi VUL 1s1aeration o ine piruuvivii Ul 11Uw Gown LLUUEUO

cross-section.

The notation of our analysis is defined in Fig. 1. The fluid occupies the region
¥~ with coordinates (x,y,z) and corresponding velocity components {(u, 0, W)

COOLALINAateS 410 LOITLPONAMNE VOLLPOLCAS Yy Wi

The wetted perimeter of the surface of the container € is .% The free surface is
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‘€ (container)

Fig. 1. Sketch of the tilted trough.

(X, 9, 2) (coordinates)

(u, v, w) (velocity components)
L =€V (wet container)
F=y—h(x)=0 (free surface)

0L =FnE (contact line)

F =y—h(x; f)=0 and the contact line is the trace of the free surface # =0 on the
container wall. We are going to assume that the air exerts no tangential tractions
on the moving fluid and that the fluid satisfies the classical surface tension equation
of Laplace and Young with constant surface tension o. We shall also assume that
the contact line is fixed or that the fluid and solid meet at an angle of 7/2. The first
of these conditions expresses the natural affinity which liquids have for sharp
corners, the second condition can be obtained by treating the solid surface with a
non-wetting agent, like “scotchgard”.

The flow down the trough is driven by gravity and gravity enters the force
balance shaping the free surface. We may separate these two effects by decomposing
gravity into a specific driving force and a potential:

g=gsinfe,—gcosfly.
The equations of motion may then be written as
pu-Vu+vV®=V-S+pgsinfe,, (1.1a)

divu=0 (1.1b)
where
®=p+pgycosf

is the head, —p 1 is the isotropic part of the stress and § is the extra stress. The
extra stress relates stress to deformation while p arises as a kinematic constraint
of incompressibility and is to be determined as part of the solution. The fluid
satisfies a no-slip condition at solid boundaries:

uly =0. (1.1c)
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On the free surface, y = h(x), the normal component of the velocity and the compo-
nents of the shear stress vanish; the jump in the normal stress is balanced by
surface tension. The free surface conditions may be written in component form:

v—h,u=0, (1.1d)
h‘x(Syy_Sxx)'*'(l_h,zx) Sxy=0’ (116)
Syz—h,xsz=Oa (llf)

h,xx
Syy—h.xSxy—¢=0W—PghCOSﬂ, (1.1g)

on y=h. In the rest state, =0, we assume that the free surface is everywhere flat,
h(x)=0. This assumption is equivalent to an assumption about the nature of the
contact between the free surface and solid wall. In the following fluid, the shape
of the free surface depends on the forces due to motion and on the total volume of
fluid in the channel. The total volume in a developed flow can be specified as a
volume per unit length. The specification of the volume is a separate kinematic
condition and it, or an equivalent condition, must be prescribed to guarantee
uniqueness. To emphasize this point, consider the rectangular trough of Fig. 1
when =0 and there is no motion. The trough is now filled with liquid so that
y=h(x)=0. If we now add or remove some liquid, the fluid will continue to grip
the sharp corner but the free surface will not remain flat. To guarantee flatness
when =0, we properly specify the volume of fluid in the trough. For essentially
the same reason, we must specify the volume when g4 0. Without loss of generality,
we require that this condition take form as a prescription of the mean height

Q(ﬁ)=% _j:h(x;m dx. (1.1h)
We require that
2(0)=0
and
2(B=02(-p).

Otherwise Q is an arbitrary analytic function which may be selected to match
experimental conditions. We are assuming that the solution corresponding to
a given prescription of the mean height is unique; the formal solutions which we
compute are unique. The condition that h=0 when =0 is essential in our analysis
because it allows us to use a convenient reference domain, under a flat surface,
in the domain perturbation. We assume contact line conditions

h(+d, )=0,
or contact angle conditions
h(td;p)=0,

which lead to the desired reference configuration a(x; 0)=0.
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To solve problem (1.1), we use the Lagrangian theory of domain perturbations.
The most recent and most complete statement of this theory appears in the (1975)
paper of JoserH & STURGES. We first define a scaling transformation

X=Xg,
2=29, (1.2)

D+h
D

which is a one-to-one mapping of the deformed domain

Yp=[x,y,2: —d=x=d, —DZyZh(x; B), —oo<z<o0]

y=Yo +h,

into the refernce domain
Yo=[X0>Vos20: —d<xo=<d; —D=ZLyy<£0, —0<z< 0]

of the rest state. This mapping is analytic in § when h(x; f§) is analytic in f. The
solutions of (1.1) are mapped in ¥; and expanded there in a series of powers of f8:

wix, y; B)=wlt(xq, yo) B+ WP (xo, yo) B7/3!+ w1 (xg, yo) B3/51+ -+ (1.32)

Y(x,y:P) '/’[2] (x0» Yo) '/’[4] (X0 Vo)
d(x,y; ) |=| D (x0,¥0) %+ ™ (xq, yo) %'f‘ (1.3b)
h(x; B) ht2! (xo) h4(x,)

where y(x, y; B) is the stream function for the secondary motion and

0 dy 0
o= (554 5 ) 0
0B dp oy =0
is a substantial derivative following the mapping evaluated in the reference
domain 73.
To express the solution in the deformed domain, we invert the mapping:

d - —h)D
w(x, y; B)= g 2n=1)] [2"‘”(x,(yD+)h )
® 2" . (1.4a)
Z 2n_1 w2 (x, ),
Wiy B et (x%) Y (x, )

) _w B pan( =MD _o B pean
2x.y:h) _n§1(2n)! ? (x’ D+h> T aen)! ey [ (14D

h(x; B) h2"(x) / h<2™ (x)
The last equality in (1.4a, b) is not obvious and the equality of the series does not

imply term by term equality of the Taylor coefficients (JosepH, 1973). The functions
with angle bracket superscripts are partial derivatives holding y fixed and eval-
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uated at f=0; e.g.,

op" ﬂ=0.
The functions w< (x, y), (x, Y)€¥, can be interpreted as the analytic extension
by declaration of the functlons W™ (xg5 Vo)s (Xgs ¥o)€ ¥5- The substantial
derivatives w"l(x,, y,) may be computed when the w<">(x0, ¥,) and the coef-
ficients for height of rise /<" (x,) are known.

