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In the variational theory of statistically stationary turbulence one seeks bounds
on the difference between the response of laminar and turbulent flow when the
steady external forces driving the flow are specified. For example, the difference
between the actual heat transported and the heat transported by conduction alone
in a fluid layer heated from below is maximized when the temperature difference
across the plates is specified; the difference between the mass flux in turbulent
and laminar pipe flow is maximized when the pressure drop is specified; the
difference between the torque in turbulent and laminar Couette flow between
concentric cylinders is maximized when the angular velocity of the cylinders is
given. To find the bounds we consider the maximum value of the response func-
tional over a kinematically admissible class of fluctuation fields which includes
at least all statistically stationary solutions of the governing problem.

The Euler equations for the response functionals are nonlinear and the solu-
tions of these equations bifurcate repeatedly as the temperature difference,
pressure drop or angular velocity is increased. In this paper we have developed
and justified a bifurcation theory for the case of heat transported across a fluid-
filled porous layer heated from below. We discuss the idea that the variational theory
of turbulence is one kind of mathematical realization of the Landau-Hopf con-
jecture that transition to turbulence occurs through repeated branching of mani-
folds of quasi-periodic solutions. i

I am grateful to W. J. SuN for making all of the computations reported in this paper. Our
work was supported in part by a grant from the National Science Foundation.
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1. Introduction

It is generally believed that the increasing complexity of motions of a fluid
which is observed as the Reynolds number is increased, and which is frequently
called “turbulence”, is a manifestation of the successive loss of stability of flows
of less complicated structure to those with a more complicated structure. This
process, which is frequently identified with the conjecture of L. D. LANDAU (1944)
and E. HopF (1948), is sometimes identified as the *‘transition to turbulence
through repeated branching of solutions”.

LaNDAU and HoFF regard repeated branching as a process involving continuous
bifurcation of manifolds of solutions with N frequencies into manifolds with
N+1 frequencies. Here the attractive property of the stable solution is replaced
with the attractive property of the manifold. For example, when the data is
steady and the Reynolds (or Rayleigh) number is small, all solutions are attracted
to the steady basic flow. For higher Reynolds numbers, the steady flow is unstable
and stability is supposed now to be claimed by an attracting manifold of time-
periodic motions differing from one another in phase alone. Arbitrary solutions
of the initial value problem will be attracted to one or another of the members
of the attracting set according to their initial values. At still higher Reynolds
numbers, the manifold of periodic solutions loses its stability to a larger manifold
of quasi-periodic solutions* with two frequencies of independently arbitrary
phase. Now arbitrary solutions of the initial value problem are attracted to the
manifold with two frequencies, and so on.

Aspects of this conjecture are in good agreement with observation and experi-
ments. In particular, the notion of stable manifolds (or, more generally, sets) of
solutions appears as an especially promising idea. The conjecture about quasi-
periodic solutions can be made more precise (JoserH, 1973) but it appears to
involve a difficulty associated with *“small divisors”.

The part of the Landau-Hopf conjecture which seems most in need of revision
concerns their view that bifurcation is a process in which the norm of solutions
on successively stable manifolds varies continuously with the Reynolds number.
Of course, this continuity property does not prevail for subcritical bifurcations
(see JosEPH & SATTINGER (1972)). For these, as in the Poiseuille flow problems
discussed by JosepH & CHEN (1974) and by JosepH (1974), the transition between
stable solutions can be discontinuous. We have called this discontinuous transition
a snap-through instability.

On the other hand, the Landau-Hopf conjecture appears to give a fairly
accurate description of features of the transition involved in supercritical bifurca-
tion. Since supercritical bifurcating solutions may be stable, continuous bifurca-
tions are possible and lead to gradual evolution of successively more complicated
flows.

* Quasi-periodic functions are defined as the special class of al periodic functions
Minz only a finite basis of frequencies. In other words, we are studying oscillations contain-
ing finitely many (rationally independent) frequencies, Wy, @y, ... @,. For example, the function
f(t)=costcosns is a quasi-periodic function with frequencies ;=27 and w,=2. The value
f(#)=1 occurs when ¢=0 but not again; though f(rf)<1 when 10, there is always 7(e)>0
such that | f(z)—f(0)| < e for preassigned ¢>0.
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Even in the supercritical case, however, the Landau-Hopf conjecture is not
in strict accord with the facts. For example, a steady flow need not bifurcate
into a time-periodic flow; instead, it may bifurcate into other more complicated
steady flows. We have already noted that the view of “turbulence” as specifically
quasi-periodic is also open to question. .

It is very difficult to give a completely satisfactory account of these conjec-
tures for the Navier-Stokes equations; the problems involved are just too tough.
However, there is a rather striking correspondence between the Landau-Hopf
conjectures and the bifurcating properties of solutions of the Euler equations
which arise in the variational theory of turbulence. Our aim here is to develop a
bifurcation theory for these Euler equations and to explain their significance in
understanding supercritical bifurcations. .

The objective of the variational theory of turbulence is to provide bounds on
average properties of statistically stationary turbulent flows. The average proper-
ties are regarded as response functionals of the turbulent velocity field which
can be defined for more general vector fields. The bounds are derived by deter-
mining the extremum of the functional among a class of vector fields which includes
all statistically stationary solutions of the basic equations of motion.

HowarpD (1963) following earlier ideas of MALKUS (1954) was the first to use
this approach when he derived upper bounds for the heat transported by convec-
tion in a fluid layer heated from below.

Bussk (1969) made an important contribution toward the solution of the prob-
lem posed by Howarp. He suggested that the extremalizing solutions should
introduce smaller spatial scales as the intensity of the turbulence increases. He
called these solutions multi- solutions and studied them by boundary layer
methods. The boundary layer analysis of the multi-e solutions rested on a number
of unproven assumptions. These assumptions are most easily examined in the
context of porous convection (Busse & JosepH 1972, hereafter called BJ) since
this is possibly the simplest of natural configurations in which multi-« solutions
occur. The analysis of porous convection allows one to characterize the multi-
solutions through “orthogonality” relations in which the wave numbers play the
role of eigenvalues and to prove a number of results about the solution. The
simplicity of the problem of porous convection allowed the numerical calculation
of the 2-« solution by a Galerkin method. The analysis shows that the boundary
layer solutions are fairly good approximations of the actual solution.

The boundary layer analysis, however, is misleading in certain very important
details of the solution. In particular, the boundary layer solutions lead to definite
“breaks” in the slope of the heat transport curve. The rigorous analysis of BJ,
and the analysis of GUPTA & JosepH (1973, hereafter called GJ) indicates that the
appearance of solutions with ever more wave numbers is a bifurcation phenome-
non: for a certain range of Rayleigh numbers, the difference between the heat
transported and the heat transported by conduction alone (the discrepancy) is
maximized by a solution with N wave numbers. At a critical value of R a new
solution with N+1 wave numbers differing infinitesimally from the N wave
number solution becomes possible and maximizes the discrepancy. The bifurcation
process implies that the bounding heat transport curve does not have *“breaks”
in slope but is a smooth curve having breaks in curvature. (The bounding heat
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transport curve is continuously differentiable with piecewise continuous second
derivatives.)

