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The linear stability of parallel flow in a concentric annulus to infinitesimal, axially symmetric
disturbances is considered. First, the Poiseuille flow in annular cylinders is studied with the ratio & of
the outer to inner cylinder as a parameter. The critical Reynolds number is a monotone function of this
radius ratio, increasing without bound as k¥ — « (Hagen—Poiseuille flow) from the plane Poiseuille
flow limit (k = 1). Second, a one-parameter family of skewed (variable viscosity) flows in a fixed an-
nulus is studied. The neutral curves for many of these skewed profiles have a second minimum, which
for sufficiently skewed profiles, gives the lowest value of the Reynolds number. These two minima
are associated with two very different distributions of Reynolds stress. Both distributions are such
that on part of the channel the energy is transferred from the disturbance motion to the basic motion
and both can be explained by analysis of the Reynolds stress jump condition and the known structure

of Reynolds stress near a rigid wall.

L INTRODUCTION

Two very well-known and seemingly paradoxical
results of the linear theory of stability pertain to
Poiseuille motions in round pipes and plane chan-
nels.! The plane-Poiseuille motion is definitely un-
stable for Reynolds numbers in excess of about
6000.> However, every linear analysis of the pipe
(Hagen-Poiseuille) motion has concluded for abso-
lute stability.’* It is with these results in mind
that an analysis of Poiseuille flow between con-
centric cylinders was undertaken. When the radii
of the cylinders are nearly the same, we have plane-
Poiseuille motion; whereas it can be argued that a
vanishing inner cylinder implies the pipe (Hagen-
Poiseuille) motion. The results of the analysis of
this problem give a not unexpected monotonic varia-
tion between the two limits. As the inner cylinder
is reduced in size, the maximum value of the velocity
shifts toward the inner cylinder, and the profile

* Present address: Nuclear Engineering Department,
The University of Tennessee, Knoxville, Tennessee.

! Linear theory, when it has meaning, gives sufficient
conditions for instability. By “linear stability’” we mean
stability against disturbances of infinitesimal amplitude.

2 C. C. Lin, The Theory of Hydrodynamic Stability (Cam-
bridge University Press, London, 1955), Chap. 3.

3 G. M. Corcos and J. R. Sellars, J. Fluid Mech. 5, 97

(1959).
‘A, E. Gill, J. Fluid Mech. 21, 503 (1965).

leans increasingly toward this eylinder. The marked
increase in stability could be associated with an
effect of the decreasing inner radius or perhaps with
the skewing of the profile. To check this latter pos-
sibility, we generated a one-parameter family of
increasingly skewed profiles (exact variable viscosity
solutions of the Navier-Stokes equations) and
analyzed the Orr—Sommerfeld stability of these.
This stability analysis showed that the profiles which
were deliberately skewed in annuli with fixed radius
ratios exhibited an increased stability of the same
general nature as that associated with reduction in
size of the inner cylinder for the Poiseuille motion.
A similar result has been found by Fu® for a sequence
of profiles which are required to vanish at the wall
(cf. Potter®) and are continuously deformed from
Poiseuille flow to plane Couette flow. It would seem
that the absolute stability which linear theory
associates with plane-Couette and Hagen—Poiseuille
motions is not a singular result but represents a
limit result for profiles which increasingly depart
from a least stable ‘“‘symmetric”’ form.

" The variable viscosity profiles are also more stable
as they lean toward one wall or the other. But these

8 T. S. Fu, Ph.D. thesis, University of Minnesota (1967).
¢ M. C. Potter, J. Fluid Mech. 24, 609 (1966).
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profiles are such that when they are sufficiently
skewed the cylindrical analog of a point of inflec-
tion appears at one wall and moves into the stream.
Long before this happens, however, a second, higher-
wavenumber, minimum appears on the neutral curve.
As the profile is more skewed this second minimum
gives the absolute minimum. The two minima of
the Reynolds number have very different distribu-
tions of the Reynolds stress; the walls near which
energy is added to and extracted from the basic
motion, are roughly interchanged in these two
distributions.

