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UNSTEADY FREE AND FORCED
CONVECTION IN VERTICAL ANNULAR
AND ANNULAR SECTOR TUBES

D. D. Josepr* and L. N. Tao*

ABSTRACT

In this investigation solutions to the problem of unsteady laminar forced
and free convection in coaxial sector tubes in the presence of a constant
axial temperature gradient have been developed.

The solutions admit phenomena of oscillation and resonance which are
not usually present in flows in which the dissipative mechanisms of heat
conduction and viscosity are important. Several numerical examples are
constructed and used to discuss the “‘dashpot’ features of the solutions.

NOMENCLATURE
x, Y, 2t Rectangular position variables and time
r, 0,z Position variables in cylindrical coordina
tes
Tis T Inner and outer radii of annulus
u Velocity
T Temperature
Teo Reference temperature
C, () Axial temperature gradient
Py(t) Axial pressure gradient
Qx, vy, 2,t) Heat source intensity
B Thermal expansivity
v Kinematie viscosity
« Thermal diffusivity
C) Specific heat
0 Density
R = r/ry Dimensionless radius
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T = w/ry Dimensionless time

U= ury/v Dimensionless velocity

O = (T — T¢y)/r,C;»  Dimensionless temperature

Pr = y/a Prandtl number

Gr = BgC,ry/v® Grashof number

Ra = Gr - Pr Rayleigh number

E = pp(7)rg/v? Pressure gradient parameter

F =rQ(R, 0, 1)/ovC,0, Heat source intensity parameter
C(amR) =

= Jn(aymR) Yp(“yma) -
— J (a,ma) ¥ (@,mR)  Cylinder function
o Positive zeros of €' (6)

um

m

INTRODUCTION

The theoretical study of the combined forced and free laminar con-
vection of mass and energy in enclosed tubes and channels began early
in the last decade.

Among the earliest treatments of the problem, which were confined
to the analysis of the steady state, those of Ostrach(!:2* are important
because they developed the specializations in the equations of motion
and energy which have since been regarded as the ones appropriate to
these natural and forced flows.

Subsequent theoretical work has extended this problem to a wide
variety of geometries and has introduced some new techniques
with which the mathematical manipulations may be more deftly
managed.@ 4+

Theoretical work on the unsteady problem of free and forced con-
vection in vertical channels belongs to this decade. Izumi® has studied
transient free convection in an infinite circular tube, the walls of which
are held at a steady uniform temperature. Tao® studied this geometry
for the case of a linearly varying wall temperature and combined free
and forced convection. Zieberg and Mueller(” have treated the axially
variant free and forced convection problems for a parallel plate duct.
These authors have also investigated the implication of assuming that
the flow is fully developed.

The purposes of this paper are threefold. Firstly, some additional
implications of the assumption of fully developed velocity profiles are

* For all numbered references, see end of article.
* See also references therein.
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discussed. Based on this discussion an analysis of the problem of
unsteady free and forced convection and a mathematical representa-
tion of the velocity and temperature fields are developed. It is shown
that there are physical mechanisms present when the temperature is a
linear function of the axial coordinate which lead to ‘“dashpot’ features
normally associated with the linear theory of vibrations.

Secondly, these “‘dashpot” features which have also been noted in
Refs. 5, 6 and 7 are examined in detail and the effects of the Prandtl
and Grashof number on the physical system are evaluated.

Thirdly, under certain conditions the solutions admit the possibility
of resonant distortion. This phenomena is discussed and the resonant

oAl LASLTRAQAL, 2 AS pARAVAACLS I8 LINUUSSCU /i1l L0 ITS0LI&ILY

frequencies are determined for a case in which the pressure gradient
is a periodic function of the time.

GOVERNING EQUATIONS

A central assumption of this investigation is that the flow is fully
developed. By “fully developed”, we mean that the velocity compo-
nents are functions of the transverse coordinates. If one stipulates that
the transverse components of the body force have a potential, and that
there should be no relative motion of the boundaries (so that the no-
slip condition will require that all velocity components vanish at the
walls), then it can be rigorously demonstrated® that in unsteady
flows, the transverse velocity components may be present initially but

(1) if present they must decay in time

(2) if not present initially they cannot develop.