We draw the reader’s attention to the similarity of the bifurcation process
just described and the Landau-Hopf conjecture about transition to turbulence
through repeated supercritical branching of quasi-periodic solutions.

To compare the two descriptions we must bear in mind that LANDAU and
HopF speak of solutions which are quasi-periodic in the time*. On the other
hand, the variational problem for turbulence is time-independent. However, the
bifurcation of solutions of the variational problem refers to solutions which can
be described as quasi-periodic functions of the space variables in the horizontal
plane. It is also important that the steady Euler equations cannot be “unstable”
in a dynamic sense. The “stable™ solutions are the ones that maximize the dis-
crepancy for a fixed Rayleigh number (or minimize the Rayleigh number for a
fixed value of the discrepancy).

Bearing in mind the differences between the variational problem and the
actual problem of supercritical bifurcation of solutions of the Navier Stokes
equations, we note that:

(1) Bifurcation of solutions arising in the variational problem is always
supercritical (see Eq. (2.10)) and always leads to an increase in the value of the
response functional.

(2) The solutions of the variational problem can be regarded as quasi-periodic
functions of the variables in the horizontal plane (see the discussion following
Eq. (2.9)).

(3) The maximizing solutions of the variational problem form a “stable”
manifold whose dimensions increase by one at each new point of bifurcation.

The maximizing solutions of the variational theory of statistically stationary
turbulence share many features with the branching solutions envisaged by LANDAU
and Hopr. The variational problem may be regarded as modeling the process of
transition to turbulence through repeated supercritical branching**.

2. Variational Problems for the Minimum Rayleigh Number for a Given Value
of the Discrepancy in the Heat Transported

The variational theory of statistically stationary turbulent convection in a
porous layer heated from below has been studied by Busse & JosepH (1972) and

* LANDAU believes that the bifurcation of quasi-periodic solutions of the time is associated
with a similar bifurcation in the spatial structure of solutions. He says (LANDAU & LipscHITZ,
1959, p. 106) that a result of the bifurcation of periodic solutions “... is a quasi-periodic motion
characterized by two different periods.

“In the course of the further increase of the Reynolds number new periods appear in suc-
cession, and the motion assumes an involved character typical of turbulence—so a turbulent
motion is to a certain extent a quasi-periodical motion.

“... The range of Reynolds numbers between ive appearances of new freq
diminishes rapidly in size. The new flows th Ives are on a ller and smaller scale. This
means that the order of itude of the di es over which the velocity changes appreciably
is the smaller, the later the flow in question appears.”

** HopF (1948, 1956) has given “‘mode! equations” which lead to quasi-periodic branching.
HoPF's equations have very special properties, convenient for analysis, which are not shared by
the Navier-Stokes equations.
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Gupta & JosepH (1973). The study of BJ has the advantage of simplicity; the
problem treated by GJ is harder mathematically but is closer to the observed
physics. We shall briefly review the statement of the two problems, emphasizing
the mathematical rather than the physical aspects of the formulation.

The problem is to study the transport of heat in a horizontal layer heated
from below. In dimensionless variables the domain of flow is the layer 0<z<1.

It will be convenient and sufficient for our purpose to start the analysis with
the dimensionless version of the Darcy-Oberbeck-Boussinesq (DOB) equations
as set down by LapwoobD (1948). We have

B(i,+ @ - Vit)+ VP —kR(T—-To)+i=0 (2.1a)
and .
‘ T,+8-VT-V>T=0 (2.1b)
where
diva=0, da=ia+jd+kw
and T, is a2 dimensionless reference temperature. The boundary conditions are
T=1, w=0 atz=0
and T=0, %=0 atz=1.

il

(2.1c)

Since the Darcy constitutive assumption has replaced the Newtonian stress
divergence V2 # with a resistance proportional to a Darcy averaged velocity (—#)
in the last term of (2.12a), we cannot impose boundary conditions on the tangential
components of the velocity vector.

The parameters of the problem (2.1) are the Rayleigh number
R=ygKd(T,-T))/vk
and the Darcy-Prandtl number
B~ '=(v/k)(d*/K).

The constants y, g, v and K are the coefficient of thermal expansion, the accelera-
tion due to gravity, the kinematic viscosity and the Darcy permeability coefficient,
respectively. The thermal diffusivity x is here defined as the ratio of thermal
conductivity of the fluid-solid mixture to products of the specific heat and density
of the fluid. The temperature difference across the layer is T, —T,.

The physically appropriate value B=0 follows from extraordinarily small
values of the permeability coefficient in porous material: in sand, X=0 (10%)
cm?; in very porous fibre metals, K=0 (10™%) cm?. When B=0 then

VP—kR(T—Ty)+4=0 2.2

is the appropriate form of the DOB equations independent of the form which is
assumed for the nonlinear inertia in Darcy’s law. The fact that B—0 for natural
materials means that thermally-driven motion in porous material will ordinarily
be very slow motion.
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We define the horizontal average by an overbar
_ 1k
° =21:rlm-§j;o dxdy.
The overall average is designated by
= jl s§dz=(3);
for any constant C °
C=C, <(Cy=C.
The motion (2, T) may be decomposed into a mean and fluctuating part:
@, N)=(u()+u(x, y, z, 1), T()+0(x, y, z, 1)).

By staristically stationary motion we mean that horizontal averages do not depend
on time and #(z)=0 (W=0 may be deduced from the continuity equation;
= =0 is assumed).

The Nusselt number is defined by

Nu=1+p/R (2.3)
where
p={w8>=R(Nu-—1)
is the discrepancy.
The equation for the mean temperature is
2
j‘—: 6= 2—7; 2.4

The equations for the fluctuations are

B(u,+u-Vu)+VP—kRO+u=0
and

wﬁzﬂ VB—V‘B—%W:O.

The energy integrals for the fluctuations are

—Rw8y+<{Juf*y=0 (2.5)
and

<ewj—T>+<170|z>=o. 2.6)

The variational theory of turbulence is possible because equation (2.4) has a
first integral which allows one to eliminate the mean motion from (2.6). Then
(2.5) and (2.6) can be regarded as functionals defined on fluctuations alone.

The variational problems considered in BJ and GJ are:

(a) Given R, find upper bounds on the heat transported by turbulent con-
vection.
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(b) Given y, find lower bounds on the temperature difference needed to drive
turbulent convection with the given discrepancy. These two problems are equiv-
alent formulations of a single problem.