The results reported in the sequel are calculated
from asymptotic analysis and by finite-difference
techniques. The details of the asymptotic analysis
are of independent interest, as they bear on integra-
tion procedures for the two-turning-point problem.’~®
The results of these calculations are checked against
the results of finite-difference calculations and found
acceptable. This independent check on the results
of the asymptotic analysis is necessary because the
simple turning-point solutions used here have not
been rigorously derived for the two-turning-point
problem. The good agreement between the two
results does suggest that the older and simpler
asymptotic methods are adequate for neutral sta-
bility of bounded invisecidly stable, shear flow.

Since it is not possible to calculate eigenfunctions
and Reynolds stresses from asymptotic theory with-
out a correction for the singular inviscid solution,
the finite-difference method was used to evaluate
these. The Reynolds stress distributions can be
almost completely explained, however, from math-
ematical arguments alone.

In our analysis the usual assumptions of linear
theory including the normal mode decomposition
of solutions

a(r, 8, 2, 1) = q(r) exp [i(az + nf — act)]

are employed. Here the symbols have the con-
ventional meanings, and ¢ = ¢, + ic;, where ¢; > 0
means instability. We treat only axially symmetric
(n = 0) disturbances from the outset. This is a
major restriction, since there is no cylindrical equiv-
alent to Squire’s theorem. Moreover, though the
experiments of Leite® as well as those of Wehrmann
and Willie,” have both seemed to indicate that

7T. S. Chen, D. D. Joseph, and E. M. Sparrow, Phys.
Fluids 9, 2519 (1966).

¢ W. Reid, in Basic Developments in Fluid Dynamics,
M. Holt, Ed. (Academic Press Inc., New York, 1965), p. 249.

' R. J. Leite, J. Fluid Mech. 5, 81 (1959).

100. Wehrmann and R. Wille, in Boundary Layer Re-

search Symposium Freiburg, 1957 (Springer-Verlag, Berlin,
1958), p. 387.
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nonsymmetric disturbances were damped more
rapidly than axially symmetric disturbances, Fox,
Lessen, and Bhat'' have demonstrated that Hagen-
Poiseuille flow is unstable to the first mode (n = 1)
of azimuthally periodic disturbances. It is just this
azimuthal mode (n = 1, & = 1.07) which is asso-
ciated with the energy stability limit.'> Among all
the kinematically possible velocity fields (these are
solenoidal fields which are periodic in z and vanish
at r = a and r = b), the one which is most efficient
in transferring energy from the basic motion to
disturbance motion in the pipe is just this spiral
mode. In the annulus, for all but the largest radius
ratios the purely transverse modes (n > 2) give
the energy functional its least value. However,
purely transverse modes must decay with time if
initially present'® and, therefore, cannot represent
exact growing or stationary solutions of the non-
linear Navier-Stokes equations. The purely trans-
verse disturbances most dangerous from a kinematic-
energetic point of view are dynamically inadmissible,
but the transverse component of dynamically admis-
sible nonlinear modes may be central for transition.

II. STEADY VISCOUS FLOW BETWEEN
CONCENTRIC CYLINDERS

In this section we describe two families of ve-
locity profiles, whose stability we shall examine in
subsequent sections. The expression

d (1dW

‘I”"dn(n dn)’ ®
where W is the velocity normalized with its maxi-
mum value V and » a dimensionless radius, is also
evaluated. ¥ = 0 is one necessary condition'**
for the flow to be inviscidly unstable; that is, there
are no amplified disturbances to the inviseid, Orr-
Sommerfeld equation if ¥ = 0.

A. Poiseuille Flow

The relevant steady-flow solution is given by

(P — Do) ( 2 2 (b2 - az) r*)

* % p—

W W\ T T /e Pe) @
1 J, A. Fox, M. Lessen, and W. A. Bhat, Phys. Fluids 11,

1 (1968).

2 D. D. Joseph and S. Carmi, Quart. Appl. Math. (to be
published). The most dangerous mode is not associated with
the stream-wise disturbances (Re = 180) considered by Orr
but with azimuthal disturbances proportional to cos 6
(Re = 81.49). Stability to periodic disturbances of any
magnitude is guaranteed for Re < 81.49.