In the perturbation analysis which follows, we compute W (x,, y,)s
Y (Xgs Vo)» P (xg, ¥o) and A ({x,). From this point on, we shall work
exclusively in the reference domain ¥ and we simplify the notation by dropping
the subscript zero; that is, in the equations which follow, the coordinates (x, y)e¥5 .

ad fi traam flinet tha
Since w is independent of z, and u and v are obtained from a stream function, the

equation divu=div [e, A VY] is automatically satisfied. We shall not always
introduce y explicitly in our equations because we never do come to an actual
computation of secondary flows and we want to avoid unnecessary computations.
We are now ready to consider the perturbation equations for u<™, p<™, w<,
@™ and h™.

2. Series Solution

The perturbation equations for the coefficients in the expansions (1.4) are
obtained by the methods prescribed in the Lagrangian theory (see JOSEPH &
STURGES, 1975). When n is odd,

pag =S+ S5, + 85k +pg  in Y5,
S¥1—(h S..)"=0 on y=0, (2.1)
W<n>|y=0,

where a =u - Vu. When n is even,

(ny _ ¢<n> (my (ny <n>
Pa Sxx x+Sxy)+szz (p,x ’} :
R " n ; . in 7, (2.2a)
pa< >_S§)>x+s§y> +S< > ¢)<y>’
U™, =v®1, =0, (22b)
™ —(h ufM=0,
_ tm 4 glml _ (2 (] —
{h‘x(syy Sxx)} +Sxy (h,xsxy) Oa on y=0 (220)

h [n]
n n n] __ y XX {n
S —(h S - =0 [——(1 +h,2x)%] —pglhcos 1™,

1 d
<ny <n 2.2d
0 57 _j'dh (x)dx (22d)
and
" (+d)=0 (2.2¢)

or
h<’(+d)=0. (2.2e,)
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The substantial derivatives ()" are related to partial derivatives (- )™ by the chain
rule; for example, since w<®, @<, y<® h<® and h¢2"*+1> are all zero,

(B =()?

(.)[3]=( )3>+3h<2>( )<1>,

(.)[4l=( KY +6h<(e )<2>, (2.3)
(.)[5]=( ) 5>+5h<4>( )<1>+10h<2>(')<3>+15h<2>2(‘)<y1y>,

(.)[6]___( )<6>+15h<4>( )<2>+15h<2>( )<4>+45h<2>2( )<y2y>_

Derivatives of stresses are given by

S =8 +85 + -+ 8",
divS™ =ul?u™ + V- {S§ + -+ 85},
The stress tensors S{" are related to the functions u¢” through the expressions
involving the Rivlin-Ericksen tensors 4, (see (3.6) of JosepH, 1974). This elimination
of the §¢™ is carried out below with help of the formulas in Appendices 1 and 2
for n=1, 2, 3, 4. To simplify the writing of formulas, we introduce the following

notations:
N,=2a,+a,,

B=ﬁ2+ﬂ3’
F=y3+74a+7s 37>
V=M
u
n=1: SO =pA®,

2.4)
AV =(ece,+ee )WL +(e e, +e,e )W),

P8 _y.
u
Wb, =0,

W§;>|y=0=0'

prwt> 4+ £8
2.5)

n=2: SP=pA® +a A5 + 0, (AP =pA{® +2a,e,e, | w2
+2N; [, e w e, e, w4 (ene, + e, e WD W], (26)
On y=0, w§>=0. Hence
S =uuP +o)
on y=0. Moreover, on y=0,

5P =0,
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Equations (2.2a) may be written

LV u® L PN, (Pw® 242w P2 2] =0  in ¥

and
u<2>|5p=0.
Hence
=0 in ¥% 2.7
and
& =N, (IPw 2+ 2w P2 w<) 4 Const. (2.8)

The free surface is determined by the differential equation arising from the third
of equations (2.2¢):

hE —pgh® =2N,w»” - P = — | _,. (2.9)
This equation is to be solved subject to the boundary conditions
h®(£d)=0 (2.10,)
or

h<P(+d)=0, (2.10,)

and the prescription of the mean height
1 d
0¥ =— [ h®(x)dx. (2.11)
2d 2

n=31 SO = A +oy S +ay (A + B, A
+8,[A; Ay + A, A, 1P +85[A4, tr 4,1

X (2.12)
[uws + 12Bw® P w2,
Evaluating (2.1) when n=3, we get
123
P+ B e 4 3w
(2.13a)
PR DWW -EE=0 in ¥
and
w1y =0. (2.13b)
On y=0

3 2 1> _ <3 2 1 2 1>
S —3hP SL =8P + 30D S, — 382 L =0.