The analysis of BJ leaves the Darcy-Prandt! number arbitrary and starts
from the energy identities (2.5) and (2.6). The analysis of GJ assumes B=0; then
one can replacc the integral side constraint (2.5) with a differential side constraint
which arises as the vertical component of the curl of the curl of (2.2). The varia-
tional problems may be formulated as follows:

Problem I (B)). Statistically stationary convection with discrepancy u cannot
exist when R < F(u) where

F()=min # [y, 0, 1],
>

Avory . {w—<whd)*>

Fw= wo> H <W0>2

and
H={1,0: A A>=<w0> (% ). 0,1 =(0, 0), (%, 5)=(0, 0),
where
A2=6fx+33y and w=—4,y%.

Problem 2 (GJ). This is the same as problem 1 except that the minimum F of
Z is taken over the set H where

H={w,0: Aw—4,8=0, (w, 6)|.—0,,=(0, 0), (w, 8)=(0, 0).

The admissibility conditions in H for problem 2 are more stringent than
those in 5 for problem 1. In fact, we may obtain problem 1 from problem 2 by
averaging the differential equation side constraint*. It follows that

FzF®). @7n

To specify completely the sets 5 and H in the horizontally infinite layer,
one must prescribe the behavior of admissible functions at infinity. The appropriate
prescription is suggested by the Euler equations for problems 1 and 2. These
equations are non-linear but they allow superposition of solutions which are
proportional to eigenfunctions of the Laplacian in the (x, y) plane. It is therefore
assumed that the minimizing functions are in the form

(N) N (N)
{:}={;N>}=.§, {em?;} (x,y) (2.8)

where the g, are eigenfunctions of the horizontal Laplacian

4, 8n+0‘3 2,=0, gngm-__&um'
We then define
Fy(4)=min & [™, 6™, ]
o (p)

* AUCHMUTY (1973) has shown that problems 1 and 2 are solvable if the fluid is bounded
by lateral side walls on which the temperature or heat flux is prescribed.
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Fig. 1. Repeated branching of the bounding heat transport curve for statistically stationary

turbulent convection. All the statistically stationary solutions lie above the bounding curve,

and none lie below it. The bounding curve in (x4, F) coordinates is sketched here; the computed
curve in (R, Nu) coordinates is graphed in Fig. 5.

and
F (u)=n}3n Fy(w. 2.9

The integer-valued function N(u) defines the dimension of the manifold of
minimizing functions for the given u. .

The assumption (2.8) implies that variational problems in the theory of turbu-
lence are properly posed in the set of eigenfunctions of the Laplacian in the (x, y)
plane. We may represent the eigenfunctions g,(x, y) of the Laplacian as the real
(or imaginary) part of g,(x, y)=c, e'é==+m» B2 4 y2—42 This is a quasi-periodic
representation of the solution consistent with restricting the original problem to
the space of almost periodic functions of x and y. A precise characterization of
H and 3 in the fluid layer is an interesting and still open problem for analysis.
We shall assume any development of the problem which reduces the original
problem to (2.9); then we shall study (2.9).

It is important at this point to note that the variational theory of turbulence
will not allow subcritical bifurcating solutions. A subcritical solution would
allow the heat transported to increase as the temperature difference is decreased.
However, from (2.4) we see that

dFjdp={(wB—(wBY)?[(wBY?>0 2.10)

and F(y) is an increasing rather than decreasing function. The bifurcation of an
N+ 1-a solution from an N-a solution necessarily leads to an increase in the value
of F; clearly, Fy(u) = Fy () if M > N since more functions are allowed to compete
for the minimum of Fy,. -

Suppose that (uy y+1, F(y, n+1)) is a point of bifurcation. It was shown in
BJ and GJ that

WD) -0, 8D ~0
and
Wi D) w0 (), BTV () - 8 ()
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as pt py, ny+1- Then, following the argument presented in GJ, we find that

N+1 2
(N+1)0(N*ll+ (N+l)9$lN+l) ) >
dFy.y =<( len n (Wn > dFy

dp <EIW"‘"”0(N+ 1)>2 dp

(2.11)

n=1

as pt|y+,- It follows that the slope of the bounding heat transport curve is
continuous across a point of bifurcation. :

For ease of exposition we shall develop and prove a bifurcation theory for
problem 1. Extension of the formal part of this theory to all of the other problems
which arise in the variational theory of turbulence is immediate.

4
3. The Variational Problem of BJ
It is shown in BJ that the equations (2.3, 4, 5) for the minimum temperature
contrast necessary to transport heat at an assigned rate can be reduced to the
following simpler problem:

F(u)= min Fy(p) 3.1)
N=1,2...
where
Fy () =min min #,[6;, o, 1] (32
ay 8

and o;>0 and 6;(0)=6,(1)=0. Here,

Fu[6), 241 ={j§112(91)+/1 <(j§‘[05 - <67>])2>} / <jzo>

F0)=—0,%,0,>=67|a;+a;07>
and
210j=0}’/aj—aj0j.

The Euler equations for the minimum problem (3.2) over functions 0, are

N N
(Zj,.(o,)) £,6,+ ¥ (G(OFy— 163} 6,=0 (33a)
i=t i=1
where
G=F+p
and
6,(0)=6,(1)=0. (3.3b)
The Euler equations for the minimum problem (3.2) over wave numbers o, are
a{8;>=<8;%. (3.30)

It may be assumed that all N of the wave numbers 2, are different. If o, =2,
then 8,=86,, (see BJ). Solutions belonging to different values of « satisfy the follow-
ing orthogonality relation:

<6;6.> — 22,6, 8,.>=0. (3.34d)
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Solutions 8,(z) of (3.3a, b) are either symmetric or antisymmetric with respect to
-=4.

In section 4 of BJ it is shown that when
p=0:N(w=1, 6,=sinnz, a,=n, F(u)=4z%, and dgf‘”) =.;.,

(3.4)

These values are the best possible since they are attained by roll solutions of the
governing Darcy-Oberbeck-Boussinesq equations (2.1) with B=0.

For a certain range of values >0, it appears that the minimizing field is
attained for N=1, and 6,(z) and «; can be given explicitly in terms of elliptic
functions and integrals. These solutions are analytic functions of the parameter .

At the first point of bifurcation (u,, F(ito)) 2 two-a solution, defined by equa-
tions (3.3) with N=2, becomes possible. At the point of bifurcation,

(o> F(10))=(318.506391, 113.115269),
Nu=3.815768,
a? (o) =232 16.640702,

a2 (o) = P2127.482213, (35
and with
O¥=1 and yo(z)=02
i 6,(3)
we find

1
2 — ~
<'//o>—~7—-0l @ 20.7998803.