3 D. D. Joseph and L. N. Tao, J. Appl. Mech. 30, 147
(1963). .

4 S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability (Oxford University Press, London, 1961), p. 361.

5 N. Gregory, J. T. Stuart, and W. S. Walker, Phil
Trans. Roy. Soc. London A248, 155 (1955).
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Frgc. 1. Velocity distribution for Poiseuille flow. The
velocity profile leans farther toward the inner cylinder as
k = b/a increases. The profile for k — « is the half-parabola
associated with Hagen—Poiseuille flow.
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where W* is the axial flow and r*, a, and b are the
generic, inner, and outer radius, respectively. In
dimensionless variables this is rewritten as

1— 7"+ Inq

W= )
1 — ni + 3 In niy

where

n=r*a=rk—1/2 ny=FE —1)/nk,

k = b/a.

The graph of W(y) is shown in Fig. 1.
We note that in the open region (a, 0]

lim W* — (p, — p,)(b° — r**)/4ul.

a—0
It follows that the velocity tends to the Hagen-—
Poiseuille values, but not uniformly. The influence
on the flow of the small e¢ylinder on which the ve-
locity vanishes becomes increasingly less significant,
because the force on the fluid per unit length of
inner cylinder

o2xar,, = (P — pr) [(b2 — a’)/In (b/a) — 2a2:|

21
tends to zero with a.
On the other hand,
lim W = B=P2 gy — 20),
b—a=2d, r* =a+4y.
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Fia. 2. Stability boundary for Poiseuille flow with the
radius ratio k¥ as a parameter. Plane-Poiseuille flow and
Hagen—Poiseuille flow are connected by a monotone variation

of the critical Reynolds number R.

Hence, the velocity tends uniformly to plane-
Poiseuille flow values as the gap size is decreased
relative to the inner radius. Therefore, it is likely
that the stability calculation will yield the plane-
Poiseuille flow result (R = Vd/u =2 5800) in the
small gap (radius ratio unity) limit. The identifica-
tion of Hagen—Poiseuille flow (R — o) with the
limit of infinite radius ratio is not so easily asserted,
and we have not established it. However, it is
difficult to imagine how the cylinder of vanishing
area which can exert no force on the fluid can in-
fluence the flow. For this reason we anticipate, and
our results are consistent with, this identification
(see Fig. 2).
Flows which are described by Eq. (2) cannot be
inviseidly unstable (¥ = 0) because
v = _®—p) (k" — 1)
wl k= 1'lnk
We draw attention to the increasingly skewed ap-

pearance of the velocity profile as k is increased
(see Fig. 1).

r? < 0.

B. Skewed Profiles

In order to obtain a wide variety of velocity
profiles without varying the geometry, we envision
the fully developed flow of a liquid with a tem-
perature-sensitive coefficient of viscosity, say oil.
The following velocity distribution [Figs. 3(a) and
4(a)] is an exsct solution of the equations of mo-
mentum and energy for an oil-like liquid which
satisfies a viscosity-temperature relation of ex-
ponential form

1u(n’ — 1) — B> — 1/(8 + 2)

W = , 3
nu(nh — D — B — /(B + 2 ®
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Fic. 3. (a) Velocity profiles for the variable viscosity
flow (Eq. (3)] with & = 81In k£ and k = 1.01 as a parameter.
The velocity profile leans farther toward one wall or the
other as 6 increases. (b) Stability boundaries for profiles
of Eq. (3) with k = 1.01. For the parameter # = 0 the profile
is almost symmetric and the motion is approximately of
the plane-Poiseuille type. The stability boundaries are nearly
symmetric around 8 = 0. The second-mode stability boundary
extends farther into the first mode region but is difficult to
trace in this region.

where 8 is the temperature parameter (—1/p)-
@u/0T)(Ty — T.)/In k, T the temperature, and

2 _ ] (kﬂ”— 1)
™MTEF2 6 -

is the root 7y of 0 dW/dy. The distribution

W () is such that
wWQ@) = W)

0, Wnn) = 1,
and

v =506 - 2n% — arle

where \* = (p, — p.)a’/ulV is the dimensionless
pressure drop. When 8 = 0, we have constant
viscosity. It is of little consequence that Eq. (3) is
an exact solution. We do not perturb temperature
and may regard Eq. (3) as an invention used to study
the two-turning-point problem.

