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The problem of lubrication of a journal in a porous bearing is considered. A Reynolds’
equation modified io accommodaie mass iransfer wiih ihe fiuid-saturated bearing 1s
solved, and the influence of the permeability and radius ratio of the bearing is examined.
The effects of the bearing flow are such as to reduce the magnitude of the pressure and

EI'
=]

University of Minnesota,
Minneapolis, Minn.

TNIEGraIeh TESUW LT

magnitude with the normally neghgzble shear stress resultant.

shift the maximum oway from the position of minimum gap.

imteorated vosultant nf the pressure fnrrpc 1s so reduced as to become rnmhnrable in

In extreme cases, the

This latler resultant

has an opposing sense so that the total load capacity of the bearing is greatly reduced as
a result of bearing flow.

Historical Introduction and Statement of Purpose

IN THIS REPORT, we discuss the unique features
which are introduced into the theory of hydrodynamic lubrication
of bearings when the bearings are permeable and tolerate a
flow of 0il. The subject of the analysis is not entirely new, and a
few aspects of the problem have been treated by several authors
(1, 2, 4, 5, 912

Porous bearings are extensively used in technological applica-
tions. The chief advantage of these bearings is that they require
no exterior oil supply. Such bearings, after long service, are not
hydrodynamiecally lubricated in that the load is not supported by
a fluid film. Since our interest in this work is confined to hydro-
dynamically lubricated bearings, our analysis applies only 1o the
initial “break-in”’ period (in which the oil supply is plentiful)
and to the occasional pressurized system (in which oil losses are
absent or annulled by a continuous supply). The bearings
analyzed in this work necessarily operate at higher rotational
speeds for a given load and have a potential for service in ap-
plications where light loads and high speeds are characteristic.
The pressure which would develop in & solid bearing at a given
journal speed is reduced when the bearing is permeable and the
journal speed is unchanged. This fact has importance for ap-
plications in which lubricant cavitation is to be avoided.

! Numbers in brackets designate References at end of paper.

Contributed by the Applied Mechanies Division for publication
(without presentation) in the JOURNAL oF ApPLIED MECHANICS.

Discussion of this paper should be addressed to the Editoral
Department, ASME, United Engineering Center, 345 East 47th
Street, New York, N. Y. 10017, and will be accepted until one month
after final publication of the paper itself in the JOURNAL OF APPLIED

The goal of this investigation is the prediction of bearing
behavior as a function of bearing parameters. This is essentially
a specification of the interrelations of permeability, bearing
thickness, clearance, and the eccentricity of the journal. The
nonpermeable counterpart of this problem is the subject of the
classical theory of hydrodynamic lubrication. The bearing as-
sembly of infinite length, with which we are concerned, is com-
pletely described for the nonpermeable bearing by the theory
of Reynolds [10] and Sommerfeld [14]. There is a classical
short-length bearing approximation developed by Ocvick (9]
which has been extended by Morgan and Cameron [1] and Cam-
eron, Morgan, and Stainsby [2] for applications to porous
bearings. In these approximations, the circumferential varia-
tions of the pressure gradient, which may dominate the flow in
longer bearings, are entirely neglected. An analysis of the porous
bearing problem which starts from the low Reynolds number
equation of Stokes has been constructed by Joseph and Tao [4].
This analysis, however, neglects effects of the bearing thickness.
The journal is represented by a rotating circle of the bipolar
family, and the inner bearing surface, by another circle of this
family. The bearing itself is presumed infinite in extent and
models, as is shown in the sequel, a thick bearing (radius ratio
> 3/2).