The numerical analysis given in BJ and the perturbation analysis to be given
here (see 9.17) show that the two-a solution is minimizing for a certain interval of
U po. The amplitude 8,—0 as u|pu,. To find uo and F(y,), BJ treated the
“stability” problem defined by

(3.3a,b) with N=1,
(3.3¢) with j=1,2, (3.6a)
(3.3d) with I=1, m=2
and the linearized equation for small 6,
11(01)-?292“’{6(90"#0%}92:07 6,(0)=6,(3)=0. (3.6b)

In writing (3.6b) we changed the given boundary conditions to antisymmetric
boundary conditions. These conditions are consistent with the result (of BJ)
that all solutions are either symmetric or antisymmetric with respect to z=4 and
they reduce (3.3d) to an identity. Numerical analysis of the two-x problem
showed that #, was antisymmetric with respect to z=1.

The graphs of 4 (z) and 8, ~ ¢, (2) are shown in Figs. 2a and b. In Fig. 3 we
have shown how the minimizing value B, is selected from among the eigenvalues
B of (3.6b).

To motivate our bifurcation theory for problem (3.3), it will be useful to
review results of the numerical analysis of problem 2 considered by GJ.
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Fig. 2a. Graph of the function w,(z)= 0, (2)/8; (}) satisfying (3.3) when N=1.
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Fig. 2b. Graph of the function 8,(2)/8; ,,= #,(z)/#,, satisfying (3.6b). Here 8,,, and ¢, are
the maximum values of 6,(z) and gy(z) on 0<z<}.
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Fig. 3. Values of () for which solutions of (3.6b) exist when 8, (1), (1) and G (u) are evaluated
on the single-z solution.

4. The Variational Problem of GJ

Though the problem treated in GJ lacks some of the simplifying propertic.s
of symmetry enjoyed by problem 1, the qualitative structure of both problems is
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Fig. 4. The variation of the two-« solution of GJ with 4 near the point of bifurcation (1, F)=

(ug, F,)=(957.5, 221.5). The points are taken from the first four entries of Table 3 of GJ.

Suppose that |dw,/dz| . -y =Vu—p,f(4) is slowly varying. Then log{dw,/dz|=1} log (x— pg)+
log f(#) should appear as a straight line of slope 4 in a log-log plot, as above.

identical. In fact, statement (3.4) holds for problem 2 of GJ as well as for problem 1.
Replacing (3.5), we find from numerical analysis that when

0L puSpe=957.5: N(w=1, 4n’<F(u)<F(ug)=221.5.

The bifurcation of a single-a solution into a two-x solution is treated, as in BJ,
by a method of linearization. For an interval u> y,, the two-o solution (N(u)=2)
minimizes #. The two-« solution was computed numerically.

Two facts of importance come from the numerical analysis of GJ:

(1) The value and slope of the minimizing functional

dF (u)

F(p), i

are continuous at the point of bifurcation

(11, F (1)) =(to, F (10)).

(2) The two-u solutions are the collection of minimizing functions w;, w,, 8, 8,
and wave numbers a, and «,. The perturbation theory which is given in section 5
indicated that wzll/ u—po and 6,/)/ u—p, tended to finite limiting values as
1] po- A review of the numerical results of GJ confirms that this scaling is correct
(see Fig. 4). This scaling is the first step in the construction of the bifurcation theory.

(3) The bounding heat transport curve given in the form Nu(R) in Fig. S is
in good agreement with the experiments of BURRETTA and BERMAN and others,
particularly with respect to the position of the first point of bifurcation. The
bounding curve nearly coincides with the heat transport curve computed from a
two-dimensional, steady solution of (2.1) shown as a dashed line in Fig. 5. This
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Fig. 5. Heat transport in a porous layer. The black line is the solution of probiem 2 and (2.9)

(see GJ). The black boxes are from experiments. The dashed line is from a two-dimensional per-

turbation analysis of (2.1) with B=0, carried out to terms of order 6 (PALM, WEBER, & KVERNVOLD
(1972)).

solution was constructed by PALM, WEBER & KVERNVOLD (1972) as a perturbation
series carried out to terms of order 6. The exact two-dimensional solution must
lie below the bound. Therefore, Fig. 5 shows that when R> 180, the exact two-
dimensional solution is not accurately represented by its partial sum through
terms of order 6.

5. The Amplitude Ratio and the Bifurcating Two-« Solution

We shall seek the solution of (3.3a, b, ¢, d) when N=2 and |u—p,| is small
as a power series in the amplitude ratio, u—p,. The perturbation series for the
two-« solution is not standard; to understand it better it is useful to compare it
to the Poincaré-Lindstedt perturbation method for steady solutions of the Navier-
Stokes equations. In the Poincaré-Lindstedt theory, one constructs steady
motions u(x, &) which arise from the instability and bifurcation of a basic steady
flow at a critical Reynolds number R=R,. The amplitude parameter ¢ can be
specified in many ways; for example, & can be taken as the L* norm of cu or as
the projection e=Ceu(x, £) - u(x, 0)>. In all cases u(x, ¢) satisfies the following
equation:

U-Vu+u-VU+£u-Vu—%Au+VP=0. .1
All the solutions in a neighborhood of e=0 can be found in the form of power

series for u(x, &), p(x, &) and R(e). The crucial point is that (5.1) is not 2 homo-
geneous problem.



114 D. D. JosepH

The perturbation problem for the two-a solution is different. Since the govern-
ing problem (3.3) is homogeneous, the solution cannot depend on the amplitude
as in (5.1). In the two-a problem, the role of the amplitude in the Poincaré-
Lindstedt expansions is taken up by the amplitude ratio

2
—7—23:; =eb(e), e=p—p,. (5-2a,b)

Here b(e) is to be determined and b(0)=b,40. Without loss of generality we
may set

6,=Cy, 0,=C(ehb)*o. (5.3)
Then (5.2) implies that

WH=<$™. 49

At the same time, since the two-a problem is homogeneous, we may require that
all solutions have a unit norm :

1=(01+02>=C*(Y* +ebg?). (5.5)

Since (5.5) is to hold when =0 and ¢ =y, C*=1/{§3) and we may use (5.5)
to form an alternate expression for the amplitude ratio

eb=YF— > KP?D. (5.6)
The two-x problem, written in the new variables (5.3), has the following form:
MAY=0, Y0)=y'(}=0, (5.7a, b)
A ¢=0, ¢$(0)=¢(F=0, (582, b)

where

M=, 9) L1+ P, ¢) and N =AY, §) L+ (Y, §),
AW, D) =F W)+ Yo —¥> g($)/<e"),
2(D)=—<o L2 ¢,
and

DY, §)=G Y5>~ (e+ o) W + <Y —¥*> $7/<($*D)

where G=F+pu=F+p,+e. In this formulation, as in the work of BJ which
was cited following equation (3.6b), we have replaced the full-channel boundary
conditions (3.3b) with the half-channel boundary conditions (5.7b) and (5.8b).
These conditions together with the governing differential equations are enough
to guarantee that ¥/ (z) and ¢(2) are, respectively, symmetric and antisymmetric
with respect to =14 and reduce (3.3d) to an identity.