We may rewrite this last equation:

128
WP+ LD PR P 3D WG -hD D) =0, (2139
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The second term of (2.13c) vanishes because of (2.5¢).
n=4: SH=8* 48 +8" +8P =uA{® + o AP +a,(AFP
+h2[Ay - A+ Ay AT + B[4 tr A1 (4D
+74[As AT+ AT A1 +ys[A, tr A, +y[AF tr 4,10
+ysl A, tr(d; - 4)1%
=e.ex[2pul +8N WP W +967 W Pw 1]
+e,e,[2u05 + 8N, w WD +965 wil>? [P wit?|2]
+(ece,+e,e) [uusy + 0S8+ 4N, WD w +w® wi)
+965 W w? IPw 121+ 8e,e,[676 [V W [*+o, P - P,

Equation (2.2a) may be written as

(2.14)

HPHD e (AR WD) WD WD) ]
~ 2
FI6FLwS [P w2+ Wi P w1?) (1}
e, (AR IWE W), W+ ) ]

+967[(wi>* [P wd ), WP wE w1 -V et=0 in ¥

(2.15a)

where
Uy =e u®ly +e, v, =0. (2.15b)
The free surface equation (2.2¢) on y=0 becomes
¥ =0, (2.15¢)
u$ +v<P =0, (2.15d)
SO +6h<D S, — 6D S~ W — 6 h<D @< 56
=ch—pgh™® +6pgh'® .

where substantial derivatives have been evaluated using (2.3). Equation (2.15d)
is deduced from the equation

6h<(S527 =S+ 8 +6hP S22 =0

and (2.12), (2.13¢) and (2.14).

Since the boundary conditions (2.15 b, ¢, d) are satisfied when u<*> =0, secondary
motions are not forced from the boundary. The solution of (2.15a, b, ¢, d) is
unique and w‘*>=0 if and only if the inhomogeneous terms in (2.15a) have a
potential. We may write (2.15a) as

wWV2u® VAN, Pw P wS® 41205 [P wD* -] e, X +e,Y=0 (2.16)

where
X =41\72 [wf;> P2 w® +wf§> V2w

+96TIw (w7 3w P W) —wi) — 4w W]
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and
Y=4N, [wfy1> V2w +w_<y3> V2w

F96TTWS WL 4 3w WL —wh) 4w L],

In important special cases which include a deep trough (D/d— o0) and flow
down troughs of semicircular cross-section, e, X +e,Y=FF and there is no
secondary flow at order four.* The inhomogeneous terms in (2.15a) may then be
balanced by the reaction pressure ®<*> and, using (2.5,), the differential equa-
tion (2.15¢e) for the free surface reduces to

ThE —pgh® = —&® _6pgh<®. (2.17)

The functions on the right of (2.17) are evaluated on y=0.

It is possible to compute the secondary motions in the rectangular trough.
The mathematical problem can be formulated as a biharmonic edge problem for
the stream function. The solution of this edge problem in a rectangular trough
should follow, step by step, the extension of JOSEPH & STURGES (1975) to finite
strips of SMITH’s (1952) theory for semi-infinite strips. We expect the secondary
motion to be very weak when the trough is deep and, therefore, proceed in Sec-
tion 4 with the much simpler higher-order theory which arises in the limit D/d— oo.

3. Second Order Curves of Height of Rise in a Rectangular Trough

Unique solutions of equations (2.5)-(2.11) are easily obtained by routine and
elementary methods. These solutions are listed below.

Introduce the dimensionless variables

= x y D pg)‘} ]
) =]—, -, — —_ —1/2 .
[x’.)9D’ Q’ b’l] [d b 3 d ’d ( O’ ’(n 1/ )n

Then
W<1>=V{%(1_22)+ Y f,cosh,x coshb,,j/}, (3.1

n=1
=1y
f"_bf,‘ coshb,D’

N, V?

= 42 Cl-+—N2[w‘<j>z+wfy1>2—2pgw<1>/y],

* InSections 4 and 5, we show that u‘* vanishes in deep channels and semicircular troughs. The
same demonstration holds when the trough is a ring bounded by semicircular arcs. The generation
of secondary motions is a consequence of the azimuthal variation of the shearing which leads to
unequilibrated normal stresses driving tangential motions. This azimuthal variation is produced by
the shape of the trough walls when the walls are not concentric cylinders or limiting planes. This
general mechanism, discovered by ERICKSEN (1959), produces secondary motion at order four in the
flow through pipes of elliptical cross-section studied by LANGLOIS & RIVLIN (1963). The same mechanism
cannot operate, at order four, in the flow down semicircular troughs where secondary motions first
appear at order six.
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MD=MV

{Cl +C, coshC)"c+2)'cz+—Cg—1
2_p2

+22 i i[b,,)‘c sinb,,;‘c+b" : cosb,,Sc] (32)

n=16n

s(b,—b)x cos(b,+b)X

4+ Z bef;lﬁ[CO(" l)x_ ( l) ]}
n=1 l=1 T Sni
where
C, and C, are constants of integration,
=b} + (2,
rul=(bn_bl)2+czs
and

Snl=(bn+bl)2+cz-

The constants of integration are determined from conditions (2.10,), (2.10,) and
(2.11). Using the condition for fixed slope (2.102), we get

—-1 3 (b5 02,

— —4 = nfn n|.
cz-Csth[l—c“ 2(—” ?]

n

using the condition for fixed line (2.10,), we get

c1=_1_;_2+w§ﬂfﬁ

n=1 n
1
- b,b — )+ —
nzl lz f;lf( ) ( nl Snl)
2{cosh{
B sinh{ —{ cosh{
2{G

2 =sinhC—CcoshC
where

_ .ﬂh(‘lr 2

8n
WA b'(_””'(n, i).