Our present effort starts from a Reynolds’ equation modified
to account for the through flow (as suggested by Cameron,
et al. [1, 2]) and matched to the bearing flow by matching condi-
tions at the common boundary. The bearing itself is presumed
to be encased in a solid so that the outer bearing surface is im-
permeable. The bearing has a finite thickness and is infinite in
length. The pressure in the bearing is harmonic, and its first
derivative (which gives the normal velocity) vanishes at the
outer solid-bearing surface. At the inner bearing surface, the
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Nomenclature
¢ = radial clearance P, = absolute pressure in free fluid region =~V = circumferential velocity of journal
e = eccentricity measured at § = 0 and 7 X = z-component of force on bearing or
F = body force p = relative pressure (= p, — p,) journal
h = film thickness P = pressure parameter Y = y-component of force on bearing or
k = permeability P = pressure pa.ran}eter ) jourr%al ]
K = 12Rn/c* Q = filter velocity in porous bearing € = eccentnclratlo (= efc)
M = moment on bearing or journal Q= volgme ra.te of flow a=(01-e) /2
- ) . r = radial variable B = radius ratio (= ro/ry)
Pa = absolute pressure in porous bearing n = inner radius of porous bearing n="hfc=1+ €ecosb
P, = absolute pressure in porous bearing  » = outer radius of porous bearing 0 = angle measured counterclockwise
measured at 6 = 0 and = R =r/n from top of the bearing
p = relative pressure (= p, — 7,) u = circumferential velocity of fluid u = viscosity
p. = absolute pressure in free fluid region v = radial velocity of fluid @ = permeability parameter (= kri/c3)
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and extend these to accommodate the effects of the finite thick-
ness of the porous bearing. The chief effect of the permeability
is the reduction of pressures which would otherwise develop.
The force resultants are lower as a result of the diminution of
the pressure, and the shear-stress resultant may be nonnegligible
relative to the pressure-force resultant. Effects of changing the
thickness of the bearing are pronounced as the bearing thickness
is small, and they rapidly diminish as the ratio of the outer to
inner bearing is increased beyond 3/2.

Statement of Problem, Including Mathematical Formulation

Consider a solid journal rotating in a porous bearing of a
finite constant thickness contained in a solid housing with end
effects neglected. The cross sections of the journal and the bear-
ing are nonconcentric circles, Fig. 1.

The assumptions of conventional lubrication theory retained
in this analysis are:

1 The lubricant is Newtonian and incompressible.

2 The film is so thin, compared with the ratio of kinematic
viscosity to linear velocity, that the motion of the fluid is laminar,
inertial terms and bearing curvature can be neglected, and pres-
sure and viscosity are uniform across the film.

3 No slip occurs between fluid and bearing surfaces.

4 There is no end leakage from the bearing (problem is
two-dimensional).

The motion of the viscous fluid is induced by the rotation of
the journal. The behavior of the fluid outside the porous bearing
is obviously influenced by the flow within the porous bearing.
The solutions to the governing equations valid in different
adjacent regions must be matched on the boundaries.

Briefly, the problem is characterized by the requirements that
the flow satisfy:

1 The appropriate specialization of the Reynolds’ equation
in the free region (outside the porous region).

2 The Laplace equation for the pressure in the porous region.

3 No-slip conditions immediately outside the porous region
(see (4] for full discussion).

4 A condition requiring the radial filter velocity to vanish on
the outer (solid) boundary of the porous bearing.

5 Continuity of pressure across the porous bearing.

6 Continuity of the normal component of the velocity across
the porous boundary.

In the porous-bearing ring (assumed homogenous and iso-
tropic), the filter velocity Q is related to the relative pressure P
by Darcy’s law

a="*ys a
;1

From mass conservation, Q is solenoidal, implying that
Vi =0 2)

It is required that P be a single-valued harmonic function, the
normal derivative of which vanishes on the outer radius of the
ring and which satisfies a Reynolds’ equation along the inner
circumference of the ring.

We next follow Morgan and Cameron {1] in a derivation of
Reynolds’ equation modified to account for mass exchanges with
the oil-saturated bearing. As is usual in lubrication theory, we
unwrap the gap between journal and bearing. It is assumed then
that lengthwise variations are dominated by transverse varia-
tions so that the equation

1 dp v

1L=i£(y2_yh)+fy (3)

where h(z) is the local channel height, is locally valid. Conserva-
tion of mass requires that (Fig. 2)

2

POROUS BEARING
FREE FLUID REGION
SOLID HOUSING
SOLID JOURNAL

g e = -

Fig. 1 Bearing configuration

Fig. 2 Geometry of fluid film

Q-+ Q=0 4)
where @ is given by the Darcy law
k op
Q=-— —”) Az (5)
foor/xn

From equations (4) and (5), it follows that

@_i@) =0 (6)
dx u or /.
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where
h(x) 1 d 1%
Q=f wdy = = - P h4 S @
R 2