In sum, we must solve equations (5.7) and (5.8) with ¢ and y related by (5.4).
The amplitude ratio may be computed from (5.6) when y is known.

When e=0 the two-o problem coalesces with the single-« problem at the
point of bifurcation. This single-a problem was solved in BJ and the values of
Ho» Go=F(s10)+ 110, %o and B, are given by (3.5). At the point of bifurcation,
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U(2)=y0(2), ¢(2)=do(z). These functions satisfy the problems

O=-Mo¥ho=0o(0)=10o(}) (5.93)

e 0=AH5$o=0o(0)=o(3)- (5.9b)
From these equations we obtain :

—J7+Go (Y5> — oY) =0 (5.102)

e —Jo g0+ Go P8 (85> — o W5 46> =0 (5.10b)

We are going to construct a two-« solution which bifurcat_es from this zero®-
order problem as a power series in &. It will be easie§t at first to develop the
theory when the wave numbers « and B are fixed at their values ¢, a.nd B, at the
point of bifurcation. In section 9 we shall consider the perturbation problem
when the wave numbers vary. We now seek solutions in the form

¥(z; 8 Va(2)
$(z; 8= 3. 10a.(D) € (5.11)
G| "°\ G,

where, apart from factorials, the quantities with subscript n are Taylor coeffi-

cients; e.g.,

Gy=—7 3:Gl.-o
n:

6. Boundary-Value Problems for the Taylor Coefficients
The Taylor coefficients at order n must satisfy the following system of equations
(nz1):
0= Y A=Y Ko= 3 (W ¥>—(d, D) (61a,b,0)
I+v=n l+v=n

1+v=n
and
0=0,(0)=¢,(D =¥, (0)=¥,(}- 6.2)
When n=1 we find that (6.1) reduces to
-//o!//l+-ll1'//o=Lo'/’1+21(*l’1)'/’0+61<'ﬁé>'/’o"/’g=0 (6.3)
where

Lo=AMo—2p0 v
and I(y,) is an integral-differential operator linear in y/,,
190=— ¥ 2oy 4+ L8502 (<80 160> £+ 193]

Moreover, v
Ho by + Nibo=Ho &1 +2H ;) bo+G1 (W) bo—~¥5 $o=0 6.4)
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Fig. 6. Graph of the function y, satisfying (6.3)
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Fig. 7. Graph of the function ¢, satisfying (6.4)
where

A W) =~ Lgo> 2ot L8 [0 L20> Lt o] oot

The functions ¢, and ¥, are related through the normalizing condition (5.4)
which leads to

Yy ¥or=<$1b0)- (6.5)

Graphs of the functions ¥, and ¢, satisfying (6.1)(6.5) are shown in Figs. 6
and 7*.
Higher-order problems for y, are in the form

Lou+ 2l ) Yo +GuK¥3> Yo+ 4,=0 (6.6)

* These functions were computed numerically by W.J. SuN using a standard shooting
method and the procedures required by Lemma 4.
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where A, depends only on lower-order terms. Higher-order problems for ¢, are
in the form

Ho G +2X (Y,) $o+ B,=0 6.7)

where B, depends only on lower-order terms.

We show next that all of these perturbation problems for y, and ¢, are
uniquely solvable.

7. Necessary and Sufficient Conditions for Solvability

The multi-az solutions are a new type of mathematical construction. The
perturbation theory for these solutions is not standard. The perturbation theory
is based on the follgwing four lemmas. These lemmas guarantee that the perturba-
tion problems defined in section 6 are solvable.

Lemma 1. 4 necessary condition for the solvability of (6.1a, ¢) and (6.2) is that
;3 Y Lo A ) =0. (7.12)

I+v=n
v¥0

A necessary and sufficient condition for the solvability of (6.1b) and (6.2) is that
Y. Lo N, 0)>=0. (7.1b)

I+v=n
v¥EQ

If Y N ¢eC™[0,1], then ¢,eC™*2[0, 1]

I+v=n

Proof. Solutions of (6.1) and (6.2) must satisfy (7.1a, b) because
('/’o H, Wu>=<'/’»-lo'l/o>=0 712

{boHo bu) ={$aHo $o>=0. (1.3)

A, is a linear operator of the Sturm-Liouville type. The eigenvalue zero is a
simple eigenvalue of A4 (.#5¢,=0 has only one solution). Fredholm solvability
theory applies to .#; and guarantees bounded invertibility of (6.1b) and (6.2).
Since ¥, is a Sturm-Liouville operator, there exists a Green function integral
inverse 45! which maps elements of C™[0, }] in the complement of the null
space of #; into the space C"*2[0, {].

and

Lemma 2. Suppose Y, ¢, and G, are all known when l<n. Then (7.1 5.) may be
solved for G,.

In fact (7.1a) arises as an orthogonality condition for (6.1a) which also may
be written as {(Y4(6.6)>=0; from this we find that

G U3 — (A o).

Lemma 3. The boundary-value probi,

LoI'=f(z), I@=I')=0 74

9 Arch. Rational Mech. Anal., Vol. §3
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is uniquely solvable for every f(c)e C[0, 1]. Morever,
I (0)=%feC?[0,1}

where 9 is the Green function operator for (7.4).

Proof. L, is a Sturm-Liouville operator. The asserted properties follow
directly if there is no solution of (7.4) when f=0. Suppose the contrary; there is
a solution I'= He C?[0, 3] when f=0. Then we find that

2
G(ﬂo)=[l('//o) <£I——+aH’>+3ﬂ (<H? W%)]/(Hz) W

[J (l//o)< +aH’>+ﬂ <H? o)]/<H1> W

=A[H]2min A[H]=1=1[H]

)

where A[H] is a homogeneous functional of degree zero defined for functions
HeC'[0, 4] satisfying H(0)=0. The values p, and a and the fixed function
¥o(2)>0 for z&(0, 4] are given by the single- solution at the point of bifurcation.
It is well known that the minimizing element 7 [ (z) is a smooth function. It must
be of one sign on (0, ) for it is clear that if A is minimizing, then |H| is also
minimizing. But if H changes sign, |H| could not be continuously differentiable.
The possibility of a flat tangent where H=0 can be eliminated by the uniqueness
theorem for the initial value problem with starting values at the node.