n=11l= Snl
The equations of this section simplify radically for very deep troughs; as
D— o0, f,—0. We find that
v
W<1>___5(1_y¢2)’ (3.3)

h<2>—N2 2524 4 g_’_uQ(z) cosh (X
ZZ 3N,V {sinh ¢

(3.4)
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when h$Z’(+d)=0, and

NV {(cosh{x—cosh{) [4 2uQ?®
h<2>—7{2x2—2 sinh { —{ cosh { [‘ ]} (33)

3VR,V
when h¢?>(+d)=0. These formulas show clearly how the rise at second order
depends on the parameters

(1) The magnitude of the rise is proportional to the limiting value of the second
normal stress lim[N,(x)/k*]=N, =20, +a, and to the ratio, ¥/u, of speed to
viscosity. The product N, V/u is also proportional to the limiting value of the ratio
of the second normal stress to the product of shear rate and the shear viscosity
function

(ii) The shape of the rise curve depends on the prescription of the mean height
at second order and the ratio { of the width of the trough to capillary radius.
In Figs.2 & 3 we have plotted (3.4) and (3.5) for a fixed mean height (Q<?>=0)
with the dimensionless capillary radius as a parameter. The free surface bulges
when N, <0 (WINEMAN & PIPKIN, 1966). It is worth noting that the shape of the
free surfaces (Fig. 2) are independent of Q¢?*. Changing the mass flux here merely
shifts the level to which the fluid rises in the trough but does not effect its shape.
In the other case (Fig. 3) the fluid grips the sharp edges so that a change in the
amount of fluid in a cross-section must also change the shape of the free surface.

In Figs.4 and 5 we have plotted some representative graphs of the curve of
height of rise (3.2) at second order with D/d as a parameter. It is apparent from
these graphs that the curves of height of rise for D/d> 2 are barely distinguishable
from the limiting curves for infinitely deep channels D/d— co. The bottom does
not sensibly effect the height or shape of the free surface in troughs which are
deeper than they are wide. This result justifies the use of second order theory for
infinitely deep channels in experiments using rectangular channels with D/d> 2.

= 1271
| >

ﬁc 2 10T

= a8t

-0

-10-
=12+

-14d

Fig. 2. Second order curves of height of rise for very deep troughs. These curves are computed from (3.3)
with the dimensionless capillary radius { =d}/pg/o as a parameter.
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14 T
> 124
Z 10+

; J
A

o~

Vo
="

Fig. 3. Second order curves of height of rise for very deep troughs. These curves are computed from (3.4)
with the dimensionless capillary radius as a parameter.
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Fig. 4a. Second order curves of height of rise in rectangular channels. These curves are computed from
(3.2) and the flat slope boundary condition, h>>(+1)=0. The value of the ratio { of width/capillary
radius is four for all curves shown.
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Fig.4b. Second order curves of height of rise in rectangular channels. These curves are computed
under the same conditions as those shown in Fig.4a except that (=128 is large and the capillary
radius relatively small. In this case the effects of the boundary conditions at X = + 1 are felt in a boundary
layer too small to be seen in this figure. The curves of rise, here and in Fig. 5b, are the same despite the
fact that these satisfy a zero slope and those in Fig. 5b satisfy a zero displacement boundary condition.
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Fig. Sa. Second order curves of height of rise in rectangular channels. These curves are computed from
(3.2) and the zero displacement boundary condition h<?>(+1)=0 with {=4.
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Fig. 5b. Second order curves of rise in rectangular channels with h¢?>(+ 1)=0and { = 128. The boundary
condition is satisfied in a layer too small to be seen in these graphs.

Comparison of Figs.4b and 5b show that the boundary conditions have
little effect on the interior values of the height of rise when the ratio { of width to
capillary radius is large.

4. Fourth Order Curves of Height of Rise in a Deep Trough (D — o)

From (2.13a) and (3.3) we find that
3
/.LVZW<3>—36B(—'D—g-) X —pg=0. @.1)
u
The function

% N V2 © B
W == (%2 = 1)+3 =Y dcosh,k (42)
U

n=1

pr:
pd?
satisfies (4.1), (2.13b) and (2.13¢) where

¢y =24(—1Y"{b; > =2b; * —({>+b7)*[{* + b7 — 2L coth (]}

=1+
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when h$®(+d)=0, and ¢ [1 43 #Q<2>]

4 N,V
=8(—-1)" b-2— —4
&=8(=1) [3 L sinhC {cosh(

( sinh{ _ 2Ccosh2,’)]
(+by (2+07)
when A{® (+d)=0.
Using (3.3), we may rewrite (2.15a) as
17D 4o (AR, 2D WD)+ WD W]
F96F) o} + e (4N, (W W)~ 7 8O =0,
The inhomogeneous terms in (4.3) can be expressed as a gradient. Using (4.1), (3.3)

4.3)

and wl’> = P8 we find that
uv2u<4>+v{4ﬁz [P w® R~
" 44)
-9 ﬁwfp‘] +96?w§}>4—¢<4>}=0,
u
u® =0, 4.5)
and

00 =Copg+al, [ w® R b -9 L] Losud. @

The solution to (2.15e) may now be completed. We find that

N,V (N, V)? N,pVv3 V3
KO="2"H,+ 2 H+-2—> H—~—5H 4.7
h u at [lzd b+ #2d2 c ‘udz c ( )
where
H,=4%? —4+C2+6C, 3C,(%sinh{X+ C;,+ C4qc0sh( X, (4.82)
.2 (b,Xsinb,X—cosh,X 2bkcosh,X _
=442";c,.( ey by ’)+C3b+C4bcosth, (48b)
1 24
H.=12-96 [x +£—3'2+C4]+C3C+C4ccoshb_c 4.8¢)
and 5
N,V (N, V)? N,BV3 5V3
Cy= ; Cia ;zd Capt 22d2 C3C—W(C3c+l2),

where C,,, ..., C,, are constants of integration. Application of the condition for
fixed contact line (2.10,) gives