Now let z = 78 and combine (6) and (7) to obtain

d dp dh op
3 = - 7 r2 — =
. (h d0> 6uVr — dB + 12kr, br),, 0 (8)

This is a Reynolds’ equation with an additional term to ac-
commodate the mass exchange between the film and bearing.
The usual approximation A(f) = c¢(1 + € cos @) for small clear-
ances is valid in the present context. The term dh/df = —ec
sin @ is a driving term for (8).

It is convenient to introduce the following dimensionless
variables:

N =nh/e=1+ ecosb

K = 12’67‘1/03

B = ro/n

R =r/n 9)

P = pc/6unV
p= pe2/6urV

Using the variables defined in (9), equation (8) becomes
d dP dn ap
il K2
df (” d0> Fris OR>1

k
The quantity ¢ = —rsl (K = 12¢) is a design factor. It follows
c

10)

that
=F
6ur 7 0; ¢, ¢ B)
pc? a
and = P F(T, 07 ¢) €, 6)
Our, V

The parameters (¢, €, 8) characterize the solution.

Solutions

In this section, we develop a formally exact solution and the
approximations which make the solution computationally useful.
We first note that equation (8) and the ring boundary conditions
imply that p and $ are antisymmetric. Harmonic and anti-

symmetric § with a vanishing normal derivative at r = o is
given by
. « r\" r 2n .
p(r,6) = E B, 14— sinnd (11)
n=1 T To
The continuity of pressure implies p(r, 8) = p(f). This re-

duces our problem to finding B, compatible with equation (8).
We first substitute harmonic

p(r, 6) = 2, B,C,sin (nf) (12)
n=1
where
6ur vV
=1+ thyﬁ = To/T'],D = “"C—:l
into
d p
. s = —_ =
s (n 20 (r, 9)) D 0 T4 Kn ar>,, 0 (13)

to find a seven-term recursion formula for the coefficients B,:
[(4o + A42)C1 + Kdi]Bi + 2 (41 + A3)C2B:

+ 34.C3B; + 44:,CiB, = De (14)
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(A1 + A)CBL + (20240 + Kd»)By + 3C34,Bs

+ 4C4A2By + 5C5A3B; = 0 (15)
ACi By 4 24,CoBe + (3C340 + Kdy)By
+ 4‘41(,'484 + 51120583 + (‘)AaCﬁBs = O (16)

(m — 3)A3Cp—3Bns + (m — 2)A:Cp2Bm_2
+ (ﬂl - 1).'11Cm_1Bm-1 + (mC'on + Kdm)Bm
+ (m + DACmnaBnt + (m + 2)A:Cmi2Bme

+ (m + 3)AsdnssBumis = 0 (m=4,56,...) (17
where

Co=148"md, =1—8" (m=12...)

Ao =1+ €, A, = e(l + +€?)

Ay = e, 43 = L &8 (18)

To obtain the coefficients B,, it is necessary to solve an infinite
number of the linear equations. The infinite system is approxi-
mated with a truncated system. The coefficients B, (n > 10)
are set to zero, and the 10 linear equations are solved for the
10 unknown B, (n< 10). It develops, as will be seen in the
sequel, that the true solution is very adequately represented with
n less than 10. For € < 0.5, three terms reasonably represent
the true solution. For ¢ very large, only one term is enough.
The result forn = 3, B, = 0 (n > 3) is as follows:

A = K3didod; + K? [Cldzdx (1 &+ -i— €2>
3 3
+ 2C2d1d3<1 + E 62> + 303d1d2 (1 + 3 62)]
3 9
+ K [6dlC’zCa (l + 1 €? + 3 e‘>
5 45
+ 3d20103 (1 + ‘Z €? + 1_6 E‘) + 2d30102