The Euler problem for the minimum value Tof 1is

<¢o +°"/’> “‘“"“H)‘*’I(!/’OH HoVe H=0
(7.6

and - ~
H(0)=H'(3)=0.

We shall show that there is no solution of one sign A(z)=H(z) with X< G (o).
Consider the single-o problem

'S 2\ (Yo W o 3
<—+awo> (~—a¢o)+c(uo)<wo>wo HoW3=0
« « a.n

and
Yo(0)=v¥o($)=0.
Comparing (7.6) and (7.7), we find that
[ Gro)] <WoHY =0,

and since (Yo H)Y 40, we must have 1=G(y,) contradicting (7.5). It follows that
the starting assumption that there is a solution I'(z) of (7.4) when f(z)=0 is
false, and (7.4) is uniquely invertible for inhomogeneous terms f(=).
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We next face a somewhat different problem than that treated in Lemma 3.
We must consider the solvability of problems like (6.3); that is

LoF+2I(F)Yo+J=0, F(0)=F (3)=0 (7.8)
where

{JyYo>=0.
Lemma 3, concerned with solvability, guarantees that there are solutions of (7.8);
since the term 2I(F)y, depends on the solution, the solutions of (7.8) need not
be (and are not) unique.

To study the non-uniqueness of solutions of (7.8) we shall first reduce (7.8) to
an equivalent problem,

} Lo Y=2(Y %, o> £, Yo +2Go Yihod Yo+ g =0 (1.92)
an

Y(0)=Y'(H)={g¥o)>=0. (79b, ¢, d)

To effect this reduction, we first write that

I(F)=—<{F£ Yo> 1+Go{Fio>

#3552 [0 1 805 £~ Go 9> + 1o 83];

then, with
{Fyo)
F=
we find that
. Loq—249%1¥o> Z1Y0+2Go{q%o) Yo+2=0 @.11)
an

Lo Q—24Q% 1 Y0)> £1Y0+2Go<QWo) Yo
+2[Kbo %2 ¢0> L1 Y0~ Go{ D3> Yo+ Ho Po¥o] =0
where ¢ and Q satisfy the boundary conditions. Since, by (5.10b),
(B0 L2 Do) (Mo L1 Vo> —GolPd) (WY + o PEWEY =0,

both (7.11) and (7.12) are in the form (7.9). When ¢ and Q are known, we may
solve (7.10) for {Fy,>.

(7.12)

Lemma 4. There exists a one-parameter family of solutions to the differential-
integral boundary-value problem (1.9). These solutions are in the form

Y=C,Y,+C,Y,+Y,. (1.13)

Here, the functions Y,, Y, and Y, are determined uniquely as the solutions of the
boundary-value problems

Lo Yy +¥0=0,
Lo Y, + &£, Y=0, (7.14a, b, ¢)

Lo Y3 +J=0,
"
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and Y:(0)=Y!/(})=0 (i=1, 2, 3), and the constants C, and C, are linearly related;

ie.,
Ci Y1 ¥0> =3 Gol+Co Yy o) +{ Y3 3> =0. (7.15)

Proof. Equations (7.14) may be derived from (7.9) using (7.13) along with the

two additional relations
C1=2Go<Y{o> (7.16a)

and
Cy=-2{YZ% 1 Yo>- (7.16b)

Equation (7.16a) together with (7.13) gives (7.15). It remains to show that the
linear algebraic equation in C, and C, which arises from (7.16b),- and (7.13) does
not determine C, and C, uniquely; that is, (7.15) and the expression

CiY, L)+ Co[KY, £ o) +3]+ (Y3 Ly Yo>=0 717

are proportional. To prove proportionality, we first show that the determinent

1
_[M¥od>—56~ Q7Y (7.18)
Y, & o (Y, %y +1

of the coefficients of C, and C, in (7.15) and (7.17) vanishes. To show this we
note that

Yy £ or=Qe Y>=CYofo ! [Lo“Go<¢’g>+3l—‘o '/’(2)] Y
= "fo_l<'//g+co<'/’%> Yi¥o—3po '//(3) Y (7.19)
=I5 [ 12— Go K¥dy (Vi ¥od),
where the last step follows from the equation

0=Co(Lo Yy +o)>=Yo (Mo Y =210 VY +Po)> =< ~2p0¥3 Y1 + Vo).

2

In addition, we note that
Yy Loy ={bo £, Vo> =I5 holLo—Gol¥ad +31o Y] Ya)

=I5 Vo Libo—Gol¥ad Yo Yo+ 3o Y3 o) (7.20)
=—3-J5 ' GoY3d> Wo V2,

where the last step of (7.20) follows from the equation

0=CYolLo Yot £1¥0)y =Co(Ho Y1 =210 W5 Yy + 10
={—2p0¥5 Y1 +¥0 £, ¥oD-
A direct computation using (7.18) and (7.20) shows that 2=0.

To complete the proof of Lerma 4, we need to show that the rati9 of inhomo-
geneous terms is equal to the ratio of the coefficients of C, (or C) in (7.15) and
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(7.16). We shall prove that
Yo Yo )

%0y L2 Yoo+ Golyldy

The second of the equations (7.21) follows directly from (7.20). It is necessary to
prove the first equality. We note that .

(7.21)

2
O Lipey =L cruiy -2 oy, (1.22)

and since {g{o>=0 and
0=<Yo(Lo Ys+2)>=CYo(Mo—2p20Y3) YD = =20, (Y3 Y3,

the first term on the right of (7.22) vanishes and the ratio on the left of (7.21)
reduces to the ratio on the right side of (7.21).
This completes the proof of Lemma 4.

Lemma 4 implies that with G, chosen so that G,{y3>?+ (4, ¥,>=0, we may
always find y, satisfying (6.6) in the form

¥,=C,1 Y,+C,,Y,+Y,, (7.23)

where C,, and C,, satisfy a linear relation
a,C,+b,C,,+d,=0. (7.29)

To solve (6.1) and (6.2) we simultaneously make y, unique and satisfy the
solvability condition (7.1b) required by the Fredholm alternative for (6.7). Thus,

(b0 B> =~2{oH (1) bo)=—2C,1 {$o ¥ (Y}) $o>
—2C,2{bo X () $0> —2{$o X (Y,3) $o)-

Equations (7.24) and (7.25) together determine unique values of C,, and C,,
and imply the uniqueness of ,.

The solutions of (6.7) are not unique; to any solution we may add a multiple
of ¢o. To determine a unique solution in the form ¢,=¢, »+®oK,, we choose
K, so as to satisfy (6.1c).

(7.25)

Theorem. The problems (6.1a, b, ¢) and (6.2) are uniquely solvable. Moreover,
the solutions V() and ¢,(z) are elements of C* [0, 3.

