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1. Introduction

This paper is divided into four loosely-connected parts whose common thread
is the study of slow steady motion of a simple fluid. The motions to be considered
are those which can be constructed as a perturbation series pivoted about a state
of rest. The Rivlin-Ericksen fluids of successively higher orders appear sequentially
in the construction. The perturbation solutions are motivated by the desire to
create a practical theory of viscometry for the Rivlin-Ericksen constants.
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The first part of the paper concerns the relation of the Rivlin-Ericksen con-
stants to the viscometric constants which arise as coefficients in the power series
expansion of the three viscometric functions. The viscometric constants can be
expressed in terms of the Rivlin-Ericksen constants but at each order larger than
two there are more Rivlin-Ericksen constants than viscometric constants. The
construction of slow steady motions which are not viscometric will naturally
depend on the Rivlin-Ericksen constants which are not viscometric. However,
at the lowest orders in the perturbation series for slow flow only viscometric
constants appear. More precisely, if the N partial sum of the series for the
velocity field is itself a viscometric field, then, whether or not the N+ 1* partial
sum be a viscometric field, all partial sums up to and including the N+ 2" depend
upon the constitutive relation of the fluid only through its viscometric constants.
This result gives a definite answer to the question: to what extent can the visco-
meters which are based on viscometric flow theory be used, in principle, to do
the viscometry job required for slow flows?

The second part of the paper is about the problem of stability and bifurcation
of the rest state of a simple fluid. The deformation histories which are required
to test the stability of the state of rest are different from those which must be
used to construct the bifurcating solution; different constitutive relations are
required to study stability, on the one hand, and bifurcation, on the other, in one
and the same simple fluid. A criterion is derived for instability of the rest state
in simple fluids which are assumed to satisfy a conditional stability theorem.
This criterion follows when the stress response is linearized for small amplitude
motions of arbitrary frequency. Small amplitude motions of arbitrary frequency
do not lead to the Rivlin-Ericksen fluids. Though an explicit criterion for the
instability of the Rivlin-Ericksen fluid of order n can be derived, its relevance to
real simple fluids is very limited. Bifurcation of the rest state is altogether different.
When the spectrum of the linearized stability operator for the rest state is real-
valued and discrete the unstable rest state will give way to steady motions which
can be constructed using bifurcation theory and the Rivlin-Ericksen fluids. The
bifurcation of a simple fluid heated from below is an example. The heat trans-
ported across the fluid and the shape of the free surface on top of the fluid are
computed observables with a potential for use as a heat transport viscometer for
the Rivlin-Ericksen constants.

The third part of the paper is about the problem of the change in diameter of
a horizontal capillary jet with gravity neglected. A unique motionless jet in the
form of a straight round cylinder held together by surface tension is an exact
solution of the jet problem. This motionless solution is the pivot for constructing
a formal perturbation solution in powers of a speed parameter. The “stick-slip”
solution of RICHARDSON (1969) appears at the first order in the perturbation
analysis. This solution has a lip singularity in the stresses and pressures. A mo-
mentum analysis of the jet leads to a relation giving the ratio of the final to initial
diameter of the jet in terms of the momentum deficit, the thrust due to surface
tension and the skin friction in the exit region of the capillary tube, and it leads
to the limiting form of this relation for small Reynolds numbers. With the help
of curve fitting from experiments, I show that the final diameter of a Newtonian
jet decreases as const./R* when the Reynolds number R is large.
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The fourth part of the paper is about the problem of flow of a simple fluid
confined between aligned horizontal disks which rotate at different rates around

a common axis. The fluid is held in the space between the disks by a vertical

surface film which is attached to the edge of the disks. The flow and the shape

of the free surface is constructed as a perturbanon series in the difference 2w
of the two disks. The solution is carried through second order by reducing the
second-order perturbation problem to a type which is related to the semi-infinite
strip problem of the classical theory of elasticity. This problem concerns an edge
that goes all the way around, but it is possible to solve it by a rapidly convergent
“Fourier series” of Papkovich-Fadle eigenfunctions. The solution, described in
relatively elementary terms, has a complicated structure exhibiting motion in
celis; these cells are required to turn the flow around at the edge and they decay
rapidly with distance from the edge. The motion is driven by torques generated
by vertical gradients of the centripetal acceleration associated with the basic

shearing motion.
Tt is of interest tl

A AlAlvaAwSe

12 y
by neglecting inertia and the effects of finite edges. This approx1mat10n, which
makes torsion flow a viscometric flow, was introduced in the papers of RIvLIN
(1948), GREENSMITH & RIVLIN (1953) and RIvLIN (1956). Viscometric torsion
flow has been studied in some detail by COLEMAN, MARKOVITZ & NOLL (1966),
J. R. A. PEARSON (1966), PIpKIN & TANNER (1972), TRUESDELL & NoLL (1965)
and by many other authors.

The neglect of inertia is justifiable in several different limits. In my analysis
the secondary motion appears first at order w? and the deviation of the shearing
flow from a viscometric flow appears first at order w3. It follows that in the
limit w — O the extra effects, beyond viscometric flow, vanish. For this reason it is
reasonable to neglect inertia, when w is small, in the applications of torsion flow
involving computations of the torque; for example, in the applications leading
to the determination of the shear viscosity function. However, the neglect of
inertia cannot be justified for the computation of the normal stress since these,
like inertia, are proportional, at lowest order, to w?. Indeed this analysis shows
that the full contribution of the radial variation of the normal stresses away
from the edges in a disk viscometer with a stationary bottom plate is

8a 6a 3
w? ( dzl + d22 - Sp) r’ (%)

where r is the radius, d the distance between plates and «, and «, are Rivlin-Erick-
sen constants. No matter how small w might be, (**) will not reduce to the ex-
pression
8a 60
2 1 2
()
()

which arises from viscometric analysis. Equation () shows that when 4a, +3a,>0
there is a critical separation distance*

d=d.=[(*sa;+10ay)/p]*

* In STP at about room temperature d.=~~4.5 cm.

8*
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which depends on material parameters alone. When d<d, and o is small, inertia
is a small effect which may be neglected and the normal pressures which give
the normal stress with reversed sign are largest at the center of the disk and
decrease with radius. When 4> d, the normal pressures are smallest at the center
and increase with radius.

Analysis shows that when o is small the free surface and the shape of the
streamlines are the same for all fluids having the same surface tension and density.
The speed of the secondary flow, however, is proportional to the fluidity (the
reciprocal of the viscosity) I believe that this dependence of speed on fluidity
ultimately explains why it is so much easier to hold very viscous fluids between
rotating plates; the forces which are associated with high speed motions of
relatively inviscid fluids rupture the free surface.

Part 1. Slow Motions and Viscometry

2. General and Restricted Problems of Viscometry

TRUESDELL & NoLL [1965] define an incompressible simple fluid through the
constitutive equation for the extra stress

S=%F [Gzi)]’ G(s)=C,(s)—1, traceS=0, (2.1)

C, being the relative right Cauchy-Green strain tensor
C,=FF, F,=grady, G(0)=0 2.2)

where {=1,(x, 1) is the point occupied at time T1=r—s by the particle which at
time ¢ is at point x. G(s) is called the history and & is a hereditary stress response
operator. The general problem of viscometry of a simple fluid is to ascertain the
form of the operator &#. The solution of the general problem of viscometry is
known for the important special case of the Newtonian fluid; in this special case
the operator % =u(Vu+VuT)=uA,, where u(x, t) is the velocity at present time,
is specified when the viscosity u is given. The form of & is not known, even in
special cases, for real non-Newtonian fluids.

To circumvent the difficulty of doing practical mechanics with a general but
unknown &, it is useful to define restricted problems of viscometry. These take
form by first specifying classes of motion or histories on which & reduces to
something more manageable and by then defining viscometry relative to the more
manageable & . For example:

(1) Three viscometric functions are necessary to characterize & for all visco-
metric motions of a simple fluid. The restricted problem of viscometry for visco-
metric flows is to find the three functions.

(2) One function, the shear relaxation modulus, is necessary to characterize &
for all sufficiently small-amplitude motions of a simple fluid (COLEMAN & NoLL,

1961). The restricted problem of viscometry for motions of arbitrary frequency
but sufficiently small amplitude is to find the shear relaxation modulus.
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(3) An infinite set of constants are required to characterize & on slow motions
which may be obtained by perturbation of a state of rest. The restricted problem
of viscometry for these slow motions is to find the constants.

The nature of the special class of slow motions being considered in (3) places
more emphasis on the small finite number of constants which appear at the
lowest orders in the perturbation expansion. From a practical point of view the
determination of, say, the fourteen constants mentioned under the expression (3.2)
below would suffice for an approximate description of many slow flows.

3. Slow Motions and Rivlin-Ericksen Constants

The word ‘“motion” here has a strictly kinematic sense and is not necessarily
a solution of the equations of motion. Thus, a slow steady motion is a bounded
solenoidal field ,
U(x,e)=cu(x, &), ueC®(¥), |&|<ex>0

where ¥ is the closure of the domain in R® on which u(x, &) is defined.

Retarded motions are not so easily defined. If G(s) is analytic, it may be
expanded into a power series whose coefficients are the Rivlin-Ericksen ten-
sors A4,

n o]

! anG(S)/aSn;s=0 =HZI(_S)nAn/n !’

2 s
G(S)_,,Zl n
where

A, =VU+vuT
and

04,
Ayry=—"+U VA, +4,VU+ vu'd, (4,7U);=(4,),0;U,.

If & has Fréchet derivatives of all orders at the point G(s)=0, then one may
formally expand S into a series

S=

:ﬁ[\/_]s

1S,,[A,,, A,y . A (3.1

_ The tensor-valued functions S, of 4, can be written out explicitly [for example,
see TRUESDELL & NoLL, p. 494 (1965) or TRUESDELL, p. 132 (1974)]. The first
four of the S, are

Si[4]=pdy, (3.2a)
S:[Ay, Ay ]=a; Ay +a, 43, (31.2b)
S.[dy, Ay, A3]=B1 A3+ P,(A, 4, + A4, Ay)+B3(tr 4,) Ay, (3.2¢)

Si[Ay, s, A5, A=y, Ay +72(A54,+ A4, A3)+7y; A3
+74(4, A%+AfA2)+y5(trA2)A2 +Y6(U’A2)A% (3.2d)
+[}’7 trd;+ys(trd; A,)]A4,.
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The Rivlin-Ericksen coefficients u, «,, o5, B4, B2, B1s Y15 P2» --- Vg are constants, or
more generally, functions of the temperature. We define the

set{c,} of constants for S,. (3.3)

For example, 9, 7, --., 75 are the elements of the set {c,}. The partial sums

N
S(N)= len [Am Ay-y . Al] (3.4)

are called stress tensors for Rivlin-Ericksen fluids of grade M.

It is thought that fluids of grade N are valid approximations to S when the
motion is slow.* CoLEMAN & NoLL have shown that fluids of grade N are valid
approximations to S when & is an operator with fading memory and provided

that the history H(s) of some motion is the retardation of some given history
G (s) such that

H(N=G(ys)=
I8/ =)

(—as)'4
AN J

1

inl
ni

18

where o is the retardation factor and is to be regarded as a small parameter.
CoLeEMAN & NoLL show that asymptotically

Alprveawaa

— 0@y,

7 [mg] -5

CoLEMAN & NoLL’s theorem gives one sense in which the retardation approxi-
mation is valid; this is in the sense of an expansion in slow time (s'=uas) of the
history G(s") of the motion whose velocity at present time is U(x, ¢). Slow time
expansions and slow motion expansions are identical when the motion is steady.

JoserH & Fospick (1973) have shown that for slow steady motions one can
define a retarded history

H,=H(es; e)=G(s; ¢).
Here H,= G is computed from F,=grad ¥ where

(t—s)=P(x, —es;e), E=x|=0 (3.5a)
and

V' [x, —es; e]=u[&(t—s); €]

where the prime denotes differentiation with respect to the argument in the second
place. Note that H,= G is the retardation of the history H (s; ¢) which is computed
from the field ¥ (x, —s; ¢). The slow motion U =¢u may be called the retardation
of the motion u(x; ¢). Time retardation is implied by the retardation of the motion
because the equation for the particle paths of the slow motion

Z—é—U(é,s) eu(é;e) (3.5b)

* Formal series expansions for the extra stress were given first by GREEN & RIVLIN (1957).
Necessary conditions for the convergence of these expansions are still unknown. The Cole-
man-Noll retardation theorem (1960) gives sufficient conditions for convergence.
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may be obtained as particle paths for the retarded motion u(; ¢)

—‘%r=u(§; g), Ttv=e¢r (3.5¢0)
in slow time t’. Integration of (3.5b) from (&, 7) to (x, #) shows that & depends
on ¢t only through x and s, as in (3.5a).

For slow steady motions 04,/0t=0; then A, and S, are homogeneous tensor
polynominals of degree n in U. Thus, for slow motions, using (3.1), we have
A,=¢"a, and

M8

S=Y ¢8,[u,..,u] (3.6a)

1 ntimes

n
where

S,[,....u]=S,[a, a,_q, ..., a;].

ntimes

Suppose now that the slow steady motion is analytic in ¢ and that

¢ o}
u(x, )=y & utb.
=1

Then '
S [u,....,u]=S,| Y & tul, Y et u<"">] =Y ¢ 18P (3.6b)
=1 =1

ra=1

where
S'(|l> =Z(l) S-n [u(n)’ u("z)’ .- u(fn)] (3.6 c)

and Y @ is a summation for a fixed integer / over all sets of integers 7,21 such
that

l= Z Ti+ 1 —n.
i=1
For example,

Sgl) — Z(l) sz [u(H)’ u('z)]

where ) @ is a summation over all sets of integers 7, =1, r, =1 such that r, +r,=
I+1.

It follows from (3.6) that

[+ o]

S=7Y "5, (3.72)
n=1
where the S¢"> are partial derivatives
1 0"S
S = SP=— 3.7b
‘1+l=zl+n 1 nl 5e" |e=o ( )

evaluated on the slow, steady, analytic (in ¢) motion (3.1).

4. Viscometric Motions, Yiscometric Constants

There are several equivalent definitions of viscometric motions. Following
PrpkIN (1967) and YIN & PipkiN (1970), we say that u(x, t) is a viscometric flow
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if, apart from rigid body motions, each material element is undergoing some
simple shearing motion with a constant rate of shear x. We are interested in
steady flows which are viscometric throughout the region ¥~ of flow. When
evaluated on a viscometric motion (we recall that viscometric motion is defined
kinematically and need not satisfy equations of motion) the extra stress & is
completely specified in terms of three scalar functions of the rate of shearing:
1(k)/x, 0,(x?) and o, (x?). Viscometric constants are defined by derivatives of
the viscometric functions evaluated at x=0. Since & depends exclusively on the
three viscometric functions, the slow motion expansion (3.1) of & evaluated on
a viscometric motion must necessarily be expressible exclusively in terms of those
Rivlin-Ericksen constants which are also viscometric constants.