3
X <1 + 6€2 + %9 e‘*):l + 6C1C:Cs (1 + %62 + y e‘) (19)

D 3
B = f [szzd;, + K <1 + e > (Bd:Cs + 2Cads)
3 9
+ 6C:C; <1 +2eq 2 54)] (20)
4 8
De 13 15
) = — —— — €2 — — ¢4
Bz 2A I:K01d3(3 + 62) + 30103 <3 + 4 € 16 € )]
@1)
B =208 [Kc,d2+ CC8 + e + e4)] (22)

This solution and the true solution are indistinguishable for
e < 0.5, Fig. 12.
It follows that

B, = 6urV/ctf, (kri/c3, or/ri, €) (23)

Since

Z fa (kro/c3, ro/ry, €) sin nd

n=1

(24)

our solution is independent of ¢ except as changes in ¢ induce
changes in ¢ = kri/c3. The true pressure scales with ur ¥V /c?
except as changes in pressure are induced by permeability
(through @), and these changes which depend on ¢~3 become
increasingly important as the clearance is reduced.



Force Resultants

Torque. DMuch interest in lubrication theory focuses on the
resultant force and torque. In this section, we caleulate these
resultants.

The shear stress is

2_%> _
M 0y / y=0

11__°_u> _hd ¥V
& dy/ys 2udr ' h

hdp V
L 25
mdr T h (@3)

(26)
where

— =——=— % B,.Cmcosnf

n=1

The torques acting on the journal and bearing are M, and M,:

2x
M, = ‘7‘12f 7.d0; i =01 @7)
0
M, _ 2V : ceC\ B, 28)
urrt e(l — e2)t 2ur
M, _ 2V _ ceC1 B, (29)
umr? c(l — €2) /2 2ury
M, — M, = wceC\Bin, (30)

It is seen that the permeability and the eccentricity are the
sources of the difference of the torques upon the bearing and
journal. The difference vanishes as the permeability increases
and the eccentricity diminishes.

Force. Xo,7, X1.,7 and Yo,r, V1.7 are the z, y-components of
forces acting on the bearing and journal, respectively:

27
Xur = f (psin @ + 71 cos 8) rdf (31)
0

2w
Xor = f (p sin 8 + 7¢ cos 0)rdd (32)
0

X 14
Lo BC (14 o )+ Bl 4+ £
T 2n 2r c
2 1
=1 - — 33
(- ) @
X v
J.TABlCt1 l—i —B-ngc—e-l—L
T 2 2r c

2 1
2 (- e

2r
Yir = f (p cos 8 + 71 sin 8)ridf (35)
0

2r
Yor = f (p cos 8 + 7o sin 0)ridf (36)
0

The pressure force and shear-stress resultant, respectively, are

X X
Stp A0 B.C, (37)
™ T
X, c ce uv 2 1
Y= BCi— 4+ BC:— +——{1 - —~ 38
T Top + B 2r, + c € ( 1 - e’)l/z> @8)
Xos c ce uv 2 1
~= —-BCi— —-BCo— +— — |1 — ——=
™ e 2 e 2r, * c € ( (1 - en)l/2>
(39)
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Fig. 3 Pressure distribution in lubricant for fixed eccentricity (¢) and
radius ratio (3). Pressure is a decreasing function of permeability param-
eter (¢). Pressure maximum decreases and shifts away from position
of minimum gap (§ = 180 deg) as permeability parameter increases.
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Fig. 4 Pressure distribution in Iubricant for fixed values of eccentricity
(¢) and permeability parameter (¢). Pressure maximum decreases and
shifts away from position of minimum gap as radius ratio increases.
Rate of change of pressure is greatest for d radius ratio of 1 and de-
creases as radius ratio increases. For very large values of radius ratio
(8 — o), this solution tends to the solution of Stokes' equation (4] for
the same flow.

For small permeability, the pressure force dominates, and the
shear-stress resultant is neglected as small compared with the
pressure resultant. But the pressure resultant decreases
markedly with permeability, Fig. 6, and the shear stress resultant
decreases only slightly and turns negative, Fig. 7. The total
force resultant decreases strongly and turns negative as the
shear stress resultant becomes dominant, Figs. 9, 10.

For the impermeable case, the shear stress resultant, which is
pointed out in [4], changes sign at € = 0.721 and is negative
for large values of e. Hence, for large eccentric ratios, the bearing
capacity can vanish and even change direction.