The infinite differentiability of y,(z) follows immediately from its representa-
tion as an elliptic function (see BJ). ¢o(2) satisfies a Sturm-Liouville eigenvalue
problem with C*[0, 4] coefficients and, therefore, ¢oeC=[0, 3]. The infinite
differentiability of y,(z) and ¢,(z) then follows from a bootstrap argument
using Lemmas 1 and 3.

The problem of bifurcation of the N-z solution into an N+ l-x solution is
similar to the problem just considered. The basic perturbation parameter would
again be

e=p—HoN
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where is the value of y at the N*® point of bifurcation. A normalizing condition
Hon

like (5.5)
N N
< 5 og,>=< » oi>+sb<¢’>
n=1 n=1

would again apply with 8,, denoting the functions 6,(soy) and Vebdp=0y.y.
In the general problem we are not yet able to replace the given boundary condi-
tions (3.3b) with derived boundary conditions like (3.6b). In this case it is neces-
sary to retain the orthogonality condition (3.3d) which is an identity in & and
should be differentiated along with the other equations.

In closing, we note that the perturbation method evolved here is valuable for
computations only in the immediate neighborhood of a point of bifurcation. It
is precisely in such regions that the numerical methods introduced in BJ and GJ
are least useful. The numerical methods are, of course, computationally superior
for most values of y. The main value of the perturbation theory is that it gives
a rigorous mathematical foundation to the multi-« solutions and reveals important
properties of these solutions.

8. Convergence

In this section we shall use the implicit operator theorem of HILDEBRANDT
and GRAVES (see VAINBERG & TRENOGIN [1962] or SATTINGER [1973]) to prove
the analyticity in & of solutions of (5.7) and (5.8).

The proof to be given is actually a slight generalization of the solvability
proof for the first-order perturbation problem (6.3) and (6.4). To facilitate this
proof, we note that Lemma 4 may be recast so as to apply directly to (7.8) which
generalizes (6.3); the solution of this problem is in the form

F=d,X,+d, X, + X, 3.1
where
Lo Xy 4216 $3Wo/<$3> —29(d0) L1 ¥0l{$3> =0, (8:2a)
Lo X, + %1 ¥0=0, (8.2b)
Lo X3+J=0, (8.2¢)
X,(0)=X/(})=0, (8.2d)
and
Fy=A,d,+A;d, +{X3y>=0 (8.3)
where
Ay ={X ¥o> —3%—;2.5409626 x 1074,
0
Ay ={X, o> = —1.3442708 x 10>
and .

(X Pro) 223.93089 x 1075,
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With this preliminary aside, we turn to the main proof. Introducing
Y=yo+ey,
d=po+29, @4

and g2=(G-Gy)e

F=3 e -2
into (6.3) and (6.4) we find that
Loy +21(0) + Ao+ 2R, [, $]=0 @5
where R, [, §] is 2 quadratic form in § and $ and 7

Ho $+2H () do+4 po+eR, [, B, 5] =0. (8.6)

Here R, is a quadratic form in ¢ and , linear in g i

: , - Equations (8.5) and (8.
may be r?garded as a nonlinear mapping from C2[0, 3] to C°[0, 4]. We are loogd:;
for solutions with two derivatives.

A::cording t'o Lemmas [ and 4, (8.5) and (8.6) are solvable when R, and R
are given functions if and only if :

{Wo(AYo+eR, [T, $]>=0 )

and
2{$oH () $o> +{Po (A Po+eR,))> =0. 3.8

Then, by Lemma 4 in the form 8.1, we have
Fo=—{+d, X, +d, X, + X, =0. (8.9)
Given (8.8) the problem (8.6) is uniquely invertible on th
A g At y e complement to the
¢+2457 2 (D) o +4 do+R,]=0 (8.10)
where 457" is a Green function operator which maps C[0, 4] into C"*2[0, }].
We may combine (8.8) and (8.9) to get

where Byd,+B,d, +2{¢o X (X;) ¢o>+<¢o(2¢o+eRz)>=0» (8.11)

By =2{¢o N (X)) o) =627.92802
and

By =2{¢oH (X;) o> = —6.3199661;
combining (8.3) and (8.11) we find that

F;=(By A4, —A; B,)d; +B;{X;3 o) —24,{o ¥ (X3) $0>

— A2 {$o(A Py +ER;))=0. (8.12)
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Finally, using Lemma 3, we note that we may invert (8.2¢) and eliminate
X,=9()=%(Ayo+eR,) : (8.13)

from (8.3), (8.9) and (8.12).
Collecting equations, we have from (8.4) and (8.7) that

Fy=3<Y5)* —(¥> +e¥o R D=0, (8.14)
and from (8.9) and (8.10) that
Fo=$+247 [2d, 4 (X,) b +2d, K (X;) o
+20(X3) o +4 Po+ER,]=0.

To prove that the original problem (5.7) and (5.8) can be solved, it will suffice
to show that the equations (8.14, 12, 3, 9, l§) with X; expressed as in (8.13) can
be solved for (71, 725 73> Va» ¥s)=(&, dy, da, ¥, $). These equations are in the form

Fy;;9=0 (i,j=1-5g (8.16)
and can be regarded as a mapping of Banach spaces
RxRxRxC*[0,3]xC*[0,3]x R
—>RxRxRxC?*[0,3]}x C*[0,4].

(8.15)

(8.17)

The mapping (8.17) is continuous because the inverting operators ¢ and Ayt
are continuous. The implicit operator theorem therefore applies to (8.16). We

interpret
[_‘ZFL] (8.18)
oy;

as a matrix Fréchet derivative evaluated at ¢=0, §=G,, ¢=¢,, Y=y, with d,
and d, determined. We find that (8.18) is a triangular matrix with a non-zero
leading diagonal

Wt 0
OF,/dg B,A,—A,B,
0F,J0g  0F,Jéd, A, (8.19)

OFJ0g  OFJod, ¢Fjod, -1 _
0F,J0%  OF,dd, ¢Fsléd, 8F5ay 1

where B, A, — A4, B, = —8.4426589.

The matrix operator (8.19) is therefore invertible and the implicit operator
theorem guarantees that it can be solved for (§(e), d,(2), d;(e), ¥(2), () and
that these quantities are analytic functions of ¢ for sufficiently small e. Moreover,
the implicit operator theorem guarantees that V(e), () and §(e) are unique
solutions to the original problems (5.7) and (5.8).

Theorem 2. The series solutions (5.11) constructed in sections 6 and 7 converge
when ¢ is sufficiently small. The functions Y (z; €) and ¢(z; €) together with G (e)
solve (5.7) and (5.8) uniquely.

Supercritical Branching and Turbulence 125

Remark. To prove that (if, $)EC“’ [0, 4] we first express X5 as in (8.13);
we then apply a bootstrap argument to Y and ¢ as given by (8.9) and (8.15)
using the fact that ¢ and 4, ! gain two derivatives.