32 {cosh{

Csu=— 7 —6C, +3C,({sinh{ +cosh{)— sinh{ —{ cosh{

8_ - H oo
[3 3C2Csth+N2VQ ],
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2B b (=) {cosh? :
Csb—4£221 21 b? {H—sinhC—CCOShC[I_CZ'H’,Z.]}’

_ocJ7,12. 24 (fcoshl 4 8
Csc—96{§+ZE+C—4+sinhC—CCOSh£[5+C2]}’

4
sinh{ —{ cosh(
-4 © ¢, by(—1) 2
“’—sinhC—CcoshC,,; 2+ b2 [—c2+b§]’

[2—3 C,¢sinh{ +- Q“)],

C4a=_3C2+ NV
2

and

_ 96¢ 4.8
Cac= “sinh{ —{ cosh¢ [5+(2]’

while application of the prescribed condition for angle of contact (2.10,) gives

_ sinh{ 10 24 pu 4
C3a_6 6C‘l 6C2 C 3 CZ+N2VQ s
36
C =0, CC=_’
3b 3 5
-1

C“=C Shi [8 -3 C,{(sinh{+{cosh{)],

80 b (L)
Cor=Toinh &, (2 +B2Y

9% 24
Cac=Tsinhe [4+27] '

and

In Fig. 6, we have sketched the coefficients of height of rise (4.8) for the case in
which a horizontal angle of contact is prescribed, Q¢*>=0 and {=1. In Fig. 7, we
have sketched (4.8) for the case in which the line of contact is fixed, Q> =0 and
(=1

We shall not carry the analysis further than fourth order. At this order, we
have already good expressions for the shape of the free surface which depend on
the RE constants of the first, second, third and fourth order fluids. The computation
of the change in the axial velocity at fifth order is straightforward but tedious and,
up to the time of writing, we did not find a clear motivation for writing down the
results. Computations at sixth order become very complicated. We carried the
calculations far enough to satisfy ourselves that secondary motions do appear
at this order. It is necessary to add, however, that the heavy labor of computation
at sixth order reduced our standard of self-satisfaction below the level required
for categorical statements.

The results achieved so far are collected into partial sums for series giving the
axial flow and the shape of the free surface in Section 6.
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3+

He
Fig. 6. Fourth order curves of height of rise for very deep troughs. These curves are calculated from
(4.8) with Q<*>=0, { =1 and the condition of flat angle of contact (2.10,).

2+

Nl

Fig. 7. Fourth order dimensionless curves of height of rise for very deep troughs. These curves are
calculated from (4.8) with Q<*> =0, { =1 and the condition of fixed line of contact (2.10,).
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5. The Semicircular Trough

Most of the equations given in Section 2 hold when the cross-section of the
trough is arbitrary. Of course, it is then necessary to replace (1.2) with a mapping
appropriate to the given boundary. We may find one to one mappings x=x, and

=¥ (yo, Xo, h(Xo, €)) Which are linear in y, and take

VyoVoy  KeoS,  y=h(x;e)—y,=0.

In some cases, it may also be necessary to modify slightly the mean height to
account for features of the changed cross-section.

The semicircular trough is interesting because it belongs to the special class
of problems in which secondary motions are first generated at sixth order in the
series of powers of . For the semicircular trough, it suffices to use a mapping
function % =[1—h/(d*> — x3)*] yo + h. Then, relative to the problem for which

h(+d)=0, (5.1)

all of the equations of Section 2 hold and we find that

1% 2
W<1>=Z(1——:i_2)’ (5.2)

where x=rcosf and y=rsin6,

2 NVETL 3
=N [le<”|2 Pgw<1>]_ 22 [4 2(2+C6coshé’] (53a)
and
h<®> =NL [Ce(cosh { % —cosh {)+2(x*—1)], (5.3b)

where X=x/d and ({ are the dimensionless symbols introduced in Section 3 and

¢ o
C6= N (‘+ = )-
sinh{—{cosh{\2 N,V

At third order we have

Vzw<3>=£§—ﬂll7w<l>lzwf)l,;:%[1+&|VW<1>\2] in v, (54a)
oo u u

w®=0 on r=d (54b)
and

y<3>_N V

[CG(costh cosh{—{Xsinh(X)—2x*—-2] on y=0.(54c)

The demonstration that u¢*> =0 in ¥; does not require any further analysis
of the problem of third order. It is necessary to show that the vector e, X+e,Y
defined under (2.16) may be obtained from a potential. From (5.1) we learn that
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wll=wl>=—pg/2u and w'!}=0. Then using (5.1) and (54a), we may write
X=4N2p—g[w<;>—w<3>+_24—ﬁw<;>|17w<1>|2]
u ’ ' 7
and

—am, 28 [y - <3>+2‘:j’w<1>w WP,

Hence, X and Y can be obtained as the components of the gradient of the potential
F=4N,G

3
G=B§[W<1>_W<a>_§EV_6 ] (5.5)
U d
and
B =4N, [P w - Pw® + G]+ 1205 [P wP1*+ Copg. (5.6)

The differential equation (2.17) for the free surface may now be written as
oh—pgh® = — 4N, W w +G1 = 1207w" = C7pg —6pgh®. (5.7)