From equations (28, 29, 37, 38, 39) and the fact that

B,c?
N 1 fn (¢y 6; 6) (40)
6.“7'1"
one may infer that
X2 X Mc

an
unV’ unV’ urV
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Fig. 5 Pressure distribution in lubricant for fixed values of radius ratio
(8) and permeability parameter (¢). Pressure magnitude is a decreasing
function of eccentricity as in the impermeable case.
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Fig. 6 Resultant pressure force on journal as a function of permeability
(¢) with eccentricity (¢) as a parameter for a fixed radivs ratio (3 = 1.2).
Pressure is more pronounced for larger values of eccentricity.
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Fig. 7 Resultant shear force on journal as a function of permeability
() with eccentricty (¢) as a parameter for a fixed radius ratio (3 = 1.2).
Shear resultant is always negative for sufficiently large values of ¢
or e. For large ¢, shear resuitant may be of same order of magnitude
as pressure resultant.
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Fig. 8 Resultant total force on journal as a function of permeability
(¢) with eccentricity (c) as a parameter for a fixed radius ratio (8 = 1.2).
Total force is a combination of pressure resultant (Fig. 6), which scales
with C™2 for small C, and shear stress resultant (Fig. 7), which scales
C~! for small C. For small permeabilities, pressure resultant dominates.
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Fig. 9 Resultant total force on journal as a function of permeability
(#) with eccentricity (¢) as a parameter for fixed valves (3 = 1.2, C =
0.1). For large ¢, force is dominated by shear resultant, which is neg
tive. Withr, = 1 in. and C = 0.001 in., ¢ = 10 implies k = 107
sq in., which is a very high permeability and not at all typical of porous
bearing.
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Fig. 10 Resultant total force on journal. This is qualitatively the same
as Fig. 9. Withr, = 1in. and C = 0.001 in., ¢ = 10 implies k =

10 ~? sq in., which is typical for porous bearing.
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Fig. 11 Resultant total force on journal as a function of permeability

(¢) with radius ratio (8) as a parameter and a fixed value of eccentricity
(e = 0.7). Total force decreases with decreasing rapidity as radivs
ratio is increased from 1. Value of 3 = 1 corresponds to an impermeable
bearing, and 3 — « to an infinite porous matrix. In this latter limit,
solution may be compared with that given in {4] for same geometry.
Solution in [4] starts from two-dimensional equations of Stokes. Reyn-
olds’ and Stokes' solutions are nearly identical.
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0 0® ©o* 1©0* 0% © ‘ 10 I [

Fig. 12 Resultant total force on journal. The approximate solution,
equations (19) to (22), is compared with numerical solution of equations
{15) to (18). Approximate solutions are less accurate for larger values
of eccentricity.

depend only on the parameters (¢, (3, €). Since X, dominates
X, when ¢ is small, and Xg dominates X'y when ¢ is large, it
follows that
X pc?
or
unV

A e
unV

depend only on (¢, B3, €) as ¢ is small or large, Fig. 8. In fact,
the numerical results indicate that small is approximately
¢ < 10 and large is ¢ > 10.

Discussion on Solutions

The Fourier series which is formally exact will represent the
true solution if coefficients B, can be found which reduce the
linear equation to identities. This system is infinite, and its
exact convergence characteristics are not easily examined.
Suffice it to say that the truncated system does rapidly converge.
With € < 0.9, the solutions obtained by truncating the system
with # > 10 do not differ from one another within the error
(10~4) represented by our graphical representation of the results.

The Fourier series would appear to converge for all values
of ¢ and rapidly as ¢ is large. For large values of ¢ (2 10),
only one term is enough. As ¢ — » (k — « or ¢ — 0), the
coefficient By ~ 0(1/¢), B; ~ 0(1/¢2), j = 2,3, .... The
pressure dies like 1/¢ in this limit, but the velocities in
lubricant and bearing are finite. In general, the Fourier series
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Fig. 13 Resultant moment on journal as a function of permeability
(¢) with eccentricity as a parameter and for fixed value of radius ratio
(8 = 1.2). Moment decreases, but not significantly, for large permea-
bility. Torque is largely determined by relative motion of bearing and
journal, and this does not change as a result of bearing flow.

converges more rapidly as € is small, with a uniform pressure
resulting in the limit € — 0, as is consistent with the physics of
flow.