Hence the assumption that the flow is fully developed in the un-
steady case is equivalent to the assumption that the flow is initially fully
developed. It is known that this condition, when coupled with the
assumptions that

(1) the material properties of the fluid are constant except as the

variation of density with temperature modifies the buoyancy

force and
(2) effects of visoous dissipation on the energetics of the problem are
negligible

implies the following restrietions on the possible variations of the gra-
dients of temperature and pressure in the axial (field force) direc-
tion® 9.

(1) The temperature must be a linear function of the axial coordinate

T(x,y, 88)=C\t)z + Ty(x, y, t).
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(2) The difference between the pressure gradients in the dynamic and
hydrostatic cases is at most a function of the time.

(3) An axial temperature gradient which is variable in time implies
that the heat addition must vary linearly in the axial coordinate

dacC
Q(.’If, Y, =, t) = Qcpz dtl

- Q‘)_(x’ Y, t)

where ), is an arbitrary function of , y and ¢.

2/te

Y,/ o g

x/'c»

a |
F1c. 1. Geometry of sector tube.

Under these assumptions the dynamics and energetics of the fluid
in a plane perpendicular to the pipe axis are governed by

[% — 1'11'1} u— gB(Ty — Tc,) = —pp(t)
5 (1)

[52 — aA‘lJ T, + Cou = Qz/@op‘

More specifically we now consider fully developed unsteady laminar
flows in annular or sector tubes (Fig. 1) under the combined influence
of free and forced convection.

We further specify that the axial temperature gradient C, is constant
in time and that the velocity vanishes while the temperature assumes
prescribed values on the tube walls.
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The governing differential system when written in terms of the non-
dimensional variables is

U 1 8 (,8UY, 1 82U  _
a_zzféﬁ(Rﬁ)“"ﬁ"éaTTRao_E(’) "
00 1 o 6 1 3820 ,
P"5;=1?5E(R‘5§)+F aor — U PR 67)
=0 U{R,6) == U(R, 0, 0) (3)

O(R, 0) = O(R, 0, 0)

U(R,0,7) = U(R,ex) = UG, 0,7) = Ula, 6, 7) = 0
0(1,0, 1) = 6,0, 1)

T >0 O(a, 8, 1) = 0,0, 1) (4)
O(R, 0, 1) = B4R, 1)
O(R, e, 1) = O,(R, 1).

The initial conditions are not arbitrary as the flow is initially fully
developed. The temperature and velocity fields at beginning time may
however be obtained from the solution of the appropriate steady state
problem.

The governing differential system for the full annulus is the same as
for the sector except that U, @ and their first derivatives are single
valued functions of the angular variable 6.

SOLUTIONS FOR THE SECTOR PROBLEM

Equations (2) are coupled but linear. They may be readily reduced
to ordinary differential equations in the time by application of the
finite Fourier and Hankel transforms.(® Solutions to these equations
which satisfy the time dependent boundary conditions and heat-source
functions may be constructed by the application of Duhamel’s theorem
to the coupled linear systems.(: 11

Duhamel’s auxiliary functions, ¢(R, 8, 7, 7') and y(R, 0, 7, t') are
defined by

UR,0, 1) = % Jw(R, 6,1 — 1, 1)dr
0

. (5)
)
O(R, 8,7) = 5 j ¥R, 0,7 — 1, 7)dr.
1]
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The auxiliary functions satisfy the same equations and boundary con-
ditions as the function U(R, 0, v) and O(R, 0, t) except that, in the
auxiliary system, the role of the time 7 in the expressions of the given
heat-source intensity, pressure-gradient parameter and boundary con-

ditions is taken by a fixed parameter 7’.

Initially ¢(R, 6, 0, 7') = U(R, 6, 0) and y(R, 6, 0, 7') = O,(R, 0, 0).
We omit the detailed derivations® and record the solutions for the

channel of sector shape.