Assuming that the viscometric functions can be expanded as a power series,
we may define the viscometric constants as the Taylor coefficients in the series
pivoted around x=0. The members of the set {d,} are the viscometric constants
which appear as the coefficients of k" in the Taylor series for 1(x), 6, (k%) and 6, (*).
To compare the set {d,} of viscometric constants with the set {c,} of Rivlin-
Ericksen constants, we evaluate the tensors S, op a steady viscometric motion and
find (TRUESDELL & NoLL, 1965, p. 495):

T=uk+2(B,+B3) &° + 0(x°), (4.1a)
oy =20 +ay) k> +[4(y3+74+75)+276] k*+0(x°), (4.1b)
Ty=% K" +29¢ k* +0(x°). (4.1¢)

Viscometric constants are fewer in number than Rivlin-Ericksen constants.
For example, B, does not appear in (4.1) but does appear in (3.2¢); f, and f;
appear independently in (3.2c) but they appear only in the combination f,+ f,
in (4.1a).

5. Perturbations of the Rest State

Until now we have been considering motions u which are defined kinematically
without reference to the equations of motion. Now we shall consider the possi-
bility of constructing solutions to the equations governing steady motion of a
simple fluid as perturbation series pivoted about the rest state. By the “rest
state’” we shall understand a steady motionless solution U (x)=0 of the equations
of motion, boundary conditions and auxilliary conditions.

When evaluated on a motionless solution, S=0. If we suppose that there is
a family of steady solutions U (x, ¢) of the governing equations of motion which
is analytic in ¢ and such that U(x, 0)=0, it is natural to seek this solution as a
pOWer series

U(x,e)= §1u<"> (x, {c,})€", 1=v<n (5.1

whose coefficients depend on the Rivlin-Ericksen constants {c,}.
We are going to study how the partial sums

N .
Ua(x, e {c})= Y u(x {c,})e", 1<v=n, ISISN (5.2)
n=1
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depend on the constants {c,}. To carry out this stu’ﬂy, we must first state how the
{c,} enter into the expressions for the u<"”. We shall assume that the perturbation
field at order n depends on lower-order fields through the hypothesis (5.3) below:

u" (x, {e,))=f, P, SP, ), 15v=n, 1<l<n, g+l=n+1. (5.3)
Hypothesis (5.3) implies that
ut? =f,(0,0, p),
u® =, (0, 557, ),
=P, u®, S52, 85 w), et

The hypothesis (5.3) states that apart from p, the Rivlin-Ericksen constants
ultimately enter into u¢™ through the tensors S,

It is merely convenient to state (5.3) as a hypothesis; (5.3) holds for all of the
solutions known to me which can be constructed as a perturbation of the rest
state. For example, consider the forced motion of a simple fluid in a bounded
domain 7":

pU-VU+VP—-V-S=f(x,¢), divU=0 in¥ (5.4a,b)
and
U=¢q(x;g) on v (5.4¢)

where f and q are prescribed vector fields which are analytic in ¢ and f(x, 0) is
expressible as a gradient. The rest solution of (5.4) is associated with the values

e=0: U=UP=0, SP=0, "pP=f(x,0). (5.5)

Assuming now series solutions in the form (5.1) with a similar series for
p(x,{c,))—p¢°” and expressing S asin (3.7a, b), we find the perturbation problems:

p z ™ pu + VpOl) —ud u(")

m+l=n (5 63)
— V[V + 87D 4 4 S+ S =f '

and
diva=0 in ¥ (5.6b)
whereas
u=g""(x) on ov (5.6¢)

for all n=1.* It is apparent that (5.3) holds for solutions of (5.6) .

6. Viscometric Constants and Rivlin-Ericksen Constants

TRUESDELL [1974] has noted that there are cases in which knowledge of the
viscometric constants up to and through order N completely characterizes the
N partial sum (5.2). In this case the Rivlin-Ericksen constants {¢,}, 1S/<N
may be replaced with the same number (when N<2) or with a smaller number
(when N>2) of viscometric constants {d,}, 1 </<N. The interesting aspect of

* The summation in the term on the left of (5.6a) is to be carried out to »— 1 terms.
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this observation is that the field
U(N)(x’ &, {dl})’

which depends exclusively on the viscometric constants, need not itself be a
viscometric motion in the kinematic sense. There are, therefore, cases in which
non-viscometric approximations Uy, to non-viscometric and dynamically ad-
missible* slow flows are completely characterized by the viscometric constants.
In these situations complete knowledge of the three viscometric functions for
small shearing is sufficient to determine non-viscometric approximations to non-
viscometric slow flows.

TRUESDELL’s observation may be more precisely stated as follows: If a given
motion is viscometric up to and through order N, then Uy, depends exclusively
on viscometric constants when /S N +2.

Theorem. Let (5.3) hold. Suppose that u¢'>, ..., u"> and Uy, are viscometric
motions in the kinematic sense. Then ’

Uney=Un+1)(x,6 {d}), 1ZISN+1
and

U(N+2)=U(N+2)(x,83 {dz}), ISIEN+2

depend exclusively on the viscometric constants {d,}.

To prove the theorem we need first to specify the way in which viscometric
constants enter into the perturbation fields.

Lemma 1. Suppose that u'’, ..., u¢"? depend only on those Rivlin-Ericksen con-
stants which are also viscometric constants. Then S{* and S5 depend only on the
viscometric constants. Using (3.7) and (3.2a, b) we note that S and S depend
explicitly only on the viscometric constants u, «; and o, and implicitly on the
parameters on which u¢!>, ... u<" depend. The hypothesis of Lemma 1 excludes
this implicit dependence on non-viscometric constants.

Lemma 2. If S,[v, ..., v] is evaluated on a viscometric motion v, then S, depends
only on the viscometric constants. This follows from the fact that S" is one realiza-
tion of the stress response operator for a simple fluid. Such operators cannot
involve non-viscometric parameters when evaluated on viscometric flows.

N
Lemma 3. If u<", ..., u™ and Uy,= Y u¢® are viscometric motions in the kine-
=1

matic sense, then, for allm=1, S$1°, ..., SS¥> depend on the viscometric constants
only. To prove Lemma 3 we note, using (3.6) and (3.7), that

S5.[Uny s Umy]= Z 718 LoE . 6.1)
mtlmes
Since, by hypothesis, Uy, is a viscometric motion, Lemma 2 applies to the left
side of (6.1) and implies that the left side of (6.1) depends only on viscometric
constants. Differentiating (6.1) repeatedly with respect to ¢ at ¢=0, we demon-
strate that the S$” depend only on the viscometric constants when 1</<N.

* Dynamically admissible flows satisfy the equations of motion.
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With these preliminary lemmas aside, we may now turn to the proof of the
theorem. If u<?, ..., u¢™ are viscometric then, by Lemma 3 and hypothesis (5.3)
(with /= N+1), we have that

u¥* Y depends exclusively on viscometric constants. (6.2)
Applying (5.3) again, we find that

u<N+2> =fN+2(u<l>a Sgba ﬂ)
where
1Z£I<N+2, gq+Il=N+3.

When /=N+1, g=2. Then, by Lemma I and (6.2), S§** !> depends exclusively
on the viscometric constants. Using Lemma 3 once again, we find that

uN*2> depends exclusively on the viscometric constants. (6.3)

It follows from the hypothesis of the theorem and from (6.2) and (6.3) that the
partial sums U, through order /=N+2 depend only on those Rivlin-Ericksen
constants which are also viscometric constants.

7. Applications and Remarks about Viscometry

Consider perturbation solutions pivoted about the rest state and such that
u<1> is not a viscometric motion. Such solutions can be associated with the bifurca-
tion problem for a simple fluid heated from below and with the die swell problem
treated in Part III of this paper. For these problems the theorem proved in
Section 6 guarantees that #¢*> and u<*> depend only on the viscometric constants.
U,y and #¢*> could depend on non-viscometric constants.

In the problem of a steadily rotating sphere which was treated first by GIESEKUS
(1963) and, more completely, by Fospick & Kao, (1973), u¢!” is a viscometric
motion but u¢?> is not viscometric. The same fact, u<!” is a viscometric flow and
u<?> is not, holds for the flow in a torsion viscometer with a free surface on the
circumferential edge, which is studied in Part IV of this paper. For these problems
the theorem proved in Section 6 guarantees that #<*> and u¢®*> depend exclusively
on the viscometric constants. The velocity field u<*> may depend on non-visco-
metric constants; in the flow studied by Fospick & Kao u¢*> does depend on a
non-viscometric constant of the third order fluid.

In the problem of rod climbing considered by JoserH & Fospick (1973) ut!>
is viscometric (Couette flow), u<?>=0, u<*> is again viscometric (a vertically
stratified Couette flow) but u<*> is not a viscometric flow. The theorem and
explicit computation of JosepH & Fospick shows that u<*> depends exclusively
on the viscometric constants. The theorem also asserts that U<®?, which has not
yet been studied, necessarily depends exclusively on the viscometric constants.

In the swirling flow in pipes studied by LANGLOIS & RIVLIN (1963), u¢!’ is a
rectilinear flow of Newtonian fluid through the pipe, u¢?>=0, 13> is another
rectilinear flow. These flows and their sum

e +uP 2+ uP P =0,
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are viscometric. Hence, by the theorem of Section 6,
U 4 and U s, depend exclusively on viscometric constants.

The exclusive dependence of U4, on {d,}, /<4, was known by direct computations
but the assertion about U s, is made first here.

Nearly all of the existing viscometers are based on the theory of viscometric
flows. These viscometers, at best, can give the three viscometric functions and, in
principle, determine the set {d;} of viscometric constants. Speaking practically,
the viscometers based on viscometric flow theory are not good instruments for
determining the viscometric constants. These viscometers are not accurate at
low rates of shearing, and it is not possible to find the values of derivatives of
the three functions at k=0 by backward extrapolation.

The viscometry of slow steady motion has no intrinsic relation to the viscom-
etry of viscometric flow. For slow steady flows, it is necessary to determine the
Rivlin-Ericksen constants and not just the viscometric constants. This determina-
tion may perhaps be made using various free surface viscometers (see WINEMAN &
PIPKIN (1966), TANNER (1970), JosepH, BEAVERS & Fospick (1973) and BEAVERS &
JosePH (1974) and Parts IT and IV of this paper) which use slow motion theory
instead of viscometric flow theory.

Part II. Stability and Bifurcation

8. Stability of the Rest State

The study of flow of viscoelastic fluids, and the study of the stability of flow,
is made difficult by the complexity of the response. Apart from the tremendously
important special case of a Newtonian fluid, there is no real viscous fluid for
which the form of the response operator & is known for all possible motions.
To study stability, it is useful to restrict consideration to histories about which
something more definite than (2.1) and (2.2) can be said about &. Identification
of classes of history which are appropriate for stability studies is a still open and
fundamental question in the theory of the viscoelastic fluids. Some progress in
the stability theory can be made for the simplest situation—the study of the
stability of the rest state. This problem, which is trivial for Newtonian fluids, has
many interesting and complex features and may even be of some value in sepa-
rating the physically realizable simple fluids from the others.

To study the stability of the rest state, we consider the initial value problem
for a disturbance of the rest state in a closed container ¥”; thus,

p[‘;€+U-VU]+VP='V-s, V.U=0, Ul,=0 (8.1)

where U (x, ¢) is the disturbance and S is evaluated on the history of U which is
presumed given up to time ¢. The energy of this disturbance satisfies

2 L GUPY=—(4,[U): Sy, A[UI=FU+PUT (82)
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where the integral (4,:.5) is called the stress-power. For Newtonian fluids this
integral may be written as

(A1 Sy=pcdy: 4> =2p|VU ) > U,

It follows that {JU|*><{ U,y |*>exp{—2c* t/p} where U=U, at t=0. The rest
state of a Newtonian fluid is globally and monotonically stable because the
stress-power is positive definite.

It has been shown by TRUESDELL (1952) and by NoLL (unpublished; see
TRUESDELL & NoLL [1965, p. 511]) that it is impossible for the stress power to
be positive for all kinematically admissible motions and for all possible fluids.
Their results and those of COLEMAN (1962) indicate that there are kinematically
admissible motions which lead to negative values for the stress-power even when
the response operator is of a realistic type.

It is not possible, of course, to decide about the asymptotic stability of the
rest state without considering the destiny of disturbances which satisfy equa-
tions (8.1). However, since kinematically admissible disturbances are admissible
as initial conditions for (8.1), it does not seem possible to guarantee monotonic
stability even in the class of dynamically admissible solutions of (8.1).*

It appears unquestionably true that response operators which lead to the
instability of the rest state give an incorrect description of physical fluids. This
point of view seems to have been clearly expressed first by A. CRAIK (1968).
CraIk considers the stability of the rest state of a viscoelastic fluid, confined be-
tween horizontally infinite parallel planes, to infinitesimal, two-dimensional
disturbances. He remarks that, “On physical grounds, we may assert that any
physically realistic models should possess the property that a layer of fluid at
rest between horizontal plane rigid boundaries is in stable equilibrium.” This
is an intuitively correct idea; the state of rest should be the terminal form of
every solution of the initial value problem for a fluid which fills a container whose
walls are at rest when there are no body forces present to drive a motion. I would
expect that only those response operators which lead to the stability of the rest
state describe physical fluids.

It is not possible to study (8.1) without knowing something about the stress
operator &. We have already noted that there is no real non-Newtonian fluid for
which & is known. Even if & could be specified for some particular fluid, the
general stability problem might be unmanageably difficult. It seems better to
restrict the histories to motions on which & reduces to something manageable.
Manageable s arise from slow motion expansions and under the assumption
of complete linearization. The latter assumption seems to be unavoidable in a
discussion of a linear theory of stability and it will form the basis for the analysis
given here. But a retardation of the time does not stem from the requirements of
the stability problems and the time should not be retarded. In fact, in stability
studies we must allow at least for the possibility of small-amplitude oscillations
of arbitrary frequency; these certainly need not imply slow times.

* There is no existence theory for the initial boundary value problem. There is no existence
theory for steady motions though important special solutions are known. It is not yet clear how
one should proceed with general dynamical problems for simple fluids, or even how correctly to
pose conditions at the boundary. Our formulation (8.1) is merely a guess based on the formula-
tion known to work for Newtonian fluids and for general fluids in special flows.
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The complete linearization of & can ‘be expressed by constitutive equations
of the infinitesimal theory of linear viscoelasticity. COLEMAN & NoLL (1961) have
shown that the constitutive equation of the infinitesimal theory of linear visco-
elasticity is the general form which & must take for a simple fluid with fading
memory when the strain relative to some fixed configuration is small (see MARKO-
vITZ & COLEMAN, 1964, p. 90). This constitutive equation is in the form

S=¢ m(s) (E(t—s)—E(n)ds (8.3a)
0

where E(f—s) is the infinitesimal strain tensor at time r—s relative to a fixed
configuration and
dG
m(s)=—— 8.3b
()= (8.3b)
where G(s) is the shear relaxation modulus. The constitutive equation
. A
S=¢[G(s)a,(t—s)ds (8.30)
0

follows from an integration of (8.3a) by parts using (8.3b), the property that
G(s)— 0 as s— oo and the relation

x()=&%+ev(&% 1)

between the current coordinates, the fixed coordinates, and the small deformation.