III. PERTURBATION EQUATIONS

We normalize all velocities with the maximum
velocity V of the basic flow. A dimensionless length r,
related to the radius * by

r=2r*/(b — a)
and a Reynolds number
R=V®d— a)/2v

are introduced into the governing, small perturba-
tion equations written in cylindrical coordinates.
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Fi1c. 4. (a) Representative velocity profiles for £ = 2.
(b) Stability boundaries for profiles of Eq. (3) with & = 2.
The profiles which lean heavily to one wall or another are
considerably more stable than those which are more nearly
“symmetric.” The double minima of the neutral curves
which belong to the intersection region (8 =
in Fig. 5.

2) are shown
For axially symmetric disturbances the cylindrical
equivalent of the Orr—Sommerfeld equation is

(W — Lo — Vo = _07;% Lo, (4)

W) = wiry) = w'() = W'(ry) = 0,

where W is the normalized, basic-flow velocity, w
the amplitude of the radial component of the dis-
turbance velocity, r, is the inner and r, the outer
radius, and

d? 1d 1 2 _dA

L=t 7o 4 =754

This axially symmetric equivalent to the Orr-
Sommerfeld equation can be analyzed in an extensive
analog to plane-parallel flow. It is to this analysis
that we now turn.

IV. ASYMPTOTIC SOLUTIONS

The asymptotic methods developed by Heisen-
berg,'® Lin,'” and Tollmien,' with minor modifica-
tions, may be applied to this problem. No essential
difficulty arises from the nonsymmetry of the steady
velocity profiles. We describe our treatment of the
two-turning-point problem below.

A. Inviscid Solutions

Two inviscid solutions of Eq. (4) may be obtained
(after Heisenberg'®) by setting

16 W, Heisenberg, Ann. Physik 74, 577 (1924).
17 C. C. Lin, Quart. Appl. Math. 3, 117 (1945).
(19‘239\))V. Tollmien, Nachr. Kgl. Ges. Wiss. Gottingen 21
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w:} = _(W - C) {ho + azhl + cec (5)
) r ki + ks + ---
where
ho = l,
d " Rzn —0°
h2n+2 = (Wn_"c)zf (r)(lj., C) drv
= [ —ndn_
kl - " (W — c)2 ’
’ d " kans -0’
k2u+3 = (WTI_"IC)2 f 2 I(III‘, C) d’r.

Because of the logarithmic singularities at r,, and
r.., where W = ¢ (W'(r..) > 0, W(r.,) < 0], the
proper path in the complex plane must be chosen
50 as to circumvent these singular points. The proper
path is that one which goes below the first critical
point (Tollmien'®) and above the second one (Foote
and Lin,” Potter®) in the complex r-r, plane.
The integrals used in Eq. (5) were evaluated nu-
merically with the series truncated when n exceeded
five.

B. Viscous Solutions

Our choice for viscous solutions follows as a
consequence of the heuristic requirement that a
viscous solution decays exponentially with distance
from a wall.*

We designate the viscous solution near the inner
wall as w;, that near the outer wall, as w,. The form
of these viscous solutions then follows as an easy
generalization of single-turning-point asymptotic
analysis.

First, consider w;. The turning point approxima-
tion wy = x; for real ¢ and W(r,,) = W,, is

X3 —f drf vH{" [2(iv)}] dv, (6)

with
= (@RW )} — r..),
where
W—c=|W—c¢cle'm, r<r.
r—r.=|r—r.le’",

( 9“'0{. R. Foote and C. C. Lin, Quart. Appl. Math. 8, 265
195

2 The solution which grows exponentially is ordinarily
designated with a subscript four, carried along and finally
thrown away. We discard it from the outset. The solution
we designate with a subscript four should not be confused
with this discarded growing solution.
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W—c=|W—¢,

r—rcn=lr—1.¢11

r > T,

The turning-point approximation (6) is valid in
the limit aR — o, 2 5% 0 fixed, with an error O(aR) %,
These solutions are valid for complex arguments in
the sector —Fr < arg (r — r,,) < ¥,