To complete the analysis at fourth order, we must first find expressions for the
perturbation field w<3> by solving (5.4).
Problem (5.4) may be reduced to an edge problem for Laplace’s equation. Thus

BV3 31 /r\* N,V
(3 — _ (1 E___[(w) _1] 2 i 5.8
W RIS RV ud “0(0,) ©8)
where
P2$=0 in ¥, ¢(d 6)=0 (59a,b)
and
\J 2
w,<3>=122; %41,, on y=0 (5.9¢)

where w3’ is given by (5.4¢) and ¢ ,=23,¢(r, 0) is evaluated on §=0 for x>0 and
6=n for x<0. The harmonic function ¢(r, ) satisfying problem (5.9) is easily
obtained by the method of separation of variables used by Kuo & TANNER (1972)
in their study of the flow of a Newtonian fluid down a tilted through. We shall
not here give this solution or the resulting expression for the correction for height
h¢*> which arises from the integration of (5.7).

We conclude this section with some remarks concerning the computation of
the viscometric function N, (k?), k? = w .+ w , from experiments in a tilted trough.
Kuo & TANNER (1974) have studied th1s problem by the cut away method; they
discard the term

S,0,61,-0~O(N,h3/R3)  (their estimate in their notation)

where h,, is the maximum deflection and N, is the second normal stress difference.
In our notation, N, =0(8%), h2=0(B* so that the rejected term is said to be
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of O(B°). In contrast, we find that

SrO 6ly= o“SrO 0ly= oﬁ4+o(ﬁ6)’ (510)

and conclude that Kuo (1973), and Kuo & TANNER (1974) have discarded a term
of the same order as others which are retained *, Their basic equations [22] and [23]
are therefore incorrect at O(8*) or, in their notation, at O(N, h,,/R,). If we assume
that all of the pertinent error estimates in Kuo’s thesis (1973) and in the paper
of Kuo & TANNER (1974) have been incorrectly printed, then the theory given by
them is valid up to an order of error h,/R,. We say that this means that the
Kuo-TANNER analysis is valid to O(f2) and that their analysis gives N, = (20 +0,) k*
and nothing more. TANNER (private communication) says that the revised error
estimate, O(h,/R,), holds irrespective of considerations of order in our sense
and that the cut away argument was used by them, deliberately, to avoid Rivlin-
Ericksen expansions.
To obtain the form of N, (x) at the next higher order,

Ny =(Q2ay +a,) K2 +4(y3+74+7s +376) K* +0(x®),

it is necessary to determine the value the constant y;+7,+7s+37s=7. This
constant appears in explicit form in the expression (4.7) for the height of rise at
fourth order. In principle, we can compute 7 by measuring the free surface. Whether
this point of principle is also of practical importance will be decided by experiments.

6. Application of the Theory to Experiments

Our present view is that deep rectangular troughs may be the most suitable
configurations to use in the experimental determination of the RE constants.
We propose to use the theory for the infinitely deep trough to guide the inter-
pretation of data taken in deep troughs. For the infinitely deep trough, we have

* To prove (5.10) we must show that

In the semicircle ¥;, S,s=e¢, - S - €¢ is non-zero at even orders in § and is given by

2 4
Se=S ﬂ swh O (5.12)

where

5[2]_S<2>_2N (1 w(l)) (w“)) 0

because w!” is independent of 0. Then, using (5.8), we find that
212
Sl S(4>_4N ! w<l>w<3> 4NV lw<l>¢,a (5.13)
ud r T T
in the semicircle ¥; and, using (5.9¢), ¢ 4%0 on y=0. Differentiating (5.13) once more we find that
4N2V? 1
St ="t W b

Suppose ¢ 4,=0 on y=0; then ¢ =0 in ¥, which is impossible. This completes the proof of (5.11).
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found that
u(Xo, yo; f)=0(B°), (6.1a)

(X0, Vo3 B)=0(B°), (6.1b)
3
Wka» o B)= 1) (xg, yo) B0 (xo, vo) oo+ O(B?)

5(1——)ﬂ+[ (1) (3

V2 © bnyo

3
Z cpe ¢ cos b,,%o] §+O(ﬂ5),

(6.1¢)

where the ¢, are defined under (4 2),

h(xo: )= h<2>ﬂ SR 4+O(ﬁ‘5)—

{xo 4 2
[C +Czcosh( 7 )+2( ) +C—2—1]g
Nive NZ/WS H Kj ] ﬁ—+0(/36 (6.1d)
uz d uz d? c dz :
where C, and C, are limiting values (D/d — o) of the constants C; and C, defined
under (3.2) and H,, H, and H, are given by (4.8). We have replaced (x, y) with
(Xg, yo) In (6.1) to emphasize that the functions are defined in the reference domain
under the flat free surface. To obtain the solution in the deformed domain, we
invert the mapping (1.2) in the limit D/d — oo

+

H,+

N,V
[2 H, +

Xo=2X,
yo=y—h(x;p).

The formula (6.1d) is the working equation for the experiment. This formula
depends on the RE constants g, N, =2a, + 05, f=F,+ 3 and 5=7; + 7, +7s+3 76
in a simple way. At angles of small tilt the height of rise is linear in the bulge
constant N, * To determine N, it is necessary to measure the shape of the free
surface; given the shape of the free surface and its absolute height, we determine
the constant N, and the mean height Q<?> at second order (which appears in the
definition of C; and C,). Of course, specification of the mean height at second
order and the center line height 4¢2”(0) at second order are entirely equivalent.