We have now completed the preliminaries to the stability analysis of the rest
state of a simple fluid. The assumptions which we make in the analysis are essen-
tially statements about the spectral problem of linearized theory. The spectral
problem may be obtained by copying the procedure which is used and is correct
for nonlinear problems when there is no memory: the recipe is to linearize, then
to substitute exponential solutions proportional to e °".

Linearization of (8.1), using (U, P)=e¢(u, p) and (8.3¢), gives

a [« o}
pa—'t‘+7p=jc(s)vzu(t—s)ds, Vou=0, ul,=0. (8.4)
0
Substituting
u(x,nN=e""a(x), p,N=e""p(x) (8.5)
into (8.4), we have
—poi+Vp=k(c)V*h, V-4=0, ;=0 (8.6)
where
k()= [ G(s)e’*ds. (8.7
0

Equations (8.6) and (8.7) define the spectral problem of the linearized theory of
the rest state of a simple fluid.

We say that the rest state is stable if
re(c)>0 (8.8a)
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and is unstable if
re () <0. (8.8b)

We are assuming a principle of linearized stability. When (8.8b) holds, the rest
state is unstable. The principle of linearized stability holds for systems of non-
linear ordinary differential equations as well as for nonlinear partial differential
equations of the Navier-Stokes type.

This principle has been partially established for nonlinear ordinary differential
equations of the functional-differential equation type analogous to (8.4).* Pending
a deeper justification we shall assume this principle.

It is convenient to regard (8.6) as an eigenvalue problem with eigenvalues

A=po/k(o). (8.9)

The eigenvalues A of (8.6) are real-valued: they form a discrete, denumerable
set A=A, (n=1, 2, ...c0) which may be arranged as an increasing sequence

A, 24,54, limA,=o.
Proof. The eigenvalues A may be characterized as the critical points of the
Rayleigh quotient
Ay=min (| Pu|*)/{|ul*>
H,

where H, is the complement of the Hilbert space of solenoidal vectors which
vanishes on 0¥~ and which is orthogonal to the eigensubspaces of the first
eigenvectors. The properties asserted by the theorem are guaranteed by standard
theorems about the variational characterization of eigenvalues of self-adjoint
operators in Hilbert spaces. '

Assuming the principle of linearized stability, we may now assert that the
rest state of a simple fluid is stable if we have re(s,) <O for all eigenvalues g,
where ¢, are the possibly complex-valued roots of the equation

k(oy) Ay=po,. (8.10)
The real and imaginary parts of (8.10) may be written as

A, G(s)e:"‘cosnnsds=p§,,, (8.11a)

O g

8

A,

O o,

G(s)e**sinn, ds=—pn, (8.11b)
where |
0= én + ”’n

L)

If we consider solutions of (8.11) over all possible containers ¥°, we must
allow A,(¥") to take on all positive values. Simple fluids whose shear relaxation
modulus G(s) is such that for some » and some container ¢, <0 are not physical
fluids. Such unphysical simple fluids have an unstable rest state.

* Private communication by R. K. MILLER, extending the results of MILLER (1971).
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When G(s)>0 there is no non-oscillatory solution (17,=0) of (8.4) with ¢, <O0.
Moreover, CRAIK has shown that there can be no solution of (8.11a) with &, <0
and 1,+0 if G(s) decays monotonically (m(s)<0). If we assume a principle of
linearized stability, it follows that simple fluids with a positive and monotonically
decaying shear modulus are conditionally stable.

I have argued that the histories which are appropriate in the study of the
stability of the rest state of a simple fluid do not lead to a retardation approxima-
tion and to Rivlin-Ericksen fluids. Of course it is possible to study the rest state
of Rivlin-Ericksen fluids of arbitrary order by the spectral method. To linearize
the response of the Rivlin-Ericksen fluid, we first set U(x, t)=¢cu(x, t); then, in
the limit ¢ —» 0, we find from the recursion formula for 4, (above (3.1)) that

A, [eu(x,1)]—»ed" ‘a,/0t"",
and from (3.4) that

n=1

N
S(N+1)——>s{ya1+ v &,,(a"a,/az")}. (8.12)

This last expression may also be obtained as a partial sum of the retardation
expansion of

S=F [sni(—s)"(a"— ! a,/ér""l)].

The fluid of grade N+1 is also governed by (8.6) with

N+1

k(o)=pu+ ;(-G)" &,

Hence, the eigenvalues o, are related to the eigenvalues A,

R N+1
An=p0',,/([,t+ y (—a,,)’o‘c,). (8.13)
=1
The simplest case is a second-order fluid; for this,
Oy, =”/Tn/(p+&l /fn)' (814)

Since &, = «, is negative in polyisobutylene solution and A, — o, we find that there
are eigenvalues ¢,<0, and it follows that the rest state of the second-order
retardation approximation is unstable. Similar instability results will hold for
the n'®-order approximation if the coefficients &, lie in a certain set.*

* CoLEMAN & MIzeL (1966), following earlier work of COLEMAN, DUFFIN & MIZEL (1965),
have considered the stability of shearing flows of a second-order fluid with &; <0. The coefficient
«, is generally believed to be negative in polyisobutylene solutions which are used in experiments.
The aforementioned stability problem with ;>0 has been studied by TING (1963). COLEMAN,
DuUFFIN & MIZEL motivate their use of the second-order fluid by an appeal to the retardation
theorem of CoLEMAN & NoLL (1960) but are careful to emphasize that the use of a more general
constitutive relation might yield different results. They show that for certain critical channel-
widths, a flow which is initially a laminar shearing flow cannot remain so. COLEMAN & MIZEL
show that for these critical values of 4, if there is any flow at all, the departure from shearing
flow must appear instantly in the first time derivative of the velocity. The rest state is a special
case of shearing flow. CrAIK (1968), using a linearized theory of stability, has shown that the
second-order fluid is unstable but the linear viscoelastic fluid is stable to infinitesimal two-
dimensional disturbances.
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If the Rivlin-Ericksen fluid of grade N is accepted as a real constitutive equa-
tion (a “model” equation) for some fluid in all motions, then one is obliged to
consider stability analyses of the type just given. Certainly the always unstable
rest state of the fluid of grade 2 with «, <0 would seem to eliminate these fluids
as models for real fluids in all motions. Their use in the sense of retardation is,
however, in no way damaged by the instability demonstrated. It is always possible
that a fluid of grade N>1 closely describes a real fluid, if not in all motions, in
“most’’ motions of interest. Merit in the use of the fluid of grade N as a model
is as much a matter for experience as for analysis. Certainly the fluid of grade N
whose coefficients ¢ and &, lie in the stable set is a better candidate for a fluid
model than the fluid of grade N whose coefficients are in the unstable set. The
stable and unstable sets of coefficients can be given by analysis but the values
of the coefficients in real fluids must be determined experimentally.

On the other hand, it should be clear that the concept of a fluid model is not
natural to stability studies. It is better to make the theory of the simple fluid
practical by restricting considerations to motions which are both appropriate for
stability analysis and lead to reductions in the complexity of the response. In the
linearized case this leads to the theory of infinitesimal viscoelasticity rather than
to Rivlin-Ericksen fluids.

The interesting way in which a simple fluid may appear to obey different
stress laws when undergoing different motions can be illustrated by considering
the bifurcation problem for a simple fluid heated from below. SokoLOV & TANNER
(1972) studied the stability part of the problem by the advocated method. They
find that the spectrum o, is real-valued for many models of the simple fluid. Given
this “exchange of stability”, bifurcation theory shows that steady convection
bifurcates from steady conduction. The steady solution can be constructed as an
analytic perturbation pivoted around the conduction state (of rest) using the
retardation approximations for slow steady flow and the Rivlin-Ericksen fluids.
It takes the infinitesimal viscoelastic reduction to study stability and the slow
steady motion reduction to study bifurcation. We turn next to the bifurcation
problem.

9. Bifurcation of the Rest State of a Simple Fluid Heated from Below

We consider a pool of liquid (a simple fluid) resting on a hot flat plate and
confined by vertical insulating side walls. If the bottom plate is not too hot, the
fluid will be motionless and the transport of heat from the bottom plate across
the fluid will take place by heat conduction. At a critical temperature difference,
the conduction solution will lose stability and some of motion will begin in the
fluid. The existence of motion will alter the shape of the free surface at the top of
the fluid and will change the amount of heat transported from the amount which
would be transported by conduction alone. We shall use bifurcation theory to
compute how the shape of the free surface and the heat transport curve depend
on the Rivlin-Ericksen coefficients."

The liquid pool is confined to a cylinder whose arbitrary cross section is
designated by the set of points (v, y)e./, independent of the vertical coordinate z.
The bottom plate at z=0 is horizontal e'lnd is held at a fixed temperature Ty, + AT.

9 Arch. Rat. Mech. Anal., Vol. 56
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The top of the fluid is given by z=#(x, y; &) where e2=Nu—1 is the Nusselt
number discrepancy. The simple fluid is assumed to be governed by the Ober-
beck-Boussinesq equations as in the classical problem of Bénard; however, we
are considering simple fluids whose stress response is expandable as in (3.6a).
The region occupied by the fluid changes with the Nusselt number and is given by

Vo=[(x, 5, 2) | (x, y)e s, 0L 2 S 4(x, y; 8)].

In ¥, we require that the Oberbeck-Boussinesq equations (9.4a, b) hold. Here,
however, S is not Newtonian and the free surface £(x, y, z, &)=z—#(x, y; £)=0
is to be determined as a part of the solution. Since the fluid is incompressible, the
conservation of volume implies that the mean height

A= [[A(x,y;e)dxdy/[[dxdy (9.1)
7 R4
is independent of .

The construction of a bifurcating motion can be carried out when the tem-
perature which is prescribed on the boundary is compatible with a static solution
of the Oberbeck-Boussinesq equations. A static solution is possible only in the
case T=T(z). In this case

T—Ty=AT(1—z/#) (9.2)

where, for convenience, we have set the reference temperature T, of T at a height #
above the hot plate. We shall require that (9.2) holds at all points of the free
surface z=#(x, y; ¢) of the liquid pool. We might suppose that the cylinder has
a top rigid surface above the free surface and that the temperature of the rigid
top is prescribed and compatible with (9.2). If the air layer between the rigid
surface and the free surface of the liquid is small, convection will start first in
the liquid. We assume that the static distribution (9.2) holds in the air right up
to the boundary z=4(x, y; ¢).

The boundary conditions are that u=0 on z=0 and on the boundary o</ of
the cylinder. The temperature is To+AT on z=0 and is T,+A4T(1—#£/#) on
z=4#(x, y; &). The side walls are insulated; n is the outward normal to the side
wall 0&/ and n_, -AT=0 on 6. On the free surface the shear stresses must vanish,
the jump in the normal components of the stress must balance surface tension
forces and the kinematic condition for material surfaces £=d¢£[dt=0 must hold.
As a compatibility equation with u|,, =0, we require that £, =4#.

SOKOLOV & TANNER (1972) have studied the stability of the conduction solu-
tion (9.2) in the more restricted situation in which the free surface does not deform.
They subject the rest state to initial histories of disturbances of infinitesimally
small amplitude but arbitrary frequency. Their analysis is similar to the study
of the rest state which was given in the previous section. They find that for many
models of a simple fluid considered by them, a “ principle of exchange of stability ”’
holds and ¢(4T,)=0 at criticality.

We are going to assume in our analysis that 6(47T,)=0 is a simple eigenvalue
of the spectral problem. We then assume, following the lessons learned from

bifurcation theory in the Newtonian case, that the bifurcating solution is steady.
- To construct the bifurcating solution, we use the Rivlin-Ericksen approxima-
tions for perturbations of the rest state. It is interesting that entirely different
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stress laws are required to study stability, on the one hand, and bifurcation, on
the other hand, in one and the same simple fluid.

To formulate the bifurcation theory, we first define a triad of orthonormal
vectors at each point of the surface z=#: two tangential vectors m/|m| and
p/|p| lying in the surface #=z—#=0 and the normal n=V(z—#)/|V(z—#) where

V(z—#) e,—V,#
m _ e,+e, 04[Oy
0#£ 0F 04 |

p | |eHlodoy P e g g e

and Vy=e, 0/0x+e, 5[0y.
We next introduce functions 6, ¢, H and h:

§=T—T,—AT(1—z/#),
=0V ap, g4/AT,

= adT —
H=p—p,+pog [z—ﬂ—T(z—ﬂ)z],

h=4(x, y; &) =4,
and the parameter
A=V poagdT|%. (9.3a)
Finally, we define ¢ as the Nusselt number discrepancy
Nu—1=¢’, (9.3b)
The Nusselt number relative to the wall at z=0 is defined as
z dz;(zO) 1 dé(0)
Nu= -T_A___T_ =1 T4y
T4

where the overbar designates horizontal averaging as in (9.1). To shorten the
writing of problems, it is convenient to define a set

© F={(u, ¢, h)|divu=0, |u|=¢=0 on z=0,
lu|=n,,-Vé=h=0 on o</, F=0}.

The boundary value problem for steady bifurcating solutions may be written as

—u-Vu+Agpe,—VH+V-S=0, (9.4a)
in ¥
—u-Vo+Aw+xV? =N, (9.4b)
dp=u-Vi=VL-S-p=V£-S-m=0, (9.4¢)
Vyh ATa 5 on #=0
UVz[(—lﬂW]—pog[ll— D) h]-i—H-—n-S-n, (9.4d)

o=
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(u, ¢, h)EF, (9.4e)
2_ _ 1 dé0)
e&=Nu—1= YR TEE (9.4f)

The rest state is an exact solution of (9.4) which is defined by Nu=1 (¢=0) and

= (0, 0,0,4, AT(1—z/#), p,— po & [(z—ﬁ’_)— agT (Z—Z)Z]). (9.5)

The rest solution exists for all values of A. When A=A¢®> (corresponding to
AT= AT, where AT, is the critical temperature difference), then the rest solution
loses its stability to motion.

To study the motion, we first define an invertible mapping which is analytic
in a small parameter ¢ to be defined; for example,

. Y%, y, Z)¢>'Vo(xo’ Yo» Z0)
under the transformation
X=Xg, Y=JYo, z=z(x0,y0,zo;s)

where the stretching function z is invertible

zo=2o(X, ¥, Z; &)= 2(Xo, Yo, Zo; 0)
and maps boundary points into boundary points
0= 2(xg, Y0, 0; ¢)

and _
A=2(xg, Yo, #; &)

We next seek solutions of the bifurcation problem pivoted around the rest

state as a power series in the parameter e=]/Nu— 1. First we give the form of the
solution :

_u(xs y,Z;E)—] _u[n](xO’ Yo, 20)_1 —u<n>(xgya Z)_‘
d’(x, Y.z, 3) ¢[n](x09 .szo) ¢(n)(x’ Ys Z)
H(x,p,z;8) | =Y & | H"(xg, yos 20) | = L. &" | H(x, 3, 2) |- (9:6)
h(x,y,2;8) | " ™ (Xos Yo) "l W™ (x, y)
LA(“")_A<°)_ A AW

L — - —

In the notation of Section 3, the extra stress is given by

S=Y¢ Y S, .. u]=Y &S (x,,2).
n=1

n=1 l+gq=1+n
Here

1 (0 dh d\" 1 d"(o)
mi_ L = 2\
("= n! (58 + de 62) (0) n! d&"
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is the n'® substantial derivative following the mapping and

120
n! g¢&"

(0=

is the n'® partial derivative.