Approximations to w, are constructed by tech-
niques identical with those used to obtain ws;, but
one must be careful with phases. The result for real ¢,

W'(r,) = |W.|e*"

follows: x, is obtained from Eq. (6) by replacing
2z, with 2,, where

= (@R (W, D% (r — r.),

and
W—c=|W-—
o= W= r<r.,
r—r, =lr—r.e",
_ _ —ir
W—c=1|W—c¢cle', r> e
r—r, =lr—r.l

The remarks concerning the validity of the viscous
solutions apply here as well except that the complex
region in which x, is valid is

rc.) < %“l‘.

C. Boundary Conditions

—ir < arg ¢ —

We have now four solutions: two inviscid solu-
tions (w,, w,) valid throughout the region and two
viscous solutions (xs, xs). Of the viscous solutions
only one at each wall is compatible with the condi-
tion that the viscous solution should decay from
the wall. The consequence of this remark and the
boundary conditions is the indicial equation

wu‘ War  Xa1/Xh 0

D = wi, wj 1 0 = 0. (7)
Wiz W 0 Xa2/X42
wl’Z 0342 0 1

It is convenient for numerical calculations to
replace the viscous terms in Eq. (7) with terms
which depend on Tietjens function. Thus, we have

X31
= (rn — r)F(—2). ®
The ratio Xn/ x}, is obtained from Eq. (8) by

substituting subseript 2 for 1. The series representa-
tion of Tietjens function’ is convenient for calcula-
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tion, because the convergence is rapid enough to
make a fresh calculation of the ratios (8), etc.,
feasible for each eigenvalue computation. The
iterative procedure used to solve Eq. (7) is described
in Mott’s thesis.

In order to obtain an independent check on the
results obtained by asymptotic analysis, a separate
program of numerical analysis was undertaken. A
finite-difference method, used first by Thomas® and
subsequently by Kurtz and Crandall,”® and then
by Tsou®™ was employed. A description of the finite-
difference program can be found in Mott’s™ thesis.
We could not always obtain convergent finite-
difference results for Reynolds numbers in excess
of 50 000.

V. STABILITY OF POISEUILLE FLOW
BETWEEN CYLINDERS

This section summarizes our results relative to
the stability of Poiseuille flow in annular ducts.
The relevant data may be found in Fig. 2 (see Mott™
for tables and neutral curves). In this data the tilde
overbar quantities are values of the parameters
belonging to the minimum critical value of the
Reynolds number for a fixed k, i.e.,

R(k) = R(@a, & k) = Min R(a, ¢, k).

The following observations merit special atten-
tion:

(1) Asymptotic and finite-difference solutions are
in reasonable agreement over the range in which
they can be compared. The accuracy of the asymp-
totic solutions is conservatively estimated by Fig. 2.
This gives the locus of the nose of neutral curves
for different radius ratios. The asymptotic and finite-
difference solution are most different near the nose
and tend to coalesce for large R.

(2) The stability limit increases montonically with
the radius ratio from the known value for Poiseuille
flow in channels toward infinity in the Hagen-
Poiseuille flow limit (Fig. 2). We call attention to the
increased skewing of the velocity profiles for larger
radius ratios. The limit profile is Hagen—Poiseuille
flow with a spike at » = 0 and the absolute stability
of Hagen-Poiseuille flow is evidently a limit result
of a sequence of increasingly skewed profiles (cf.
Sec. VI).

4 L. H. Thomas, Phys. Rev. 91, 780 (1953).
# E, F. Kurtz and g Cranda.l] J. Math. Phys. 41,
264 (1962
. K. Tsou, Ph.D. thesis, University of Minnesota
(1965

(1926J E. Mott, Ph.D. thesis, University of Minnesota
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VI. SKEWED PROFILES IN ANNULAR DUCTS OF
FIXED RADIUS RATIO

There are two results which follow from the study
of the 6(= B8 In k) family of profiles represented by
Eq. (8). The first of these duplicates a result of the
previous section, namely, that the critical value of
the Reynolds number £,(6) increases rapidly as
the profile is skewed far toward one wall or the
other. The second result is the appearance of a
second. minimum in the curve of neutral stability.
This minimum in the neutral curve for plane-
Poiseuille flow, dominates the stability of the
family of velocity distributions with sufficiently
skewed profiles.