9. Perturbation of the Wave Numbers

In the derivation of the perturbation theory we fixed the wave numbers «
and § at optimizing values &, and B, for the point of bifurcation (¢=0). The
optimizing wave numbers when >0 do not stay constant but vary in accord
with (3.3¢). Thus,

(@)=Y DY 61

BHO=<d K. ©2)

We shall not develop a general perturbation theory when the wave numbers
vary with &. The essential parts of this theory can be understood from the com-
putation of the derivatives of «?(¢) and f%(e) at the point of bifurcation. We
first note that when the wave numbers are chosen optimally, as in (9.1) and (9.2),
it is necessary to account for the variation of the solutions .

Y(z; a(e), B(e), £),
(z; 2(e), B(e), e),

and

9.3)

and

G(x(2). B(e), 2)

with the wave numbers. Then, differentiating (9.1) and (9.2) with respect to ¢,
we find that

AT o
R PR R T NS Il ¢4

(9, P5+ 800> =, (B G5 +B300> _g oeorse 10-2
& ol +<b,@0 +R 0]

Here the comma denotes differentiation with respect to the variable named by
the subscript following the comma evaluated at the point of bifurcation.* To
obtain the derivatives of Y and ¢ with respect to « and B at the point of bifurca-
tion, we may confine our attention to the problems (5.5), (5.7) and (5.8) when
£=0 but when a and B are allowed to vary independently.

and

©.5)

* The values (9.4) and (9.5) are in good agreement with the values which one obtains by
backward extrapolation of the results of the Galerkin approximation method used by BJ. In the
notation of BJ, a=x{?), f=a{?) and

d—(id:%’)'="z“-z/(0..~l)= —0.04865476158

and

g _ _
m}j’— 7!2 ﬁ_ J(G' Pt 1) =0.612416105.
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The basic problems to be solved when £=0 are

FWLA+GY Y —poyp®=0, Y(O)=¢'(H=0 9.6)

and
I Lo+ HWY?) ¢—po¥’$=0, $(0)=¢(3)=0 (CH)]

with
(=P =Y. (8

Equation (9.6) is the Euler equation for the minimum value of the functional
Gly; a]=(L W)+ o Y)W,
Equation (9.7) is the Euler equation for the minimum value of the functional

H¢; ¥; a, B1=(I (W) (@) + 1<y’ D)<Y’ 6™
when ¥ is regarded as a given function. We note that (9.6) does not depend on §;
the minimizing values G () and functions ¥ (z; «) are not coupled to (9.7).
When a=ag, 8= B0, ¥ =V, ¢ =, we find that

H (0o, Bo)=G(ato)-
We want (9.6), (9.7) to hold with G=H. It is not possible to have G=H for
arbitrary values of « and §; however, we can find a function 2(f) such that

H(a(B). B)=G(«(B)) ©9.9)
with 2y =a(f,) when B is near to .
To construct the function a(f) in a series of powers of (B—B;), we first note
that the derivatives
&*"H(x, B) &G(a) |
) S Y I
may be computed by the perturbation method. Then we may sequentially solve
the equations which arise from repeated differentiation with respect to g of (9.10)

at the point f=f, for the various derivatives of the function 2(f). For example,
we shall show that dG/da=0H/df=0 and 0H|0a+0 when f=8,. Then

da OH _OH | dG da
dp da 0B ' da dB
Similarly, given 3>H/d f* we may compute
da _ PH JoH
dp*~ ~ 0FF/ oa

when f=8,, and so on.

The boundary-value problem for the first o derivatives of , ¢, G and H are
formed from (9.6), (9.7) and (9.8) by direct differentiation. Thus,

Lo, —2Y o Z1¥o) Lo +2Go (W u¥od Yo
—% (‘;‘1’“"'/’0) +—‘;% W) ¥o=0,
¥,.0=y,()=0 (9.10b)

(9.10a)

Supercritical Branching and Turbulence 127

and
Ho8=20h, L0 L1b0 2o ¥ oot b (Y23 69 =0, (O.113)
$..(0)=9¢ .(1)=0, (9.11b)
{Pob.a>=<Yo¥..>=0. (9.12)
It is easy to deduce from the integration of {{,(9.10a)) that
G
K =0.

The problem (9.10) is a differential-integral problem of the type to which Lemma 4
applies; using this Jemma in the form (8.1), we have
'/’.a—_'cal Xl +C12X2+Xu3

where C,, and C,, are completely determined by (8.3) and (9.12).

To solve (9.1) we apply the solvability condition of Lemma 1 to (9.11a) and
find that

BH _ 200 #1903 (B0 £,00)+ 2t YoVa 3D _ 17 735005,

O XS
To find ¢ , and H 4, we must solve
Ho .5+ H 405> b~ (95187 + $o) =0, (9.15a)
$.5(=¢ ,(3)=0 (9.15b)
and
{$09.5>=0. (9.16)

Application of the solvability condition (¢, A5 ¢, 5> =0 leads to H ;=0. Equa-
tion (9.16) is satisfied by properly choosing the constant multiple ¢ of the homo-
genous solution ¢ ¢, which may be added to any particular solution of (9.15a, b).
The graphs of the functions  ,, ¢, , and ¢ , are shown in Figs. 8, 9 and 10.
The values (9.4) and (9.5) may be computed from these and earlier perturbation

results.
004

0.031

002}

Yo
t 0.01

o — ; ' —~
-001 ¥

-0.02 I S 1 . .
0 005 OIO 015 020 025 0.30 035 040 0/.5 050

——

Fig. 8. Graph of the function y, satistying (9.10)
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Fig. 9. Graph of the function ¢ , satisfying (9.11)
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Fig. 10. Graph of the function ¢, 8 satisfying (9.15)

The last matter to be considered is the jump in the second derivative of the
bounding heat transport curve at the point of bifurcation. It has already been
established that Fj (uo)=F3 (1o) (see equation (2.11)) and we seek the value of
F3'(uo)— Fy (1o). Returning to the notation of (3.1) and (3.3) we note that

dG, _dF, | _ (01+62)") _ (*+eb¢’))
du du @D T ID

At the first point of bifurcation (3.5), we have e=0, p=py,,dG,/du=dG,/dy and

2 2 2
L5 =L (e (oo tor. o B 8) ) [
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where

bo=~2<{Yo '/’ z>/<¢¢27>-

The single-a solution is given with an accuracy of 1% by the asymptotic solution

which was given in BJ. The computations of W. J. SuN give

2
F"(Ilo) F’ =4 G2 _ 0001894920 (9.17a)
” Ho de .
and
F ()= ‘F 1~ —0.00023456. (9.17b)
no

It is clear that F, () falls below F, () when u> p,.
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