The recipe for the computation of these series is as follows: First, we compute
the partial derivatives in the flat domain ¥4 (x,, o, Zo); this gives us the functions
u™ (x4, Yo, Zo), etc. The functions u<™ (x, y, z) are extensions by declaration into
¥ of the functions u<"™ (x,, yo, 2o). If there is a bifurcating solution analytic in &,
then this extension will be possible (JOSEPH, 1973; JOSEPH & STURGES, 1974).

To generate the perturbation problems for the partial derivatives, we note
that if A(x,y,z;¢) is an identity in ¥, then A"(x,y, z;&)=0, and a simple
induction argument gives A< (x, y, z; &)=0. If A(x, y,#(x, y; £))=0, then

1 (0 a\"
[n]_ <1 .
A - (63 +ht(x, y;8) az)A'

Using these properties, we find that when v=1,

l+n=v+1u<n>. Vu<!>_l+;=v/1<n> ¢<’>+VH<">—V- SM=0) (9.72)

in 7,

u<">. V B _ A<"> I _ VZ (v)= 0
l+n=v+1 ¢ l+§:=v Y Ve 0, (9.7b)
(u(\'), ¢<V)’ h<v>)EF, (97C)
=g S pM=(Fg- S - m=(w—u- 7, )"=0, 9.7d)

AT 1M V. h 01 h=0.

n-S.-nM=H"- [h— x h"] e [__2__]

[ ] Po 8 > N AL (9.7¢)

From the normalizing condition (9.4f) we find that

-3 d_<v> T 2°
A ->=%_Z_(Pl=¢<v>(£)_L T (W gy (9.7f)

Kitn=v+1
where A<"1>=0 and
1 -
o)=—|0dz
()=~ g 0
To derive (9.7f), take the horizontal average of (9.7b). We find that
d ( —ran . A (zo>)
w —K————]=0
dz H—n;v+1 ¢ " dz, ©8)

and (9.7f) follows after integrating (9.8). The boundary values for ¢<">(#) may
be obtained in terms of lower-order partial derivatives by unfolding the first of
equations (9.74d).

When v=1 we find that

A“]—A“)-i-h(‘)—aA—((Z forall A A(x, y; 6);
= i orall A(x, y,#(x, y; ¢); ¢).
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We note that SV =8{P=puA{"=u4d, [u¢*’] and use (9.5) to find that
AP ¢ e, —pHD 7. P =0, (9.9a)
in %,

AW L ep2 gt g (9.9b)
(1, 60, KD)e F, 99¢)
¢ =557 =547 =w =0, (.9d)
1=0
Sg;)_H(1)=_pog]l(1)+0.722h<1) (9.9¢)
and
_A<°>=$<2>—i<w<1>¢<‘>>. ] (9.9f)
K

The problem (9.9) is a self-contained eigenvalue problem and determines the
eigenvalue A<°> which, by assumption, has multiplicity one. The eigenfunction
belonging to A% is uniquely determined to within an arbitrary multiplicative
constant which is determined uniquely by (9.9f). To see how (9.9f) determines
the constant, we first note that 4<!? is determined to within the same multiplicative
constant by (9.9¢). We then note that
2
A[2]=A<2>+h<1>——-aA<1> + (h<2> +———h<1> i) A9,
0z, 2 0z,
Therefore,

Pl = p2> 1 < 5;”;__0 =0
0
and elimination of ¢<* from (9.9f) gives
1
CASOY o I 1> L (D KDY
4 h* ¢ ” w79t

Since 4<% is known and 4¢!?, $<*> and w<'> are known to within an arbitrary
multiplicative constant, (9.9f) determines the multiplicative constant.

The first nonlinear effects enter at second order:

SP =8P+ 8 = ud, [uP] +ay A, [P ]+ 2, A2[u?] 5.10)
=pdP 4o, AL +a, APAY ®.

where the symbols with superscripts in parentheses,
AM=A4,[u],  S™=8,[u¢™],
mean that the tensors 4, or S, should be evaluated on the field u<™; in particular,
S{M=8M=ud™ and SP=8":
AP 6P e+ puV- AP —VH® =y pu® - D¢ _p. §5, (9.112)
AP W L P2 <P = gL <t — f<O <1 (9.11b)
w®, ¢<®, h¢?*)eF, 9.11¢c)
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P+ hP R =wP 4 kD WD gt g, gD =, (9.11d)

AP AR AR,V kD AP e+ AD RP 4T SE) =0, (9.11e)

AL+ hV AR, L~V kD AP e+ AL R 4TSI =0, (9.11F)
HAD+ KO QA ), o4 S0, — B

=o-[722 h<2>—pog[h<2>-aATh<1>2]. 9.11g)

The boundary value problem (9.11) can be solved only if the inhomogeneous
terms satisfy the orthogonality relation

/J<u<1> V. A(12)_u<2> V. A§1>>+x<¢<1> y2 ¢<2>_¢(2> p2 ¢<1>>
+ D 7SS = CuD L PHD — L PHYY 1 A (<1 gDy,
___<u(1> . (u<1> 7). u<1>>+<¢0<1>(u<1> %) ¢<1>>=0.
This relation may be reduced further by integrating by parts and using the
condition A{).=A4{),=0:
(e, AP 5D =D § 8T, g =D [HD A D],

» 20

—(SE L Py £ 24 (D <y . ©.12)

Second-order quantities 42, ¢<?”> and w¢*> may be eliminated from (9.12) using
(9.11d-g):

2/1(1) <w<1) ¢<1>>=<S<1)' Vu<1)>+[u{h<1> z'A(ll,)z_VZ h<1>~A(11)
(11):7 h<1>} u<1)+e S<1> xh(1>(¢<1>)2 (9_13)
+(h<1>w(zl> <1> V h<1>)(H(1> ;lA( )]

Equation (9.13) gives the slope of the heat-transport curve evaluated on the
bifurcating solution at the point of bifurcation; this slope depends on Rivlin-
Ericksen constants through the tensor S§!>=S8(; for example,

(S5 Vuld =ay (AP A 0, (AP A 4D
=(y+ o) (AP 470 AP

where the last equality follows from symmetry and integration by parts using
w<>=0. It follows that

dA

— A<D
YNa T ey W20
where A¢!? is given by (9.13). In passing, we note that if the deflection of free
surface is neglected, then S$1%=S§1,=0 and A< =(a; +2,)(4P: 4D - 4D,

The values of A¢™ for n22 are obtained from the solvability requirement at
higher orders. These values depend on the Rivlin-Ericksen coefficients which
appear at higher orders.

In the same way, the shape of the free surface, which is given by the series (9.6),
depends on the Rivlin-Ericksen constants; A<!” is a function of u alone, A<*
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depends on the second-order coefficients «; and «,, 1¢*’ depends on the third-
order coefficients, and so on.

It follows, from the analysis just given, that the bifurcation theory for a simple
fluid heated from below has a certain potential as a heat-transport viscometer
for the Rivlin-Ericksen coefficients.

Part ITI. Die Swell—the Final Diameter of a Capillary Jet

Die swell is the enlargement of the diameter of a jet of non-Newtonian fluid
which is extruded from a capillary tube. Extrusion processes involving non-
Newtonian fluids generally, and molten polymers particularly, take on an ever
increasing importance as the rheological materials replace more conventional
materials. Die swell is important in the extrusion process. Understanding and
control of die swell means better and cheaper fabrication of commodities ranging
from plastic broom bristles to magnetic tapes.

The die swell problem is very complicated; even the small swelling observed
in low speed Newtonian jets is not fully understood and the various explanations .
which have been suggested are controversial. Many authors have written about
the die swell problem; each one of them seems to make some mistake or assume
something unphysical leading to inconsistency or to results which contradict
experiment. I have here studied the possibility of constructing the solution of
this problem as a domain perturbation from a state of rest dominated by surface
tension. I have also drawn new consequences from the requirements of a careful
analysis of the global conservation of momentum of the jet.

10. The Horizontal Capillary Jet:
Formulation of the Mathematical Problem

A liquid moves from left to right down a semi-infinite (— 00 <x<0) pipe of
radius A, under the driving action of a pressure gradient. It is assumed that the
flow far upstream (x — — o0) is fully developed and the pressure gradient P’ =dP[dx
is uniform there. At x=0 the liquid is extruded horizontally in a zero gravity .
field and an axially-symmetric capillary jet of radius /4 (x) is formed. It is assumed
that the wind shear is negligible, and far downstream (x—oo) the flow must
become rectilinear, with a uniform velocity U, and final jet diameter #,:

U=lime, - U(x,7;Q), h,=Ilimh(x). (10.1)
The volume flux divided by 2= for this flow,
h(x)
0= | e,-U(x,r; Q)rdr, (10.2)
0

is constant and invariant for the whole flow (—o <x<o0). The velocity far
downstream

U(-—o0,r; Q)=e,ef(r,e), f(r,0)=2(1—r/h}) (10.3)

where £¢=2Q/h3 is the scale velocity. The flow configuration, the coordinates and
the definitions of some symbols are given in Fig. 1.



Slow Motion, Viscometric Motion, Stability, and Bifurcation 123

Fig. 1. The capillary jet.

The motion of the liquid in ¥}, is governed by the following system of equations:
pU-VU+VP—-V-S=0=divU in ¥, (10.4a)
266 f(r, &)= Ulys o =8€,/x" Ul =U(%, ho; &) |x<o=0, (10.4b)

(U, P, S) are continuous at x=0, O0=Zr<h,,

and, on the jet boundary r=~A(x), x>0,

U-n=S,,=S,—P+P,—cJ=h—hglioo=h"|;= =0 (10.4¢)
where the mean curvature of the jet boundary in the region x>0 is given by
J—-;l——-+£”- and @(h)=(1+h"?)?
hx)¢ = ¢° '

When written in coordinate form, (10.4c) may be expressed as
V—h'U=h (Srr - Sxx) +(2 - 4)2) er

=Sr'_P+P;1_h'er cJ=h— hOIx 0___h I: - =0. (10.4d)

The free boundary equations (10.4d) state, respectively, that the normal compo-
nent of the velocity, the shear stress, the difference between the jump in the normal
stress and the surface tension force (o = surface tension coefficient), the difference
between the jet radius at x=0 and the pipe radius, and the slope of the free surface
as x — oo all vanish.

11. The Rest Solution and the Perturbation

- When Q= U= V=0, the system (10.7) has a unique solution (DELAUNY, 1841).
Since S=0 when U=V=0, we find from (10.7a) that P=P, where P, is some
constant. Then equations (10.7d) reduce to

h" 1 G ( h )'
P—Py=oJ=0{og—— =T (|, 1.1
; {w h¢} A\ (D
Since #'' -0 as x — o0, we have (Py—P,)/o=1/h, and, by integration,
h*=2h;hf)/1+h"*+h;=0. (11.2)

Since
V94t h2=2hhi(h*+h) <L,

we find that #/'=0 and h;=h=h,,.
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A unique rest solution,
Q=U=V=h—-hy=hy—0a/(P,—P,)=0, (11.3)

could not exist without surface tension. This solution describes a motionless
fluid which fills the cylinder ¥ of radius A,, — c0 <x< o0, and is confined to the
cylinder x>0 by the cylindrical film which balances the pressure difference
Py —Py>0 by a tensile force of magnitude a/h,.

If the solution (U, P, i) of (10.4) were analytic in the scale velocity e=2Q/h3,
we could construct it as a power series in ¢ by applying the domain perturbation
method of Section 9. The same method can be used even when the solution is
not analytic in &.* Assuming only differentiability with respect to & at e=0, we
may obtain expressions for (U<?’, P<1?, h<1%) by solving the boundary value
problem which arises from differentiating (10.4) with respect to ¢ at £=0:

VP —p. SV =0=divU?, in ¥, (11.4a)
2e,(1=rhg)— UV, _ o=, = U |, =UP(x, ho)lr<0=0, (11.4b)
(U, PY, 8D are continuous at x=0, 0<r<h, (11.4c)

and on the free boundary r=#,, x>0,
JReS . ,
V=SB 5B _p g [—f‘ho B <HD =0 (114e)
Here S=pud, is the first term in the expansion of S around the rest state and
V.S =pP? U, At this order of approximation there is no difference between
Newtonian and non-Newtonian jets. Non-Newtonian effects enter at the per-
turbation computation at orders higher than one.
It is convenient to reformulate problem (11.4) in terms of the stream function
Y, w< = —curl(epy<**fr). Then, (11.4a) may be reduced to
| * 10
PPy = = ————  in 7}
V=0, C=gatgr—To %
where Y satisfies no-slip conditions on the tube wall r=#, when x<0 and zero
shear-stress conditions on the free boundary x>0, r=/h,.
RICHARDSON (1969), using the Wiener-Hopf method, solved the plane problem

which is equivalent to (11.4). In the plane case, with walls at y=+1, (11.4)
reduces to a biharmonic problem

P4y=0 in ¥, ¢=g—‘ly’=o at y=+1, x=0,
y=2Y

=0 at y=41, x>0.
Jy y

(11.5)

RICHARDSON's (stick-slip) problem (11.5) appears at first order in our perturbation
expansion when the round capillary jet is replaced with a plane capillary jet.

* Here we define a mapping into a cylinder of radius hy for which x=x, and

d o0 dh 0

de 0e¢ ' dx or
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The plane jet may be regarded as a limiting case of a jet which is extruded from
the annular region between concentric cylinders when the gap is small.

RICHARDSON’S solution is singular at the exit lip; locally the solution is of the
form p

Yy~l—1- 162?*sin7sin9+0(?%) as 7 —0

where (r, ) are polar coordinates centered at the exit lip. The stresses and pres-
sure (obtained by differentiating Y twice) are singular with an r~* singularity
at the exit lip.* However, since the normal stress S$;”—P<!> is not singular, the
curvature is bounded and A¢!> is a regular function of x. Moreover, the three
components of the acceleration u¢!?- Vu¢!> evaluated near the singularity are
bounded analytic functions. RICHARDSON considers the possibility that his solu-
tions might be regarded as the first order in a series solution of the plane jet
equivalent of (11.4) in powers of 1/o; when 1/6=0, the flat jet is confined by a
tight membrane. He notes that this solution would require that when 1/ 0, the
tangent at the free surface at the exit lip deviates from the horizontal. He notes
that the local analysis of the singularity of the biharmonic shows that, when a
plane solid surface and a plane zero shear stress surface meet at an angle other
than n, the normal force along the zero shear stress surface necessarily becomes
infinite as the edge is approached.

In a later (1970) paper, using 2 momentum balance in which surface tension
is neglected, RICHARDSON investigates the possibility of expansions in terms of the
Reynolds number R (equivalent to ¢). He finds an inconsistency in the limit
R —0. This inconsistency does not exist when surface tension is not neglected
(see (13.4)).