It is convenient to discuss these two minima
separately. For this purpose we define two critical
eigenvalues RB,() and R,() which correspond to
these two minima and which we will call modes
one and two.

A. Mode-One Instabilities

This instability is of the viscous type studied by
Tollmien'®. We have studied this instability as a
function of the parameter 6 for £ = 1.01 and 2.0.
The first of these is essentially a flow in a plane
channel which, when 6 = 0, is nearly plane-Poiseuille
flow. Our results relative to this instability are
represented in Figs. 3(b) and 4(b). These conclusions
are suggested by our data: (1) The mode-one in-
stabilities over the range of values calculated are
confined to values of 6 for which ¥ = 0. (2) The
mode-one instability occurs at the smallest value
of R,, for symmetric, or nearly symmetric profiles.
For k& = 1.01 the symmetric profile is defined roughly
by 8 ~ 0, ~ 0 [see Fig. 3(a)] whereas for k =

“symmetric”’ profile may be defined at 6, =
8. In 2 ~ 0.5 so that £,(6 — 6,) is an increasing
function of [§ - 6, [see Figs. 4(a) and 4(b)]. Profiles
which lean heavily toward one wall or the other
are more stable than ‘“symmetric’”’ profiles [Figs.
3(a), 4(a)).

We note that £, is not the smallest value of R
for all values of 8. For certain values the second mode
with critical eigenvalues B, may be smallest. We
now consider this second mode.

B. Mode-Two Instabilities

The existence of this second viscous mode was
established by direct calculation from both finite-
difference and asymptotic solutions. The results for
k = 1.01 and & = 2.0 are summarized in Figs. 3-5.
Further results, including dispersion relations, may
be found in Ref. 24.
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Figc. 5. Neutral curves for the two modes belonging t
k = 2.0 and 6 = 2.0. For point A, k¥ = 2.0, 8 = 2.0, a =
1.01, ¢ = 0.2115, and R = 32 600. For point B, k = 2, 8 =
2.0, «a = 0.6, ¢ = 0.130, and B = 41 800.
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Second-mode instabilities exist and are present
for both positive and negative values of 6. Although
the second mode passes through values of 4 for
which the necessary condition for inviscid insta-
bility, ¥ = 0, is satisfied, it also contains a set of
values for which ¥ > 0 and hence cannot be an
inviseid instability.

Our understanding of the two modes is enhanced
by an examination of the distribution of Reynolds
stresses which is undertaken in the next section.

VII. REYNOLDS STRESSES AND ENERGETICS
OF THE DOUBLE MINIMUM

We restrict our attention to the eigenvalues
associated with points A and B of Fig. 5. The dis-
tribution of the eigenfunctions belonging to these
two points is given in Figs. 6 and 7. We have no
comment about these eigenfunctions other than to
echo the often made homage to the difficulty of this
problem so plainly evident in the graphs of the
imaginary part of u(r) (Fig. 7).

Next consider the distribution of Reynolds stress
[Figs. 8(a) and 9(a)] and the distribution of the
energy supply (Figs. 8(b) and 9(b)]. Some properties
of the Reynolds stress and energy supply are known.
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Fra. 6. Real and imaginary parts of the radial amplitude w(r)
corresponding to points A and B of Fig. 5.
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Fic. 7. Real and imaginary parts of the axial amplitude
w(r) [ = (i¢/ar) d(wr)/dr] corresponding to points A and
B of Fig. 5.
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Fig. 8. (a) Reynolds stress distribution for flow cor-
responding to point A of Fig. 5. (b) Energy supply for
point A of Fig. 5. Where E is positive, energy is transferred
from the basic motion to the disturbance motion.
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Fre. 9. (a) Reynolds stress distribution for flow cor-
rﬁesponding to point B of Fig. 5. (b) Energy supply for point
of Fig. 5.
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F1c. 10. The disturbance boundary-layer analysis of
Lin® and the jump condition for the Reynolds stress imply
conditions (13). These conditions do not determine the
sign or magnitude of the Reynolds stress in the inviscid
center. If the sign of the Reynolds stress is assumed to be
positive we have the situation sketched in Fig. (a) whereas
a negative Reynolds stress implies the sketch in Fig. (b). Both
distributions occur [see Fig. 8(a) and 9(a)]. A good qualitative
picture of these distributions (which were calculated numer-
1cally by finite differences) follows also upon completion of
the sketches of Fig. 10 as smooth curves in the most obvious
way.