[U(R, 0, r)] _2 > Cu(,mR) sin ub [%m(r)] n
OR.0,7)] i, Nom Pum(T)
9 - ’ f m(T — 7', TI)
Far oo )
GTO gym(t — 7,7 )
where
f,um(r: TI)] e~ Pum* ’ [ Ra ]
A= A,.(t) eYum® -
[gym(tr ') Ra “n 6ym Yum
+ Bpm(‘lfl) [ B ] e"”um’:
6[1771 - '})ﬂm

A,um(r') - “ - ’ l
[ 5oy | 2m = BalT540] = () N
— 0

T/‘ U _ m ! y;xm um
+ (T2l U] — po(®) [nm . %}

[%mm] _ T5alF] + Thily&) + Té‘[wi‘a][Ra] n
Vum(T) Bum + Ra .

B )Tsu{ 1] [%m

* “Zm + Ra [ 1 ]

L3

Ts[x] = fx sin 46 d6
0

1
Th(] = [2C,(«,,R) RAR

4ulz) = [ [20,(0,mR) sin u6R 6 dR
01

(6)

(M)

(9)

(10)
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YR, ) = g {(— D™ (B, ¥) + po(R, ) (11)
0. ) = 2 G 0, ) — 0,7 (12
% = nnfe (13)

o = 222 (1 + 1P (1)

B = ;‘;ﬂ(l — 1/Pr) (15)

Yom = (8h — G (16)

Nopw= ﬁﬂ[ﬁ%‘% - 1] : (17)

As in the steady case the pressure gradient parameter will frequently
be given indirectly through a mass flow history. Hence, one may find
the pressure gra dient, parameter from the relation

2 8
U(r) = WJJU(R, 0,7) R do dR (18)
or
O(r)(1 —a?) _
8e B m=1§5,. . mzl ”Num (atjf(t v T
2E(t) Iﬂmaim R,
i e (TGP + Tiv) + Tiwall) (19

2
Tsul1) = ;Ipm

The integral I, can, for calculation purposes, be expressed in terms
of the tabulated Lommel and associated functions.(®

The mean temperature difference can be similarly defined.

The local heat transfer at the walls may be described by a Nusselt
number defined by N, = kA/k which may be written as

p - _ 9 A_ 190
No= AT &k~ AT oN (20)

where 4 is a reference length, n/A = N is the distance in the direction
normal (outward) to the boundary of the channel and AT is a suitable
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temperature difference. An average Nusselt number may be obtained
by averaging the local Nusselt number over the boundary of the cross-
section. Employing the divergence theorem, one finds that

1 T, 80
—_ 2, e B
N, = OATJV 0 dd = Zp
A

U —I- Pr '5—
where 7, is the hydraulic radius, defined as the ratio of the cross-
sectional area to the circumferential length.

SOLUTIONS FOR COAXIAL CYLINDERS

This problem is quite closely related to the sector problem. In order
to satisfy the condition that U and O and their first derivatives are
single valued functions of 6 one replaces the finite sine transform with
both finite sine and cosine transforms. Again we only record the solu-
tion.

[U(R, 0: 1):' — \ OO(“OmR) [(pcom(r)] _ J [ [fcam ’ 7:,)}
OR, 0, 7) et zﬂNO"’ Ipcam(‘t) ot Jeom(T— 7, T')
0

¥ . ’ ’
_Jl_ 5‘ \w (J”(“nmR) ((}OS nb ['ptnn,(r) _+_ o [d ' fcnm —T,7 )] +

n‘:i m‘:I LY i Yenn (-5) gmm( ’L", ’L',)

-4

N " 57 8 " rfs (T_'F,,T/)\
- sin 70 Psnn(T) 214 nm :l 21
—! ’ [1IJSIIIII(1) + at i gsnnz(r— T” ’(’) J ( )
o
where
/smn(T: t,) — g—Bmmt s lASHM(t,)] grmt | [ snnz( ,)J e Mm,s (22)
fcmn(":: T ) I Acnm("" ) Bcnm )
gsnm(f: 77,) g Fnm(7) 3[Asnm(t,):| ) ‘ smn }
= 611 nm) €7+ nm nm) €77
[gmn(r’ ",)] R" Acnm(r’) ( m+ r ) cnm ] 7 e «
(23)
Asnm(t,) (FgH[O J - w.snm T )) + ((psnm Fgl![U ]) ( nm— an)
A a7 — (FCH[O ] Venm(T' )) + (‘Pcnm FCH[U ]) (Orm— Ym) -
B,,(7) Ra(wsnm( H[G ]) + (F’:H[U 1- ‘Psnm ) (6 m ™ VYrm) 27}’”"
Bcnm(t,) Ra(wcnm(r FCH[G ]) + (FEH[U (Pcnm ) ( nm+ ')"nm)
(24)