NICcKELL, TANNER & CASWELL (1974), using finite-element numerical methods,
have studied (10.4) for a Newtonian fluid ‘With no surface tension (c=0) and
inertia neglected. Their method cannot accurately determine the solution in the
immediate neighborhood of the lip singularity. However, to convince skeptics,
they compute a numerical solution of the “stick-slip” problem which is in good
agreement with RICHARDSON’S analytic solution away from the singularity. In this
solution for the round jet, they find that the final diameter of a low Reynolds
number jet is about 1.13 times the pipe diameter. They cite agreement with many
experiments; in these experiments it appears that y—1.13 as R—0 when
o pho/uR=0p*/u2e<1. This limit is equivalent to the limit p—oco and cannot
hold in the limit ¢ » 0 when the other parameters are fixed. The jet calculated by
NickeLL, TANNER & CASWELL appears to join the pipe at angle other than .

* This singularity can be traced to the harmomc singularity ¢1— r 51110/2 which arises at a
point of discontinuous prescription of boundary data for Laplace’s equation. If (—x —y)=
(%, y)=(F cosb, r sin@) are coordinates centered at the top exit lip, then, locally, y =¥ ¢, (x, )+
#,(%,y) where ¢, and ¢, are harmonic, ¢,(%, 0)=0 for —c0= x= 00, ¢,(%, 0)=0 for x20,
2n+41 0

whereas d¢, (%, 0)/0y=0 for X<0. Locally, the separable solutions ¢,=r (2r+1)/2 g

satisfy all the required local conditions when 7 is an integer. If the discontinuous prescription is
more complicated, say with ¢, (X, 0)=0 for x=0 and @4, (%,0)/dy+« ¢(%,0)=0 for x<0 and
a0, then separable solutions are not possible and the nature of the singularities at the point
of discontinuous prescription will change. This is what happens in the jet problem when a
Newtonian theory of surface stresses is used.
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They infer from their numerical data that there is a square root singularity of the
“stick-slip” type. However, local analysis of Stokes equation in the neighborhood
of their singularity shows that plane analysis applies there; if the angle at the
exit lip differs from #, a square root singularity is impossible, a different power
singularity is required and the normal force along the zero shear stress surface
necessarily becomes infinite as the exit lip is approached. Given that T,,— 0 as
x—0, it is not possible to satisfy the third equation of (10.4d") which with 6=0
may be written as —T,,,+ P,=0. It therefore does not seem possible to assess the
validity of the finite element solution without“further knowledge about its be-
havior in the immediate vicinity of the exit ring.

The presence of an edge singularity in the perturbation analysis raises doubts
about the legitimacy of the series solution for the jet problem; the rest solution
has no singularity and though the velocity and acceleration tend to zero with ¢,
the stresses and pressure at the lip are singular for any ¢ >0 no matter how small ¢.
However, it seems to me that this singularity does give expression to a real
physical effect in the same sense that corner singularities in elasticity actually
foretell real stress concentrations in elastic materials. Mathematically, however,
the singularity is damaging and it is really impossible to proceed to higher orders
with any certainty; this is certainly true in the viscoelastic case which requires
at least, bounded derivatives for any expansion into Rivlin-Ericksen tensors and
it may be true in the Newtonian case. On the other hand, the results achieved at
first order are consistent with the results of the momentum analysis of the low
speed jet and the basic dominance of surface tension on a sufficiently low speed
jet with a fixed value of surface tension can scarcely be doubted. Doubting readers
may be reassured by watching what happens to a water jet which is ever more
slowly extruded from a water tap. I believe that the first-order perturbation
solution is correct but the effect of this singularity on the perturbation analysis
at higher orders needs further study.

12. The Balance of Momentum

The simplicity of the flow far upstream and far downstream of the jet make
it a natural candidate for simplified analysis using the momentum theorem.*
In the analysis given below, the difference between the momentum deep inside

* Momentum analyses of the jet have been given by HARMON (1955), METZNER, HOUGHTON,
SAILOR & WHITE (1961), Tr.LET (1968), RICHARDSON (1970), MIDDLEMAN & GaAvis (1961),
FREDRICKSON (1964), SLATTERY & SCHOWALTER (1964) and GAvis & MobaN (1967). The last
four of these references include the effects of surface tension but only SLATTERY & SCHOWALTER
treat them correctly; the others include only one of two principal curvatures. SLATTERY & SCHO-
WALTER have not noted that the integral over the mean curvature (their equations (24) and (39))
could be explicitly integrated as in (12.12). Except for TiLLET’s, all of the analyses listed above
balance momentum between stations at the end of the pipe and far downstream where the velocity
is uniform. TILLET’s momentum balance is restricted to the plane jet, neglects surface tension,
and is used to check the consistency of his extension of GOREN’s (1966) boundary layer analysis.
The boundary layer analysis leads to an expression for the diameter far downstream on the
plane Newtonian jet which appears to disagree with experiments on axisymmetric jets. SERRIN
(1959), TRUESDELL & NoLL (1965) and CoLEMAN, MARkovITZ & NoLL (1966) have studied the
swelling phenomenon under the assumption that the flow is fully developed at the exit, that
surface tension is unimportant and that the total axial thrust is balanced by the pressure of the
atmosphere. The momentum analysis shows that these assumptions are incompatible with
swelling (see RICHARDSON, 1970).
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the tube and far out on the jet is balanced by a surface tension term at the tube
exit and an excess skin friction which arises on the tube wall in the neighborhood
of the exit.

We consider a control volume bounded by the planes x=—L and x=L and
an imaginary surface drawn in the liquid adjacent to the cylindrical boundary of
the cylinder and the jet. The momentum theorem, relative to the axial direction,

may be expressed as
g b ${T1;—pUy Uj}n;=0 (12.1)

where the integration is taken over the control volume. Expanding (12.1) we find,
after cancelling common factors of 27, that
h(L)

[ [T @, )=pU(L,N]rdr

0

~ [ [Tu(-Li=pU*(=L.n)]rdr (122)

+ fT -n-h(x)ﬂdx=0
L A dx

where dl=]/dh*+dx* is the arc length along the free boundary in the plane
containing the jet axis.

On the free boundary it is convenient to express stresses in terms of their
normal and tangential components. Referring to Fig. 1, we find that

T,,=cos*aT, +sin’aT,,=T,,, (12.3)
T,,=sinacosa(T,,— T,,)=sinacosa(S,,— S, ) (12.4)
Using the relations
n,=-—sina, n,=cosaq,
we find that )
le j=T11nl+T12n2=—SlIldT;m. (12.5)

Now we shall evaluate some of the integrals which appear in (12.2). First we
note that

0 0
j lenjhodx=ho § Tx,dx (12.6)
-L -
and L dl | hz(x)LL oh(x) |*
' T,.n.h(x)=—dx=P, = . 12.
6‘ 1j7%; ()dx 2 0 L/l-l—h’z 0 ( 7)

To prove (12.7), we note that dl/dx=1/cosa; then using (12.5), we find that

J

- dl :
[Ty;n;h——dx=—[TanaT,, hdx
0 dx 0

L L
=— W' hT,,dx=%[(h*) (P,—cJ)dx
0 0

h? |k Lrw  hh'h”
=P, —| +0 [-——— ]d,'

Sl e

h2 L h '
=2 +of [T o
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proving (12.7). We next note that

ho 2, N |L . L
[P(=L,r)rdr+P, () + Cf_h_(x_)_
0 2 o 14070
ho 2 L (128)
P h*(L) oh, oh(x)
= ||P(—=L,r)—Pylrdr+-—2 + +—
g[ ( ) 0] P 3 1/1_*-]1,;;_ o
where P,=P,+0/h,.
Combining (12.2), (12.6) and (12.8), we find that
h(L)
{ [Ty (L, r)=pU*(L, r)}rdr
0
ho 2 . L
+ [[P(=L, )= Py]rdr+ T L ol "”(_")2 (12.9)
0 -2 2 J/1+h'* o

ho 0
+ [[S11(=L,r)=pU*(=L,")]rdr+h, [ T dx=0.
0 -L

Consider the real flow in the jet. Far upstream in the pipe this flow reaches a
fully developed state in which P(—L, r) is independent of r. The fully developed
flow can be characterized by a pressure gradient; alternately we can parameterize
this flow with the volume flux which is invariant in the flow. The pressure at the
exit x=0 is generally different than the value P,=P,—a/h, which prevails at the
exit in the rest state. We next draw a straight line through P, with the same slope
as the constant pressure gradient which is the asymptote of the pressure profile
of the true flow. The fictitious fully developed flow and the true flow have the
same volume flux Q. The exit distance d, is the horizontal distance between the
pressure gradient of the true flow and the fictitious fully developed flow at a
given P as x — — o0.

Returning now to (12.9), we have
ho 0
— [[P(=L,r)=PyJrdr=hy | T, (ho)dx (12.10)
0 -L—de

where T,, is the shear stress in fully developed flow. In the limit L — o0, we find
that

J[Tn (L, r)—pU*(L,r)]rdr=—P; “hif‘— pUE 2
0
_ _Pah} ~ ch, ~ przhf’ (12.11)
2 2 2
Combining (12.9), (12.10) and (12.11), we find that
g J2y- U2 h2
5 Lhy+ho—2ho(1+ho?) é]_/’é_f
(12.12)

0 ho
+ho | T,,dx— [[Sy;(—00,7)—pU?*(—00, )] rdr=0
-4 0
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where we have set

0 0
[ Tpdx= | T,,dx— [ T,dx. (12.13)
-d ~L —(L+do)
Equation (12.12) provides an exact description without approximations. All of
the complications which are associated with deviations from fully developed flow
in the exit of the jet have been collapsed into the single integral giving the skin
friction excess. We are assuming that 4>0; that is, the integral (12.13) gives a
skin friction excess and decreases the momentum of the jet; the other possibility,
d<0, contradicts experiments; it leads to a decrease in the final diameter when
the Reynolds number is small and an increase when the Reynolds number is
large.

13. Die Swell for the Low-speed Jet;
the Final Diameter of the High-speed Newtonian Jet

When the fluid is Newtonian,

ou

ho
[811= 00, e [V (=0, rdr| = 0.0 5 15
0

,-§-h562] (13.1)
ho

and (12.12) may be written as

1

r2y—4 2 4 05U
o[x+1-2(1+ho")"*]+pe" hy 3T +2u |
4

or

dx=0 (13.2)
ho

where y=/h/h, is the ratio of the final diameter to the tube diameter.

At the lowest speeds ¢— 0 (the values of the other parameters being fixed)
we assume that

ho=h$" e+0(e). (13.3)
Then (13.2) reduces to
(=1+euK,j/oc+o0(e) (13.4)
where U=¢tu+o0(¢) and
¢ du
=-2(==
K, -_jd = hodx>0.
It follows that
dy _ ik,
ds oo o >0 (13.5)

where K, is independent of &. For the plane capillary jet, we may obtain the
value K,=0.356 from the stick-slip solution given by RicHARDSON. Though it
seems likely that the low-speed Newtonian jet is the limiting form for viscoelastic
jets in the jet interior, the nature of the low-speed flow near the lip singularity
requires further study.

Since the jet is almost certainly unstable at the lowest speeds, the possibility
of direct experimental confirmation of (13.5) seems remote. We note that the
increase of y given by (13.4) could not continue indefinitely since the jet diameter
will decrease at higher speeds. We study the high-speed case next.
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Experiments show that high speed Newtonian jets contract*; this fact together
with (13.2) shows that for large values of ¢,
4 1 2v 20U

3¢t T _fd or

dx=0("?). (13.6)

h

v 24U v [(u 2 (u . "
—n e (3‘1)?('#)*1(")"

We estimate

where R=2¢ hy/v is the Reynolds number and K, is supposed to be a weak func-
tion of R which, together with the value of the exponent n, is to be determined by
comparison with all of the available experiments. This comparison (see Figs. 2
and 3) shows that n is { (or very near to 1) and K, =(14.4)¥/3=1.97 is chosen so
that it will fit the experiments of GOREN & WRoONskI (1966) when y=1 and
R=14.4. Although X, is selected to fit only one point in one experiment, the
relation

L . T (13.7)

is in agreement with all experimental data** for Reynolds numbers larger than
about 10. When R —c0, =2 in accord with HARMON’S (1955) result.

It is appropriate at this point to call attention to the boundary layer analyses
for large R of the Newtonian jet given by GOREN (1966) and by TILLET (1968).
Goren treats the formation of a boundary layer at a free surface from a uniform
shear flow. TILLET considers the development of a boundary layer at the boundary
of a two-dimensional jet emerging from a channel in which there is plane Poiseuille
flow far upstream. TILLET’S results could be regarded as an extension of GOREN’S,
and the two analyses coincide at lowest order. Interestingly enough, these bound-
ary layers involve } powers of R, but they do not seem to be consistent with
experiments. In fact, for the plane case, TILLET computes

5 1

=5+ ()
and says that HARMON’s (1955) results are correct to O(1/R). However, the ex-
periments on axisymmetric jets support (13.7) which shows that HARMON’S results
are correct only to o(R™%).

The data of GOREN & WRONSKI (1966) also appear to be inconsistent with
predictions of GOREN’s (1966) boundary layer analysis. For example, in their
Fig. 3, we see that the jet deflection decreases with increasing Reynolds number
up to about 50, but the analysis gives the opposite variation. The sign of the varia-
tion of the free surface deflection with axial distance is consistent with GOREN’S
analysis for the higher Reynolds number data (86 < Re<195) shown in their
Fig. 6, but their data does not scale with R~% when x is fixed predicted by the
(x/R)* variation given by analysis.

* Examination of the observed profiles of jet shapes shown in Figure 2 of GOREN & WRONSKI

show that |Ag| <2 when 4.2<2hye/v<<47.4. When 2hyefv=4.2, o4, x=1.094.
** MIDDLEMAN & GAVIS (1961), GOREN & WRONSKI (1966) and GAvis & MoDAN (1967).



Slow Motion, Viscometric Motion, Stability, and Bifurcation 131

1101

1.05+

£1.00

0.85F

090

i ! | 1

0 10 20 30 40 50

Fig. 2. The contraction ratio experiment of GOREN & WRONSKI.
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Fig. 3. Contractiog ratio experiments.

The apparent inconsistency of GOREN & WRONSKI'S jet deflection data with
GOREN’s analysis may be because the jet deflection is strongly influenced by the
change in the final diameter of the jet for R less than 200. Though R>10 could
perhaps be considered asymptotic for the boundary layer in the exit region of the
pipe, values of R larger than 200 would be required to wash out the effect of
changes in the final diameter of the jet on the jet shape near the tube exit.