The experimental determination of the bulge constant N, may be easiest
when the side walls of the channel are coated to maintain a flat contact angle
h'(+d)=0. In this case the shape of the free surface is independent of the mean

height and u K< (d)— <> (0)
Ny=2u+or=; ,_4cosh{—1)

B {sinh{
Equation (6.2) shows that for a given fluid and trough, N, may be determined

from the experimental determination of the height discrepancy h¢?>(d)— h<*>(0)
at second order.

(6.2)

* The bulge constant N,=2q, +a, and the rod climbing constant f=3a, +2a, (see JOSEPH,
BEAVERS & FosDICK, 1973; BEAVERs & JosEpH, 1975), taken together, completely define a simple fluid
in the approximation of second order for slow steady flow.
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In Section 3, we showed that a deep trough, in the second order theory,
has D/d>2. At fourth order, secondary motions are driven from the bottom of
the trough and these bottom eddies may be expected to penetrate more deeply
into the fluid’s interior. In the different, but mathematically similar, problem
which arises in the computation of the shape of a free surface on a liquid in a
trench heated from its side, we showed (JOSEPH & STURGES, 1975) that the bottom
eddies have sensibly vanished in a distance D/d > 3. The effect of secondary motions
driven at the bottom may possibly be reduced by making a semicircular bottom
for the deep trough.

Appendix 1: A Theorem about Rivlin-Ericksen Tensors

In the study of flows of a simple fluid in which can be constructed a perturba-
tion of the state of rest it is necessary to compute the value of derivatives of the RE
tensors evaluated on the rest state. If

=3 a0 B

is a steady flow, analytic in 8, then

(A1)

A,=A,[u,u,..,u], ntimes,
is a homogeneous polynomial of degree n in u and

ZA<,..>3"'_A [Zu“)]ﬁ i <1>ﬁ]

where AS™ = 0™ A,/0 ™, evaluated at f=0, is given by

1 u<n> ulrz ulrm
R L

Here Y™ is a summation for a fixed integer m over all sets of positive integers
such that

(A2)

n! oo r,!

=

m=
i

h.
1

fl

Since 0 <r, the smallest of the allowed values of # is 1. Suppose that r,=1 for
i=1,2,...,n—1. Then

n

m=Y r=r+n+--+n=n—1+rn,.
i=1

Hence the largest of the allowed values of r; is m—(n—1).
We now consider the derivatives of A, when the A4, are evaluated on the partial
sums N ﬁj
oy = Z a1 (A.3)
i=1 J!
where the u¢> are the Taylor coefficients in (A.1). We find that
N+n-1

An[u(N),u(N)""su(N)]: Z A§m> + z EnB" (A4

m=n ' m=n+N

where the A$™ are the tensors defined by (A.2)
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Theorem. Suppose that (u(x, B)) is given by (A.1). Then

AS™ =0, m<n. (A.5)
Suppose further that uy,(x, f) is a viscometric flow, then
AS™ =0, m<n+N-—-1, n>2. (A.6)

Proof. Equation (A.5) is obvious. To establish (A.6), we recall
A, [u,u,...,u]=0, n>2, ntimes,

when u is a viscometric flow. Under the hypothesis of the theorem the left side
of (A.4) is zero. Differentiating (A.4) repeatedly with respect to f§ at f=0 we prove
(A.6).

The perturbation relation (A.6) is very useful in calculations; it eliminates
wasted computations which, in the end, lead to zero tensors.

The relation (A.6) could also be used to prove the theorem given in Partl
(JOSEPH, 1974). In that theorem it was shown that if the N'® partial sum of the series
for the velocity field is itself a viscometric field, then, whether or not the N + 1
partial sum be a viscometric field, all partial sums up to and including the N + 2"
depend upon the constitutive relation of the fluid only through its viscometric
constants. An interesting, but esoteric, consequence of the theorem proved in
Part I is that steady nonviscometric flow down infinitely deep channels and semi-
circular troughs depends exclusively on viscometric constants through seventh
order in powers of the angle of tilt . Though secondary flows develop at sixth
order, the perturbation fields at sixth and seventh order depend exclusively on the
viscometric constants.

Appendix 2. Computation of the Tensors AS™

We now calculate the Rivlin-Erickson tensors 4™ as required in the ex-
pressions (2.1a) and (2.2a). In the calculation we use {(A.S), (A.6) and recall that
u¢® =0 and <> =0.

If n is odd,

AW =(Vu+FV )" ) =V u™ +Vu™)T

=(e e, +e,e) WP +(ee,+e.e,) WS,
If n is even,
(ny _
AV =e e 2uV +e e, 20

+(ece,+eye,) U< +v<P)
At first order,

AV =0, n>1.
At second order,

(AP =24 =2{e, e, WY +e e, WS’
+e e, (W W) +ese, Fe,e) W WSY,
A =2{A® P u +(FuD) . AD)
=4{e e, wD e, e,wD’ +(e e, +e,e,) WL W},
AP =0, n>2.
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At third order (now recognizing that u**’ =0),

(Af)\*‘* A

3

o

=0.
A5 i ult? L(Vu<1>)T A\2>\_0

N Iy ydd? S DEINEC IRV bR
(A, - A, )\D—A 345 A = 12 {e e (Wil Tt ey S e e (W Wl Fw

H
o

tr A gAY =3tr A A=A, A+ Ay A
2 1 2 ! 2 1 1 2
A7 =0. >3
At fourth order.
4 1> 3 (3> (1>
(AN =d(4s) 4P + A A4
— IV ,\35 s RED IR
=d{e e 2w w ee 2wt
e e 2wl w\“]
‘ A a3 el e
+(exe\,*e“ex)lu s L“‘y w2,

A=A Tu (e A A7 Ve a4

. .y
=16{e,e ot te e

slece,+Fepe)(w b} LN
A=A AT =[(tr 4,) 4,1 =0,
AP =4, AT =[(r 45) A Y = (4, - 4 4,1 =0,
1,45)\4\’—()A}J\:796{exex(u“}iv—v‘-w}iv\\';PZ)
+ee wl T Wil >

.3 N .
k(e,\’e\‘*—e\"'x)(w:}: ““"i ‘%‘W_\i.