It seems appropriate to review the analysis leading
to these properties.

Let »* be the conjugate of w. Then one may
obtain from Eq. (4) an equation for the Reynolds
stress:

#= —(o/N) fo " Re (¢.) Re (¢.) dz, A = wavelength,

W= L o) - Lo + alo®
= —(@R)'(@*L’e + wL’w*),  (9)
where
PR "R . - [4c,atv]_
dr dr oV b—a
First, let ¢;, = 0 (neutral oscillation), multiply

Eq. (9) by r and integrate across the annulus
*d
j: ar (W — ¢)re] dr

2 2
— [ = @ [ rerre + ol dr.

The first of these integrals vanishes by virtue of the
boundary conditions and one finds, after an integra-
tion by parts, that
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where £ = rr dW/dr is the energy supply.

The energy transfer between the basic and dis-
turbed motion depends upon the sign of E; when
positive, energy is transferred from the basic motion
to the disturbance motion. It is apparent that E
vanishes at a rigid wall.

Lin® has shown that near the wall (W < ¢,)
E > 0. Hence v must be positive near the inner
wall (r = a) and negative near the outer wall (r = b).

More can be said about the distribution of 7 by
considerations following from inviscid theory. One
expects that viscosity is important only in the neigh-
borhood of the walls and in a neighborhood of the
critical layer. In the interior, the flow is largely
inviscid. Hence, rr; satisfies

W —ec,
r

obtained from Eq. (9), by letting («R)™' — 0.

Similarly, Eq. (4) becomes Lw; = Yw;/(W — ¢)
so that by combining we find

d(’rT]) _ 20.‘7"1’ leiz'

ar W=

Thus, it is found'® that in the limit as ¢; approaches

zero

d
a; (rrr) — ci(wfLwy + wlwf) = 0

(10)

rr; — const (11)

for all » on the domain of W such that W — ¢, = 0.
The roots of the equation W — ¢, = 0 define

the position of the critical layer. It is also possible

to calculate from Eq. (10) the magnitude of the

jump discontinuity at each ecritical layer."” One

finds that

20, |lw 2w
|[dw/dr|. °

where 0 < ¢ — 0 and all quantities are evaluated
at a critical layer. Equation (12) holds at both
critical layers. Since ¥, < 0 on the domain of W
the jump is negative at both critical layers.

Then, on analytical grounds, we expect that

(12)

[TI]:::: =

(1) 7 s positive as r — a and negative asr — b,

(2) rr = rr; = const in the region between
the critical layers,

B) [rri7e7¢ < 0 at each critical layer.

Tete —

3 C, C. Lin, Proc. Natl. Acad. Sci. (U. S.) 40, 741 (1954).
A proof of this result is also given in Ref. 2, p. 54.

(13)
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The sign and magnitude of rr; in the center inviscid
region is not determined by these considerations.

With these considerations in mind we anticipate
that the shear stress distribution will have the
features shown in either Figs. 10(a) or (b) depending
on the sign of rr;. A qualitative picture of the true
distribution of r+ [Figs. 8(a) and 9(a)] follows easily
by completing the sketches as smooth curves in
the most obvious way.

The graphs of the energy supply [Figs. 8(b) and
9(b)] clearly demonstrate that, in asymmetric flow,
there exist large regions where the energy supply
is negative and the disturbance motion returns
energy to the basic flow. This feature, which tends
to stabilize the motion, cannot be present to any
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appreciable extent in symmetric flows since 7; must
be zero in order for their eigenfunctions to be
symmetric.
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