10 Arch. Rat. Mech. Anal., Vol. 56
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Part IV. The Free Surface at the Edge of a Torsion Flow Viscometer

A simple fluid, confined between two parallel disks of radius /, which rotate
about a common x axis with angular velocities 2w/(1—x) and 2x w/(1—x) at
x=d|2 and x= —d/2 is held between the disks by surface tension at the free edge
around the disks (see Fig. 4). We are going to derive formulas to describe the
motion and the shape of the free surface as a power series in @ through terms of
order w?. I had hoped that these formulas could be used as theory for a torsion-
flow and free-surface viscometer, but analysis shows that the forces which shape the
free surface and determine the streamlines at low speeds are inertial and are
independent of the stress-deformation relation characterizing particular simple
fluids. This motion is driven by torques generated by vertical gradients of the
centripetal acceleration associated with the basic shearing motion. The torques
operate in azimuthal planes and induce one big eddy from the center of the disk
to the edge and a characteristic sequence of edge eddies which decay rapidly with
distance from the edge. This result is all the more surprising since it is usual to
study torsion flow by neglecting inertia altogether.

A brief history of theory and experiments for torsion flow can be found in the
monograph of CoLEMAN, MARKovITZ & NoOLL (1966). The basic viscometric
approximations for this flow seem to have been given first by RIvLIN (1948) and
GREENSMITH & RIVLIN (1953). They did express concern about inertia and they
realized that it would induce a secondary flow; but their method of approximating
this inertial effect with a constant is inadequate because it nullifies the torque

Fig. 4. The free surface on a liquid filling the space between rotating parallel disks. The domain
occupied by the fluid is

Yo={r, 0, x|0S r< h(x), 05 0= 27, d2< x< df2).
The motion is assumed to be axisymmetric with

U=e, V(r, x)+ ey W(r, x)+ e, U(r, x).
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which is produced by the stratification of the centripetal accelerations. Other

authors have expressed reservations about the neglect of inertia. TRUESDELL &
NoLL (p. 458) say that “Solutions can be obtained only after certain terms have
been neglected. We expect that these solutions approximate the exact solutions,
but a good theoretical justification is still lacking.” Most authors express the
belief that the neglect of inertia can be justified, possibly, for small values of w.
CoLEMAN, MARrkoVITZ & NOLL (1966) say that “Since the theory of torsional
flow neglects inertia, it can be expected to approximate actual behavior only at
low speeds of rotation.” PIPKIN & TANNER (1973) say that: “In the flow between
a fixed disk and a disk rotating with angular velocity w,, the velocity field has the
form v=(wyrz/h) e;, where 4 is the separation between the plates ... The shear
rate is y=rw,/h. Consequently, at any given shear rate centrifugal force can be
made arbitrarily small by decreasing the angular velocity w, and the gap width A
in the same proportion. Thus inertial effects, proportional to prw2, can be made
negligible.”

The analysis given below shows that inertial effects on the torque can be
neglected when w—0 but that inertial effects on the normal pressures can be
neglected only when the ratio d? p/10(30, +a,) is much less than one; when this
ratio is greater than one, the normal pressure will actually increase with radius.
A brief, tight and self-contained argument about normal stresses which by-passes
the heavy free-surface calculation is given in Section 20.

To simplify the analysis, it will be best to treat first the problem in which the
plate speeds are equal in magnitude and opposite in sign (k=1). The general case
(any x) is considered in Section 19.

14. Mathematical Formulation and the Rest Solution

We have chosen coordinates (7, 8, x) and the notation to make maximum use
of the die-swell equations set out in Section 10. When gravity is neglected, the
governing field equations (10.4a) hold for this problem. On the free surface,
r=h(x) the first three of equations (10.4c) and, in addition, S,,=0, hold. The
fluid adheres to the top and bottom plate. In the formulation which seems closest
to physics, we require the fluid to be attached to the sharp edge of the disks:*
h(+d[2)=h,. Since the fluid is incompressible, the total volume of the fluid
between the disks is invariant. It is essential in the analysis that the prescription
of the total volume be that of a cylinder of fluid of radius 4,; that is,

af2

nhyd=n | h*(x)dx. (14.1a)

—df2

The equations which govern the flow of a simple fluid between rotating disks,
including effects of gravity, are

v

pU - VU+V(P+pgx)—V-S=0=divU in ¥, (14.1b)

* In an alternate formulation we could require that the contact angle be fixed. The analysis
could be carried out for the case in which the free and solid surfaces are perpendicular (neutral
wetting). In experiments, the fluid shows strong affinity for sharp edges and does not satisfy
a contact angle condition.

10*
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U(r, +d[2)=tero, (14.1¢)

V=R U=S,o— ' S.o=h"(S,— ) +(2— %) S,
=S,,—P+P,—-h'S.,—aJ

(14.1d)
=h(+d[2)—hy=0 on r=h(x).
In the rest state w=0, the velocity and extra stresses all vanish,

P=—-pgx+cy (14.2a)

where g is the acceleration of gravity, ¢, is a constant and
oJ—pgx—P,+c;=0 (14.2b)

where

h" 1 d
J= — and © (i——) =h,. 14.2¢
(I+r'3HY  hA+hH 2 ° ( )

The constant ¢, is determined by the constant volume condition (14.1a). Intro-
ducing the dimensionless variables

r=27x, H=2di, (14.3)
we may rewrite (14.2) as
HII
A+HD HA+H? et e=0, (1442
H(+1)= 220 —H, (14.4b)
where ¢3=(c; —P,) d/20 is a constant,
_pgd®
&= 40
and
1
2H3= [ H*dt. (14.4¢)
-1

The parameter (¢/pg)* is the capillary radius. For the fluid (STP) studied by
JosepH, BEAVERS & Fospick (1973), (o/pg*~(5.3 cm)™!. Hence, for STP, <1
when d<2/5.3 cm. Small gaps of this size are typical in parallel plate viscometers.

When ¢=0, (14.4) determines a surface of constant mean curvature. The
solution

-1
-

is unique for almost all prescribed values of H, and d. Perturbing (14.5) with ¢,
we find

H()=H,, cs (14.5)

”1 + H’21 - t+C3, 1 =0, (14.6a)
» Ho

H ((+1)=0, (14.6b)
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j' H ,dt=0 (14.6¢)
-1
where
__O0H(t,¢)
H’l_ 58 e=0

The unique solution of problem (14.6¢) is

_ g2 ), sint/Hg _
H,l(t)-Ho{t S i/H, [ ¢3,1=0. (14.7)

For very large values of H, this becomes

H  =zt(t*-1) (14.8)
and

H()=H, +-§— (2 —1)+0(e2). (14.9)

In the analysis to follow we shall set ¢=0; this allows us to develop the solu-
tion of (14.1) as a perturbation (in ) of the rest state in the convenient cylindrical
domain ¥;(r<h,). Equation (14.9) gives a simple expression for the static cor-
rection to the shape of the free surface.

15. The Perturbation Series

We now seek the solution of (14.1), with g=0, as a power series in w. It
follows from the symmetry of the configuration that the free surface, the pressure
distribution and the secondary motion (V(r, z; ) and U(r, z; w)) all must be
even functions of w whereas the azimuthal component of velocity W (r, z; ) must
be an odd function of w; thus, to leading order,

U | [UT]
14 v
P—Py|=| P®| 0’ +0(0% (15.1)
h—hg <
oW | (W

where the superscript notation is as defined under (9.6) with differentiation with
respect to @ understood.

The domain perturbation method to be used here is the one described im-
mediately after (11.1) and, more fully, after (9.5). As in the die swell problem, the
substantial derivative following the mapping onto a cylinder must be applied to
equations on the free surface; and if 4(4(x), x)=0, then

1 0 Jo\"
Il _ (1
A n!'(aw +h ar) A(r, x)
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with r set equal to A, after differentiation. The stresses are to be handled by the
retardation expansions of Section 3. For later reference we note that

2
(o)[2]=(o)<2>+hm;r—(o)(“+h<2>—;7(o)<°>+h<1>2% 661- ()P, (15.2)

At first order we find that

PPY 2 U =0=divU?> i ¥, (15.32)
Ut (r, i—‘;—) = te,r, (15.3b)
PO =S =520 on r=h,. (15.3¢)
The solution of this problem is
U< = ¢, W4 =, 2;)5 (15.4a)

and, using symmetry or by direct calculation using the normal stress condition
arising from last two of equations (14.1d), we find that

S = p = <, (15.4b)
For later use we evaluate the following quantities on the first-order solution:

(1) 2
Wr oo AT (15.52)

. gy = —e, 77
4[] =22 [ege Feces)

2
Al . A1=4%[8989+ex8x],

. p4, = —4—;;— [e,e.+e.e.], (15.5b)

Vu<1) =% [x(er €yg—¢€y er) +re, eﬂ]’

4
Pull>. Aj=—5 [xre, e,¢+7‘2 €y ex]’

d
2
Ay=u-VA, +Vu? . 4, +Vul??. AI)T=%§— e.e, (15.5¢)
4 2
S$V=a,4,+a, 4> =—d§— [0, €0+ (20 +at5) e e, ] (15.54d)
and
7.S50 = —%;—az e, (15.5¢)

* The bracket argument means the tensor 4, is to be evaluated on the field u<1>. We have
not always used the explicit notation when the context makes the intent clear.
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We note that curlV- S§!>=0. It follows that at second order the forces in the
interior of ¥, are conservative, can be absorbed by the pressure, and do not
induce motion. On the other hand, the centripetal acceleration field W< is
stratified vertically (depends on x) and, therefore, produces torques in azimuthal
planes:

curl (u¢?? - Va1 = —8e,rx/d>.

These torques are responsible for the secondary motions when w is small.

16. The Perturbation Problem at 2nd Order; a Cylindrical Edge Problem
The perturbation problem at second order is given by
pu® v —u 72 uP L PP —p. SV =0=divu® in ¥;, (16.1a)

and

ut® (r, i—%) =0 (16.1b)

where u¢*? - Fu<!> and V- S§! are given by (15.5a) and (15.5¢). The computa-
tion of boundary conditions on the free surface is simplified by the fact that
A<>=0; then (15.2) may be written as

()2 =(0)¢* + h® 3, (0)<® = (0)?

where the last equality follows from the fact that only constant fields arise on the
rest solution

3,(0)<%*=0.
For the stresses at second order, we have
SD =8+ 850 = d [uP] 455

where S§!” is given by (15.5d). Equation (15.5d) shows that the rr, r6, rx and x8
components of S§!” all vanish. Moreover,

J<2>=h<2>"+h<2>/h§.

On the surface r=h, we must satisfy:

ovV<®  oU®
2= =
4 #( 0x T or ) 0,
d

— PP —a[hP"+hP[h5]=h® (i;) =0.

oV<® (16.10)

or

2p

In addition, the condition of constant volume (14.1a) requires that the mean value

s

h$®(x)dx=0. (16.1d)

nja e

The azimuthal components of velocity (W <??) and stress all vanish at even orders.



138 D. D. JosepH

To solve the problem (16.1) we first reduce it to the cylindrical equivalent of

an edge problem. The secondary flow is given by a stream function ¥<*>

1 a¢<2> h a¢(2>)
2 72y - —
Wy, Uy (2, ),

}
Introducing dimensionless variables,

)
) =%(x, ),
B(t, )= i (2= 1) 2ot D,
p(t, y)=P*[2pd?,
_ 20 2
#£(t)= Ir A h** (x),
__ %
yi— pdl’
we find that
1 06\ 1 006 op [y, 1
P () g ]
y 0t +y3 6t+6y+ 2 40”7 0
and
5 154>> op , t
4 ('y"ay Tt 1zl
in %5,
0P
45—-—87—0

ont=+=1, and

bl

H , ., o (1 60

1 0*

A" +A[Ho= - (5t' = 61"+ 1)~ p+2 Gyar (@Y

(16.1e)

(16.11)

(16.2a)

(16.2b)

(16.2¢)

(16.2d)

(16.2¢)

on y=H,. To conserve the mass of fluid between the disks, it is also necessary

that

}4(t)dt=0.

Elimination of p between (16.2a) and (16.2b) gives

P y=0 in Yo
where
? 1 0
= ay> y dy T

For later use we note that
_p2 1 09 1 09 1 0P

Yo T ey

(16.2)

(16.2¢)

(16.3)
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17. Solution of the Cylindrical Edge Problem

The problem defined by (16.2c, d, g) is related to an edge problem in the
classical theory of plane elasticity. In the elasticity theory one considers a semi-
infinite strip clamped on the long side and loaded with stresses on the top. This
classical problem is not generally well understood; for certain special conditions
on the edge, however, the edge problem can be solved along the lines laid out in
the excellent paper of SMITH (1952). Of course (16.2¢, d, g) is not an edge problem
of classical elasticity. Nevertheless, SMITH’S work can be extended to (16.2c¢, d, g);
this extension leads directly to eigenfunction expansions in the same set of
Papkovich-Fadle functions as arise in the elasticity edge problem in the semi-
infinite strip. The equivalence of the elasticity edge problem and (16.4) can be
intuitively grasped by noting that (16.4) does define an edge problem in which
the edge goes all the way around; the observer on the edge of a disk of large
radius sees a flat edge in which the disk center is off at infinity.

Let @,=®+id; where (2, y) and &,(t, y) are real-valued functions of 7 and y,
for —1Zt<1, 0£y< H,, which satisfy

L2P,=0 in ¥ (17.1a)
where
> 14,98 01 a8 &
5T vy ay o PGy yay tar
and
= 654? =0 at t=%1. (17.1b)

The real part of the second derivatives of @, are prescribed on the edge of 75,
y=HO:

; HOa_a_-l_.aﬁ_(p 0
H= yazyqs T |=H l(f__i) : (17.1¢)
&r S s\3 3

The prescribed function g, (¢) is required to satisfy compatibility conditions

1 1
0= | g (dt= [ tg.(r)dt. (17.1¢)
-1 -1

The solution of (17.1) can be found in a “Fourier” series of Papkovich-Fadle
eigenfunctions. The odd functions with eigenvalues P, are given by (17.9a); the
even functions with eigenvalues S, are given by (19.7a). The solution of (17.1)
can be expressed in the odd functions alone because the given data (17.1¢) is odd.
When the given data is even, formulas (17.2) through (17.8) still hold with P, re-
placed by S, and with ¢{”, &%, Y{” and y§ given by (17.9a) replaced by @,
&M, Y and ¥ given by (19.7a).

The solution of (17.1) can be found from the series

Pe= )L, p3

Pz $ (O F (P, y) (17.2a)
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MR R 4

Here c, are constants given by (17.8),

and

PO = A D= oy

where 7, (P, y) is the modified Bessel function of order 1 and F(y) satisfies the
differential equation
F"-%F’—P2F=O, F(Hy)=1 (17.3a)

which can be written as
PF=P*F. (17.3b)

From the basic differentiation formula for 7, (y),
d
H(}’h (J’))=}’Io()’)-
We note, for later use, that

d Py Iy(By) _

o FEN =4 T = f o(P.y) (17.3¢)
and

F(By)\_ P A5y d

dy( : ) T 5 (P,y)— = H (17.3d)

To determine the constants c,, we introduce the vectors
S o v
fr=[ 1 ¢(n) (n) ‘/’(")”—‘ (m

8 2

where ¢® and y™ may be defined through the differential equations

2
; $™ £ P24 . $™ =0, (17.42)
2
&y L p2 4T ™ (17.4b)

where
[0 -1} . [ 01
=y 7} =0 )]
and the P? are chosen so that

(n)
¢ = dd" =yP= d‘l’t =0 at t=+1. (17.5a, b)
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Using (17.4) and (17.5), we find that

1
[y™.4.¢™dt=k,06,, (17.6)
-1
and, for all m and n,
1 —
[ ™. 4-¢™dr=0. (17.7)
-1
Applying the biorthogonality conditions (17.6) and (17.7) to (17.2b), we find
that —1 7
o [ A-fdi= e | W0, [ []e as
n -1 n -1 r

The Papkovich-Fadle eigenfunctions separate into even and odd functions.
The odd functions are given by

¢,=Pcos Psin Pt— Ptsin Pcos Pt=y,,

¢,= —(Pcos P—2sin P)sin Pt+ Ptsin Pcos Pt,

Y, =(Pcos P+2sin P)sin Pt— Ptsin Pcos Pt,
sin2 P=2P(P+0), k= —4sin*P.