T,
frd-14,]% =o(tr 4,7 14,7 =4 *
(Ay Afr* =124 4,07 =54y
[(r A5 AT = 12(tr 457 1 Ay
AN sd8e.e. [w w0

A0 =0, >4

Appendix 3. Computation of the Motion at Third Order
and the Correction of Height of Rise at Fourth Order
for the Semi-Circular Trough

To complete the solution giving the third order correction for the axial motion.
we need to solve (5.9):*
Cp=0 in 7, Pd.H=0. (A3.1)

b p=3[Cq(Xcosh X —xcosh{—_%?sinh {X)—$(x°+x)] on »=0.

* The methods used in this section are taken from Kuo & TANNER (1972).
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The solution of this problem can be found by the method of separation of variables.
We first change the variables

r ~
[=3, =0 +%TC
Then, substituting
$¢=R(1) O(0)

into (A 3.1,), we choose the forms
O(0)=cosh 40,
R(t)=a,t'* +b,t~*
where 4 is a real number. The boundary condition (A.3.1,) requires that
a,+b;=0.

[t follows that the general solution of (A3.1, ,) is

¢= | 2ia;Asin(ilnt)cosh 18 di. (A3.2)

— X

Using (A.3.2), we may express the free surface condition (A3.15) as

[ visinAiudi=K(e", (A3.3)

-
where v,=2ia, sinh 3 in),
u=Inr,

K(e*)=3[Cg(e" cosh { ¢ —e" cosh { —e?* sinh { ") — 2 (3" +¢¥)].

Multiplying both sides of (A3.3) by 1sin Au and integrating with respect to u
n

from — o to 0 we find, using the Fourier integral formula*, that

0
| K(e*)sin Audu.

— a0

12
vi=— [ ] vycosu(s— A dsdu
P e 2
== [ | vgsinsusin Audsdu
1
n

The solution to (A3.1) is then given by

x 0 . - -3
¢=l i [ i K(e")sin,{udu] sin (4 In ) cosh 46

. A3.4
A Gsinh@am) P (A34)

* See 1.S. SOKOLNIKOFF & R.M. REDHEFFER, Mathematics of Physics and Modern Engineering.
New York: McGraw-Hill Book Company, Inc., 1958, p. 190.
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We now expand K (e*) in a power series,

K(e)= Y ace, (A3.5)
k=1
where
0 if kiseven,
_ z[Cs(l—COShg)—— for k=1,
W 2[ 3C 7 =31 for k=3,
1 1
10,0 1[ ——] for k=5.7,....
o k-l k=-2t]
Then the first integral in (A3.4) is easily evaluated and gives
0 0 0 a /1
k; ay ;j'x esin Audu= — Z kZ:—A

We substitute this back into (A3.4),

x

_ —sin (4 1n ) cosh A6
d’"nk;“"j (k? + A%)sinh G A7)

— X

i, (A3.6)

and evaluate the remaining integral by the method of contour integration to get

1 2 2 cos [k(@+3%m)]
ol 0)__,21 k{F_E (d) sin (A k)
27 cos [2n(0+3 7)) (a3
2
+4"Z1 (—1y (d) DA }

The third order correction to the axial velocity is now given by (5.8) and (A3.7).
We next give the fourth order correction to the height of rise. After much
simplification (5.7) can be written

72
Uhf:§—98h<4>=N22 {-—%Y +§—6C6(coshéx coshg)}

+%2;;—3{i i [kz 2"; (n+1)xz,.]} A39)
UARE SR
The solution to (A3.8) has the form (4.7) where now
H,=3x2 —; j —3Ce{Xsinh{X—6Cqcosh({+C,,+ Cg,cosh (X,
Hb::% é “"{ _k1_2_2 2 K n+41n Lio (zriz—n;;)! ng';;m]} T Copt Copeosh i,
(A.3.9a-)

1 12 24
H = A‘?S()—c4+7)—cz+ﬁ) +C,.+Cg, cosh (X,
¢ ¢
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and
N,V (N, V)2 N,BV? V3
C,==2 + uzzd Crp+ ;2d2 Cre— d2 (Cre+3).

Finally, the constants C,,, C4,, ..., Cg, are evaluated using the fixed contact
line condition

KO (+d)=
which gives

Cr.=1 —23'2—+3C6 (¢ sinh { +2 cosh {)— Cg, cosh {,

g 2 © n+1 "o 1
Cow=y T a { +2Y [Z(zn_zp)!zz—p]}—csbcoshc,

n—l p=90

15 12 24
C7c= [1

> +C 54] Cg.cosh{,

4
sinh { —{ cosh {

B { 65 2 n+1 " (2n)!(2p—2n)
Cs”'smhc—ccoshc{?kgl ; [,,go(zn—zpﬂ)!c’"]}’

Csfm%:ah—c(‘?) [§+§7]'
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=-3Ce¢+ [1 3C6Csmh<,+ Q<4>]
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