-
Feon(®)\ _ Feul | + F¥yla] R) 2y, Bi(x) [ — 2

= T p» R 25)
(lpcom(r)) “%m + Ra ( + “3m + Ra 1 @ ( °

2
Xom
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Psmm(T) R, Fgy R F§
Tcrnnx(i) — RaFgH [_E(R, 0, 'Eﬂ + R FC |-1P]a( )] (26)
YsmmlT) “ﬁmFSH a:m + Ra “ans anm + R
Vemm(T) GoFen L
[ slel] f x df [S’“ "9] . (27)
LEd cos nf

Equations (16), (14), (15) and (12) with u replaced by = define y,,,,

ﬁmn’ 5r7m and '(P:r[’a (0, T), I‘espectively.
When the flow has radial symmetry, the mean velocity is given by

1
O(r) = 1—-_2740(12) RdR

“[an) |

REMARKS ON VIBRATORY AND DISSIPATIVE
PHENOMENA

and the average Nusselt number by

. 90

Equation (14) which determines whether the transients are to be
“over” or ‘“‘under-damped” as y,, is real or imaginary suggests that
the physical phenomena involved may be usefully discussed in the
language of linear vibrations.

Consider the equations of motion and energy (1) for an inviscid fluid
(v = 0) integrated over a straight channel of arbitrary cross-section (4).
One obtains

dU0
dt
D 4 vi= @ — 3,

— gpO =P},

where the barred quantities are mean values and §, is the average
heat flux per unit area over the boundary of the cross-section. If the
heat flux is specified at the wall, then this heat flux plays the role of
a driving function.

The solution to this system combines the effects of the driving
functions and the natural non-decaying oscillations of frequency



412 D. D. JOSEPH, L. N. TAO

(gBC;)"e. This shows that the combined effect of buoyancy and convec-
tion on the velocity and temperature excess is restoring. A positive
temperature difference (by accelerating the transfer of cold fluid from
below) tends to annihilate itself by convective cooling. Similarly,
a temperature deficit will tend toward self-eradication by convective
heating. This restoring effect, which increases with magnitude of the
Grashof number, is responsible for the oscillating characteristics of
the transients.

This state of affairs is, however, drastically altered if one specifies
the temperature rather than the temperature gradient at the walls.
In this case, wall temperature gradients are established which are
compatible with the wall temperatures and the internal distribution of
temperature. As a result, there is that exchange of energy between
the fluid and the environment which is compatible with the altered
wall conditions or altered source functions and the ability of the fluid
as a thermal medium to transfer heat to and from the walls. Oscillation
phenomena may also oceur in this problem, but the amplitude of these
oscillations must decay in time.

The addition of viscosity to the problem also leads to damping,
as the effect of shear in the absence of a driving force is to reduce
a fluid initially in motion to rest. The viscous effect is felt by the mean
motion only through the action of shear at the wall, but the value of
the shear is determined by the distribution of the velocity over the
cross-section.

The effects of viscosity and thermal diffusivity are not limited to
damping. There are secondary effects which are stimulated when
Pr <+ 1. These effects are associated either with the inability of the
fluid as a thermal medium to transfer heat at a rate compatible with
the local change of temperature excess as determined by the damping
(Pr > 1), or with a parallel inability of the fluid as a viscous medium
to transmit the local effects of velocity changes caused by damping
by the mechanism of shear. Hence, for Pr > 1, the velocity changes
tend to overtake thermally initiated temperature changes, while for
Pr < 1, these temperature changes outstrip the velocity changes.