(17.9a)

The first ten eigenvalues in the first quadrant of the complex P plane are given
by HiLLMAN & SALZER (1943); the first three eigenvalues are

P, =3.748838 +11.384339,
P,=6.949980+i1.676105, (17.9b)
P;=10.119259+471.858384.

For practical purposes the series which we shall give (see Table 1) converge in
three terms so that three eigenvalues suffice for explicit representation of the
practical solution. To establish mathematical convergence we shall use asymptotic
forms for large values of n

2P,-2n+%)n+ilog(dn+1)=n (17.9¢)
and for >0,

R na
sin Pit=4[(dn+1)n]? e L0o(n™ 2), (17.94d)

We are now ready to compute the coefficients c¢,. We apply (17.8) to (17.1¢)
and use (17.4b) to find that

k,c,= HO f ]:f___] (24,(::) llj(n))dt

_Ho d2 (”) "
" 4P; _51 [T 5] df d‘“"*’rzpn _jlnp dt (17.10)
2H2
=———P—5_9-tan P,

n

¢,=HZ/2P? sin P cos’ P,=HZ[2P}. (17.11)
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Table 1. Convergence of the Papkovich-Fadle series

0
[ f] _ 100 | , t rei 100 [qb(”(t)]
= 41 Z 4
g 4 373 P} 149
5
t g() N=1 N=3 N=5 N=7 =9
1 3.333 2772 3.252 3.331 3.322 3.327
0.8 0.267 0.480 0.204 0.254 0.289 0.277
0.6  —1.200 —1.221 —1.115 —1.216 —1.199 —1.194
04  —1467 —1.579 —1.485 —1.445 —1.478 —1.463
02  —0.933 —0.977 —0.930 —0.947 —0.940 —0.93
0 0 0 0 0 0 0
f f@® N=1 =3 N=3 N=7 N=9
1 0 0 0 0 0 0
0.8 0 0.2025 0.0953 —0.0102 —0.0295 —0.0065
0.6 0 0.2377 —0.0794 0.0269 —0.0046 —0.0046
0.4 0 0.0037 0.0419 —0.0258 0.0118 —0.0031
0.2 0 —0.1237 —0.0143 0.0144 0.0086 —0.0015
0 0 0 0 0 0 0
Hence,
0
1 5 1 [¢‘1") (t)]

— |t t|=re) — (17.12a)

T5-<| AP P
and

1
== 32 P ? ¢ (1) F(P,y). (17.12b)

Numerical convergence of the partial sums

e

2 0]

is demonstrated in Table 1. This type of convergence is representative of the
series which are involved in the computations to follow. The given functions are
adequately represented when N=3. Mathematical convergence of the series
(17.12a) and (17.12b) follows from the asymptotic representations (17.9c) and
(17.9d). These representations show that (17.12a) is dominated term by term by
c/n® for a certain constant ¢. The series (17.12b) is dominated term by term by
¢/n*. The solution (17.12b) is an edge solution of the Saint-Venant type; the
modified Bessel functions F(P, y) decay exponentially from the edge (see 18.3).
In the interior, y < H,, the solution (17.12) rapidly approaches the function given
by N=1. The stream function for the second-order problem consists in these
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edge eddies and the big eddy given by (16.1f):

4 (2 _ - 1 2_1\2,,2
W‘// (x, r)=1e @.(t, y) =40 1(t" = 1)" y". (17.13)

To complete the solution we turn next to equation (16.2¢) which governs the
free surface. We need expressions for the quantity —P+20%(®/y)/0tdy. The
pressure may be obtained from (16.2b) using (17.12b). We find that

V’(—l— aqj)—l e
y 0y/ y 0y

and
tz t4 /'}’2 1) 2 1
Pt \a ) ey

A
v

dy

Fodt

) (17.14)
=H,re Y, o sin P, cos P,t %,(P,y)
n=1+4n

where ¢, is a constant to be determined. We also find that

2 (2)=Ho ey S0P [PA(R.y)—@]

\Jy/ < n=1 4In L

-\J

~~
[N
[y
wn
N’

- [t cos P, sin P,t—cos P, ¢ sin P, ].

We next use (17.14) and (17.15) evaluated at y=H, to rewrite (16.2¢) as
P

A" +AHo= — 5+ +es

in P, . .
—~re e [P,tsin P,t—sin® P, cos P, t]

P> (17.16)

sin P,
+Hore Y 223 4 (P, Ho)
n=1 n

. [P,tsin P,t—(1+sin® P,) cos P, t]

where
_ 1 Y2 1 2

Cs —C4+m+ (T 8_0) H0°
Equation (17.16) is to be solved subject to the conditions that £(+1)=0. The
constant cs is then determined by (16.2f). It is of interest and is very easy to
solve (17.16). Our present purpose, however, is better served by considering the
simpler forms which arise when H, is large; this limit is typical for the parallel
plate viscometers which will be used to compare this theory with experiments.

18. The Secondary Motion and the Shape of the Free Surface

Equations (17.13b) and (17.16) simplify when H,, is large. To simplify, we
first note that the large argument expansion of the modified Bessel functions gives

I,(P,y)~e™)/2n P,y O<argP,y<4rm andall I>0.
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Table 2. Free surface correction at 2" order* (see Egs. (18.5), (19.4) and (20.2))

t -10 —09 -08 -07 —-06 -05 —-04 —03 —02 -0l 0
1034/H, O 0.44 0.67 0.68 0.52 0.24 —0.09 —043 —0.71 —0.89 —0.958

103/§/H0 0 —195 —349 —454 —508 —5.12 —4.70 —3.89 =277 —144 0
0

1032/}10 —1.51 —2.82 —386 —4.56 —4.88 —4.79 —4.32 —348 —233 —0958
t 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1034H, O 0.44  0.67 0.68 052 024 —009 —043 —0.71 —0.89

1034/H, O 1.95 3.49 4.54 5.08 5.12 4.70 3.89 277 1.44

1034H, O 2.39 4.10 5.22 5.60 5.31 4.61 3.46 2.06 0.55

It follows that

y L(Py) Y —Pa(Ho-y
~ e Fn . (18.1)
I,(P,Hy) Hq

Introducing z= H,—y =0, we may further simplify (18.1):
y L(By) —Ppz
~e nE (18.2)
Hy I(P,Ho)

Equation (18.2) differs from (18.1) by terms of order z/H, and the formulas of
this section hold asymptotically for large y< H, and z/H,<1.

Equation (18.2) implies that

¢~%H3 e -%g—e_P"’dJ({’)(t). (18.3)
n=14n
Asymptotically, as H, becomes large, the free surface formula (17.16) becomes
' sin P, ) . 5
A'~Hyre ), —pF [P,tsin P,t—(1+sin* P,) cos P, t]+cs. (18.4)
n=1 n

Integrating (18.4), we find that the solution which vanishes at t=+1 and has a
zero mean value in the sense of (16.2f) is in the form

3 sin*P,
A~—H t - —(t°—1
orenzl—s—[ sin P, sin P, —sin® P, S o P P —— I (*-1)
+cos P, cos P,t—cos* P, +— (1—=cos®*P)(t* - 1)] (18.5)

=—H, rez [ sin P, sin P,t+cos P, cos P,t— 1 +3 tan® P, (12— 1)]

where

tan® P,
65=—3H0 Z__F—

The function #/H,, is tabulated in Table 2 and is sketched in Fig. 9.

The level lines of the function & (¢, ) in the reference domain ¥4 [y, ¢|0<y < Hy)
are shown in Fig. 6. To express ® in the deformed domain ¥, we may use the
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Fig. 5. Level lines of the stream function
[—y? 12— D2 H?

when the top and bottom disks have equal and opposite rotational speeds. The figure applies
when H) is large and y/H,=~21. The flow is very quickly dominated by the large eddy (the term
proportional to y?) and the cellular structure of the edge eddy & is not apparent.

Fig. 6. Level lines of the edge eddies di/Hg for when the top and bottom disks have equal and
opposite rotational speeds.

prescription following (9.6) and replace y(0<y< H,) with y(0<y=<H()); how-
ever, it is better to evaluate the series of total derivatives in the deformed domain
by inverting the stretch mapping (y, ) > (y—H(t, ¢), £).* The function ®(y, 1)
describes a double array of edge eddies. The most persistent of these is associated
with the eigenvalue P, whose real part is smallest. For z>0

1 1 _395: =
Q-)?Hg re [?e 3.75..e 11.382¢gl)(t)]. (18.6)

* This aspect of the theory of domain perturbations is discussed in the paper of JOSEPH &
STurGEs (1974).
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This function oscillates as it decays; the period of its oscillation, the wave length
of a cell pair, is T=z;~2x/1.38. This is a period of about 21 times the plate
separation. The field (18.6) is therefore composed of concentric cells with a radial
spacing of the order of the plate separation.

In the flow, the edge eddies, described by the function @, are dominated by
the big eddy at the end of (18.7)

4'#2 3 y2t(12_1)2
pdS _@(t’ y)— 4"8"—0 . (18.7)

The big eddy is not an edge eddy; it goes all the way to y=0 and is driven by
torques associated with vertical stratification of centripetal acceleration.

The level lines of the function 4y<**/p H} d° in the region where y< Hj is
large enough so that we may replace y?/HZ by 1 are sketched in Fig. 3.

19. The Secondary Motion and the Shape of the Free Surface
when the Disk Speeds are Arbitrary

The problem solved in Sections 17 and 18 is very slightly simpler than the
general problem to which we now turn. In this configuration we allow arbitrary
speeds for the two plates; the problem splits into two parts: the part which we
just solved and another part which involves the even Papkovich-Fadle functions
(19.7a). In the general problem the difference between the angular velocity of the
top and bottom disk is 2w; the bottom disk rotates with an angular velocity of
2k w/(1—x) and the top disk rotates with an angular velocity of 2w/(1—x). We

placed by
l}(r, dl2; w)=eg2wr/(1—k), f/'(r, —df2; w)=e,2k0r/(1—x) (19.1)

where x is any preassigned real number. As in (15.1) the secondary motion,
pressure, and free surface are even functions of w and the azimuthal velocity is
an odd function of w. We shall find a solution in the form

U ] C U] RilE

1% p< 1748
PPy |=| P®| w?+ 1+x | pe w*+0(w*) (19.2)

h— hg h$%? 1-x [352%

oW | | WY | r

where U¢?>, V<2, etc. are the solutions of (14.1a, b, c, d)
20
Po '—Pa+ﬁo—

and the roof variables are to be determined.
At first order U< = P<D =< =0 and
1+x

W= prp; 1=
-k

, W=2rx/d (19.3)
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satisfies the prescribed condition (19.1) and the differential equations (15.3a).

The tilde overbar stresses are independent of the rigid rotation 7r and the expres-
sions (15.2) hold for tilde overbar stresses. However, equation (15.5a) becomes

2
iV g = —e, [ﬂzx—] —e,1 [4xr +‘cr]

d d
(19.4)

=uD . put? —e 1 [4Zr +rr].

It follows that the second-order problem is the same as (16.1) except for the new
terms which arise from the previously absent two terms on the right side of (19.4). All
three terms arise as centripetal accelerations, but only the first two terms are
stratified vertically (depend on x) and produce torques leading to secondary
motion. The term which is independent of x can be absorbed in the pressure. The
new term 4x r/d has a larger absolute value than the term 4x2 r/d? and it induces
a larger torque, more intense secondary motion, and greater changes in the shape
of the free surface.

The equations which govern the tilde overbar variables at second order are
(16.1a, b, ¢, d, €). This problem may then be split into parts as in (19.2); the first
part of the problem is the one solved in Section 17. The second part is generated
by the second two terms of (19.4) and is designated with a roof overbar. The
variables (<>, P<?>, i<?) are governed by (16.1a, b, ¢, d, €) with

4xr
- d

S?=0 and a<1>-Vﬁ<1>=—e,( +rr).

In dimensionless variables

2
(t’ y)=7(x3 7‘),
2 }’2 2 2 4 2)
@(ta y)= 192 (t _1) +ﬁ5_¢ (x3 T),
P (19.5)

ﬁ(t, Y)=W,

A(t)= h<®,
=7

d4

we find that in ¥

1 66\ 1 od &P
Al b 2
g (y at)+y3 at+5y 18’ (19.6a)
2 (1 543) i_(tz_ t)_
Y (.v 5y ) e \w ) =0 (19.6b)
&2 6=0 (19.6¢)
and
@:ﬁ?_:O on t=-+1. (19.6d)

t

11 Arch. Rat. Mech. Anal., Vol. 56
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2

~ H .
On the edge y=H,, &= —2- (t2—1)? and the edge data is

192
o (1 0o 2
[fr]= HOW(TW) ___% [120—1]. (19.6¢)
gr 52 @/at2 3
The free surface equation is
Zr A 1 d , 2 52(5/}’)
] - _ —1)*- -~ 19.6f
A+ i 56 27 (D —P+2 513y (19.61)

where the last two terms of (19.6g) are evaluated at y=H, and
1
A(+1)=0 and [ 4(H)=0. (19.6g)
-1

The edge problem is solved as in Section 17. Since the data (19.6¢) is even we
shall need the even Papkovich-Fadle functions:

1=SsinScosSt—StcosSsinSt=y,,

2=—(SsinS+2cosS)cosSt+StcosSsinSt,
Yy=SsinScosSt—StcosSsinSt,

sin2S=—25(S*0), k=—4cos*S.

y S 9

(19.7a)

The first ten eigenvalues in the first quadrant of the complex S plane have been
given by ROBBINS & SMITH (1943). The first three of these eigenvalues are

S, =2.106196+11.125365,
S,=5.356269+11.551575,
S, =8.536683 +11.775544.