As € — 1, the series converges slowly; while, if ¢ = 0, the
solution diverges. In this case, the journal and the bearing
are in contact, and fluid cannot be carried through the gap.

It is of some interest that Reynolds himself solved the corre-
sponding impermeable problem with a Fourier series [10].
However, the Fourier coefficients A, were expanded in a power
series in €,

4’1" = z C)...,‘ €k
1

and the interval of convergence of the power series is € < 0.6.
It is not the Fourier series which diverges, as is sometimes
stated in the lubrication literature [13, p. 178], but the power
series in €.

Gonclusions

Figs. 3-13 represent the effects of the flow in the porous bear-
ing on the pressure distribution and force resultants. The
results are obtained from machine calculations with r, = 1 and
0.1 < € € 0.9. The important parameters are the clearance,
eccentricity, permeability, and radius ratio.

The following observations are worth emphasis:

1 The effect of increasing the permeability, other parameters
fixed, is to reduce the pressure, shift the maximum (Fig. 3), and
to reduce the magnitude of the total-force resultant (Figs.
8, 9, 10) and the pressure-force resultant (Fig. 6). The effects
on the torque and shear stress of increases in permeability are
less significant (Figs. 7 and 13).

2 The effects of permeability are more pronounced when:

(@) The clearance is small. The dependence of the pressure

on permeability is of the form

p e unV/e) F (¢, B €)

Thus the diminution of ¢ enhances the effect of the permeability
parameter even more strongly than the corresponding direct
effect on the pressure. The permeability enters the problem
through ¢. The permeability parameter can always be made
significant by reducing the clearance (Fig. 3).

(b) The eccentric ratio is near unity. An eccentric ratio of
1 implies contact, and our solutions are not valid in this limit.
The essential effects are easily read from Figs. 8, 9, 10, and 13.
These graphs show that the variation of total force and torque
with permeability is much more pronounced as the value of
approaches unity. The range of clearance and eccentricity in
which small permeability is important may be read from the
graphs.
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3 The radius ratio can, of course, have an effect only if the
bearing is permeable. In the limii 8 = ro/r = 1, there is no
porous matrix, and the impermeable solution applies. In the
limit 8 — o, the matrix is an infinite porous space with an in-
ternal hole in which the journal rotates. There is a solution
available for this latter case which was derived from the slow-
motion equations of Stokes [4]. Our solulion and that of [4]
are compared in Figs. 4 and 11. The agreement in all cases is
excellent.

The variation of the pressure distribution and force resultant
with B8 is shown in Figs. 4 and 11, respectively. The zero-
thickness solution is consistent with Sommerfeld’s solution, as
was to be expected. It is of importance that the effect of increase
in the radius is much more pronounced as the thickness ap-
proaches zero. The difference between the pressure distribution
in an infinite porous space and for a radius ratio of 1.5 is less
than 20 percent. This tends {o establish the solutions given in
[4] as appropriate to thick bearings (8 > 1.5).

4 The force resultants decrease with increasing permeability.
The pressure resultant tends to zero (Fig. 6). This is not true
of the shear-stress resultant (Fig. 7), which turns negative for
sufficiently large e. The total force, which is the sum of the
pressure and shear-stress resultant, turns negative with the
shear resultant when the permeability effects have reduced the
magnitude of the pressure (Figs. 9 and 10 and ¢f. [4]).

5 The journal may run at a higher speed for a fixed pressure
when the bearing is permeable. If this pressure is the cavitation
limit, then a higher speed may be obtained by using a porous
bearing. From Fig. 3 (¢ = 0.7, 8 = 1.2), the pressure parameter
pc/un¥ is reduced to half of that in the nonpermeable case
when ¢ = 107, to 1/5 when ¢ = 1, to 1/30 when ¢ = 10.
Thus, for a fixed p, we may increase the journal speed by a factor
of 2 when ¢ = 107, a factor of 5 when ¢ = 1, and a factor of
30 when ¢ = 10.
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