For practical purposes the series given in this paper have converged after three
terms (see Table 3). Mathematical convergence, demonstrated below, requires
that we give the large n forms of (19.7a):

2S5, =2n+3)n+ilogdn+3)n

and for >0
; T _t
sins,,z=2i[(4n+3)n]2 eI Lo ?), (19.8)
The coefficients c, for the series solution (17.2) may be computed from (17.8):
H2 1 5 . .
key=g" [ (F=HQIP-IP)ds
-1
H} H}

1
— Q) PR

=I5 _jl s dt ST
and

Ho 19.9
Cn=z-s—2—COS S". ( . )
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Table 3. Convergence of the Papkovich-Fadle series

[f] 1000[ 0] ¥ 1000 [q‘bg’)(z)]
g

~TIc wor a7 |2
32 |P-1 =, 8S7cos* ST (99 (1)
t g N=1 =3 N=5 N=7 =9
1 2.083 1.948 2.070 2.079 2.081 2.083
0.8 0.958 0.999 0.950 0.955 0.961 0.960
0.6 0.083 0.110 0.863 0.836 0.818 0.848
0.4 —0.541 —0.548 —0.588 —0.540 —0.543 —0.541
0.2 —0.916 —0.933 —0.922 —0.919 —0.916 —0.916
0 —1.041 —1.057 —1.037 —1.039 —1.040 —1.104
t f(@® N=1 =3 N=35 N=T7 N=9
1 0 0 0 0 0 0
0.8 0 2.986 1.434 0.050 —0.323 —0.128
0.6 0 5.105 —0.8323 0.1061 0.0864 —0.1202
0.4 0 2.916 —0.0656 —0.1830 0.1582 —0.0944
0.2 0 —1.086 '0.5208 0.2174 —~0.0278 —0.0718
0 0 —3.003 —0.6155 —0.2265 —0.1105 —0.0631
Hence
170 1 pim
— =r€ ) —3—7xo | 2ml> 19.10
4 [tz _%] ngl Sn COS4 Sn [(b(z")] ( )
8, =1 ! P F(S,y) (19.11)
T 47°%% Stcosts, ! nJJe .

The pressure is given by

1 2 H sin S, ¢
—(z3—1)+31’—6r+c6-22re L STeosis S0 (1912)

d 24 Zcos’ S,

where ¢ is to be determined. To find the shape of the free surface, we combine
(19.12) and the expression

B (Bdy) _1
T 0tdy 2

1 EACS))
HoZm [‘%(Sny)' —-S—y—]

n

- [tsinScosS,t—cos S,cos S, 1]
with (19.6g). We find that on y=H,,
A 1

Al b= —— (1 t)—£92—1+c
HY 12 12 6
1 , 1 2o
+—2— I'engll m[sntcossnt"'cos S" SlnS,, t] (1913)
Hy Jo(S+Ho)

- tcosS 2 i )
3 renzl S3c0s°S, [S,tcosS,t+(1+cos’S,)sin S,1]
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Fig. 7. Level lines of the stream function

[6— y2(r2— 1)[192)/HE,

The stream function for configuration in which the bottom plate is stationary whilst the top

plate rotates with a speed of 2w is this one plus the stream function of Fig. 5. The flow is very

quickly dominated by the large eddy (»?(¢2— 1)/192) and the cellular structure of the edge eddy
is not apparent.

Fig. 8. Level lines of the edge eddies d;/Hg.

The solution of (19.13) which satisfies the condition (19.6g) has
TH}
16 °

We shall not give the solution of (19.13). As in Section 17, it is best to consider
the simpler forms which arise when H,, is large.

When H, is large, we have

CG-——'——

1

3 1 (n ~Snz
(chZngm(b(l)(t)e Sn s (19.143)
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T 2 2 H SlnS t —S
Pt (= nz
g0 THIYS e ) s e (19.140)
. H ~3S,
A~ -2 Z 3%52—[5 t cos S,t+(1+cos?S,) sin S, 1],
(19.14¢)
IS DY oo [tcosS cos S,t+sin S, sin S, ¢ —1t].

The function %/H, is tabulated in Table 2.

The level lines of the function & in the reference domain ¥; are plotted in
Fig. 8. The function & (y, t) describes a single array of edge eddies. The most
persistent of these is associated with the eigenvalue .S; whose real part is smallest.
For z>0,

1 2 l 7(1) -2.,106z —il1.125z
b - 4 Hore [m(pl (t)e e ]. (1915)
This function oscillates as it decays; the period of its oscillation, the wave length
of a cell pair, is T=2z;~2n/1.125365. The field (19.15), like (18.6) describes a
sequence of concentric cells with a radial spacing of the order of the plate separation.

20. Summary and Concluding Remarks

Most torsion flow viscometers have one stationary boundary. If gravity is
neglected, the “up” direction is arbitrary and, without losing generality, we may
put the bottom boundary to rest; then k=0 and top plate rotates with an angular
velocity of 2w. To designate solutions for which x=0, we again use tilde overbar
functions: L

(®, P, A)=(D+B, P+ P, A+4)

where (®, P, #) are the expressions derived in Sections 17 and 18, and (&, P, A)
are the expressions derived in Section 19. The interior fields in ¥ are given by

‘ s a0 22E=D _ y -1
4yjpd O
(P-r—y) 2007 P(t,y) @+ 0().
I 2o W/d i (ty+y) | (20.1)

To express these fields in the deformed domain, we use the prescription specified
following (18.5). The function H(t) is given by

o(H(t)—Ho)/pd® =4(H) ®*+0(w®). (20.2)

The free surfaces # and # and the accompanying streamlines in the deformed
domains are sketched in Fig. 9.

To correct the pressure and deflection of the free surface for the effects of
gravity, replace 20/dH, with 20(—¢t+1/H,)/d in the pressure formula and

replace H, in (20.2) with Ho+—2—t(t2— 1). The resulting equations are a formal
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Fig. 9. Sketch of the free surface and streamline patterns when the bottom and top disks rotate
with angular velocity (— w, ) and (0, 2w) respectively. The effect of gravity (not shown) would
be to make the free surface bulge out more near the bottom disk.

solution of the original problem with a presumed error of O(w?e) where &=
p g d*/4a.

It is of interest to examine the way in which the Rivlin-Ericksen constants
enter into the solution through the second order. The motion, given by ¥<*> and
W<1> is independent of the Rivlin-Ericksen constants and is the same for all
simple fluids. The pressure (17.14) depends weakly on 7y, ; since this part of the
pressure varies only with y and not on ¢, it does not affect the shape of the free
surface. The principal effect of the Rivlin-Ericksen constants, which characterize
the fluid at order w?, is on the distribution of the normal stresses acting on planes
parallel to the disks. These stresses are given by

oU»
Too(x, F)=—Po+ [—P<2>+(s§*>),x+2u

= ] o +0(0h).
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Using (15.5d), (16.1€) and (20.1), we find that

20 N 2

Txx(xa r)=_ a dH +2pd2 [_P—P+(271 +')'2)'J')2—‘
1 1 d 2 *(P+P)] , .
T10 dt T =D gy - -~ — ]“’ +0(@).

Introducing the functions P, P, @ and &, we find that on Yo
T —P—29 _2pa?lt (o) —1)+ t
=~ 50 G

3 3 2_ (Y23
+(”1+Z” 40)y "(4 ‘40)“5
+H rez [ L sin P, cos P, t £, (P, y)+= ——z—-—;——SlnSt 5 (S,Y)
0 P 0 2 S%cos’S, °

'}E)(Pny) d(ﬁ(ln) O(Sny) ¢(1") 2 4
e,,Zl[ P5 dt T 2S3cosS, dt] @™ +0(@)

where ¢; is the constant, independent of y; and y,, which is determined in the
way described below (17.16). Since 4 (S, y) and 4, (P, y) decay exponentially
as y is decreased from H,, the variation in the distribution of normal stresses on
the plate (= % 1) is dominated by the term

(20.3)

-

3 3\ »
Wt 2=y )V (20.4)

This distribution of normal stresses differs from one which is based on the assump-
tion of negligibility of inertia by the term 3 y?/40 which arises from inertial effects.
This term has an important effect when

(407, +307,)/3=(400, +30a,)/3 pd? (20.5)

is small. When this ratio is smaller than unity, the pressures normal to the disks
will increase, rather than decrease, with distance from the center of the disk.

The unexpected effect of inertia given by (20.5) arises both from the rotational
property of the centripetal acceleration and from the existence of an edge.* Since

* Several numerical studies of problems which are related to torsional flow are in broad
agreement with some of the conclusions of this study. In the first place we mention the experi-
mental numerical study by GRIFFITHS, JONES & WALTERS (1969) of the flow caused by the
slow rotation of a finite disk rotating about a vertical axis of symmetry in an elastic-
viscous liquid, the liquid being otherwise confined. GRIFFITHS, JONES & WALTERS note
that, ‘... theory based on the rotation of an infinite disk predicts no flow reversal—
whereas an experimental investigation clearly indicates a reversal of flow throughout
the liquid.” As a result of their study they conclude that, “... edge effects can affect the flow
characteristics throughout a flow field and not just in regions ‘near the edges’.” McCoy & DENN
(1970) have given results of a numerical study of torsion flow of Newtonian fluid. They do not
allow the free surface to deflect. They also find a big inertial eddy extending from the edge to the
center of disk.
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both effects are neglected in standard treatments of torsion flow, we are going
to demonstrate anew, with a direct and simple derivation, the way in which these
important physical effects come into the dynamics of torsion flow.

We start by writing (16.1a) in component form using the stream function
defined by (16.1e) and the first-order solution

U =g, [ 2;" -{-r]. (20.6)
Then
2 (1 a¢<2>) L oy‘® 9P Td4rx?  drx ] 4r
4 (r ox 7 Tax T or —p[ d* * d T izt
and

2> (2>
1721 oy +6P

r or 0x =0

in 5 and y<*>=0y<*[6x=0 on x= +d/2. The torques are associated with the
x variation in the inhomogeneous terms; these have a nonvanishing curl. We
move the rotational inhomogeneous terms in the momentum equations to the
edge, leaving behind only a potential field which can be equilibrated by a pressure,
by the following change of variables:

<2>= —_ P 2—_42_)2_.2_( z_d_z) .2
l// U,b WX(X ) r 6 X ) r.

Such a change of variables would be hard to justify on an unbounded domain.
We find, using (16.3), that

+ d2 _?p

ax or
2>
Vzi oy  oP 8p x3+210 x_4P x2+Pd=0

r or 0x 342 5 d 3

(2>
oy O oP +[4a2 6 ]r=0,

(20.7)

in 75 and Y =0y//0x=0 on x= +d/2. This is an edge problem because it is driven
by inhomogeneous terms at the edge r= H,. The inhomogeneous terms in (20.7)
are irrotational and they may be equilibrated by a pressure; thus

p»__2% 2 3 20x* p 5 4px’ pxd

BTttt - +nlx ) (208)
and
P _ (1 al//)
ax+a =0, V(r o =

The functions ¥ (x, r), n(x, r) are edge functions, expressible in Papkovich-Fadle
series which decay rapidly with distance from the edge. At x= +d/2 the terms
which depend on x alone are constants and the main interior variation of the
pressure (20.8) is given by the first two terms of (20.8). The normal stress is then
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(see 15.5d)

m<2>_ n{2) seviN . ), 1

Iyy'=—F TW2)xx=T l d2 T d2 5 J (20 9)
| ~rnmotante nnd adoa tarme
T vulidialiln aliu Uus\l viilio.

In STP at about room temperature (see JOSEPH, BEAVERS & FosDICK, 1973)

Vo
Arkhl

and the coefficient of r* in (20.9) vanishes when

, 40 10a, 5

Z L 2

d‘= Tt ~23cm”.
3p p

All the results of the analysis given here are restricted to small values of w.
In seeking experimental verification of the analysis care should be taken to in-
sure the condition of constant volume as expressed by (14.1a). When e=pgd?/4c
is small, the deviation of the free surface with ¢ from a right circular cylinder is
given by the cubic p01ynom1a1 (14 9). This polynomial serves as a correction

AAAAA b -1t _1 n 71\ o _ 1 _ » ,

to the free surIace for cases in which e+0; (1) the shape of the free

. chrmmalr  Am tha Aictriliitinn  ~F mlate cmasde  avam  swwlan
surface depends strongly on the distribution oi plate speeds even when
+1 o Jh B J SRR ~F +lhn nlata anrnandag 30 fivad (a+ DV * Thia Aiffaranrn .
toe€ dQilierence o1 i€ piaie SpeCas 18 IiX&Q (at < @). 1018 qaiiierence 1is
avhihitad in Tahle 2 (D) The free ecuirface ic nronoartional tn whan ie laroe
CALMUIICU 111 L1 AUIV L. (&) L1V LAVV OULIAVY 10 PIUVEPULMIVILIGL (U J4() WLV L4 10 1ai g,
(Y The streamline nattern of the secondarv motion and the shane of the free
\J) 11V SULQILIIMNS PAtiviil Ui A6 SVLUAILGL 5 AU MIVAL QUU UL Slldpt UL b INb
surface are the same in all fluids of equal density and surface tension. (4) The

speed of the secondary motion is proportional to the fluidity * (see Equation 16.1¢e).
(5) The secondary motion conSISts of one big eddy going all the way to the center
superimposed on smaller edge eddies which die away quickly. When the angular
velocities of the plates at x=(—d/2, d/2) are (—w, w), the edge eddies are odd
functions of x and there is a double row of edge eddies disposed around the
symmetry line x=0 (Fig. 6). When at x=(—d/2, d/2) the speeds are (0, 2w), the
motion is not symmetrical (Fig.9) but the symmetric part of it (Figs. 7, 8)
dominates the flow. In both cases the persistent edge eddy is about one plate
separation in length, and in both cases the edge eddies are dominated by big

N\ Ty

eddies extending from the eage to the center of the disk viscometer. (6) The

_______ -

distribution of normal stresses follows the law (20.3).

atn FE raay far O'A,n’,:nﬁ nnn‘ n-:é:n:—y:nn
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Part I; to J. ErickseN and A. PIPKIN for their comments about Part II; to S. RICHARDSON for
many helpful and perceptive remarks about Part III; to ROGER TANNER for comments about
Parts IIT and IV; and to J. SERRIN for some very useful remarks concerning the interpretation of
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my results about torsion flow. My interest in viscometr y has its or 181N in TRUESDELL’S lecture on

J
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* This observation and the free surface computation may explain the fracturing of the
surface in cone and plate and parallel plate viscometers. In the viscometers the free surface is
stronelv sucked into the center of the viscometer when the difference in anoular velocitv is laree,
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It is generally supposed that this phenomenon is ‘‘viscoelastic.” Rheologists who observe the
fracturing know that they must always use very viscous liquids. I am suggesting that fracturing
is driven by the torques associated with the stratification of inertia. The viscosity enters because

A tha vary vicenne lionide will tha eneed of the secondarv maotinoneg he glaw ennnioh ta kean
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the free surface from rupturing.
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the subject in 1972 and later developed into his essay (1974). The point of view of this paper takes
much from that essay and also from the point of view expressed by PIPKIN & TANNER in their
recent survey of the subject. I was stimulated to analyze the free surface at the edge of a torsion
flow viscometer by a description of fracturing given in a lecture by Professor C. Macosko. I am
grateful to Professor Macosko for freely sharing with me his knowledge of this flow and of the
actual response of the working instrument. I am indebted to J. Yoo for writing all the computer
programs used in the computations and for carrying these computations to completion. I want
also to thank Yoo and LErOY STURGES for checking the derivation of the equations of this paper.
Our work was supported, in part, by a grant from the U.S. National Science Foundation
(GK 12500).
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