This secondary effect, which increases as the Prandtl number moves
away from unity, tends to displace the instantaneous configuration
of velocity and temperature from the new equilibrium configuration,
thus opposing the action of the free convection effects which tend to
restore the system to the new configuration of equilibrium. If the quan-
tity |» — «| is large, this effect will dominate the effect of free
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convection, and the oscillations will be suppressed, If Pr = 1, there are
no secondary effects of viscosity and conduction, and the system will
oscillate around the new configuration of equilibrium. Unlike the
dashpot in linear vibration the frequency of the oscillation about the
equilibrium configuration is independent of the rate of damping.

The coupled secondary effects of shear and conduction cannot be
understood from a discussion of the mean velocity and temperature of
the fluid. These effects are essentiall y local and are to be observed in
the distribution of velocity and temperature.

To illustrate these effects the velocity and temperature distributions
over the cross-section of an annular tube have been calculated for the
case of fluid brought to rest by fast removal of a temperature excess

©,) from the inner tube wall. The example is selected so as to isolate
the interaction of the mechanisms of shear, conduction buoyancy and
convection. Since the presence or absence of driving functions will not
influence the essential characteristics of these mechanisms we have
put £ = F = 0. Initially it is presumed that the fluid is driven by
free convection effects emanating from a hot inner wall. Hence

O(a, 0) = O, O " = O(a, 1)
7=10 7> 0
0(1,0) = 0 0(1, 7) = 0 = O,(x).

The initial temperature and velocity distributions are obtained from
the solution of the steady state equations subject to the boundary
conditions which prevail at 7 = 0.

The explicit representations of the velocity and temperature fields
for this problem are easily obtained from the complete solution (21).
One finds that

UR)] _ _ 5 _20Co(@nR) ( _,.[Ra n
[@(R, r)] - AN (@ + Ro) ( [2]

L
w e~Pm* gsinh YmT (ﬂmw - /3% - ‘y%l) Ra ]+
(ﬁm —60)2 - ‘},%1 Ym [5;"(/3"1@“‘57;1—7’%)‘*‘ ‘y?n(w* 2ﬁm)

ey — e | }> J
m - m Fm ™ Vm

Temperature and velocity profiles for various values of the Prandtl
and Grashof numbers are to be found in Figs. 2 to 7.

When Pr > 1, the decay of temperature and velocity is stimulated
more by viscosity than by thermal diffusivity, and the temperature is
driven to decay faster than the fluid, as a thermal medium, can allow.

+
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The velocity, on the other hand, is constrained to change more slowly
through combined effects than is required by locally induced velocity
changes which are being rapidly spread by shear throughout the whole
fluid.

Hence, for changes which are induced thermally, as in the step
removal of temperature excess from the inner wall of an annular
cylinder, one expects that at positions removed from the thermal dis-

6/6,

Temperature excess,

| 1 |
0 e e Y2 e Vi !

Rodius, R

Fic. 4. Transient temperature profiles.

turbance, there will be a secondary increase of the temperature differ-
ence to compensate for the relatively poor conductivity. On the other
hand, the velocity changes, which will be initiated by the rapid decline
of the body force near the inside wall, propagate rapidly into the inter-
ior, depressing the velocity, and thereby aiding the decay with the
effect of the shear. This secondary velocity effect (Fig. 7), and the
secondary temperature effect (Fig. 6), is very dramatic for time 7' =
= 0.01. It is apparent from these graphs that the velocity, as pre-
dicted, does tend to overtake and assume the same sign as the temper-
ature.

For Pr = 0.1 (Figs. 3 and 4), the fluid is relatively more conducting
than viscous, and the temperature drop caused by the removal of @,
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is propagated into the interior of the fluid relatively quickly. The ve-
locity, which is reduced both by the action of shear and by the reduction
of the buoyant force, is reduced relatively less because of the relative
smallness of the viscosity. The fluid thus continues to transport cold
fluid from below into the cross-section, further depressing the temper-
ature. In this way rather large negative values of the temperature

U/B,

Velocity,

|
0 e %/3 % % Ve :

Radius, R
Fig. 5. Transient velocity profiles.

develop. The Grashof number is not large enough to allow to develop
a negative buoyant force of magnitude sufficient to overcome the iner-
tia of the fluid, and no negative velocities develop. The transient re-
sponse is thus of the overdamped variety.

For Pr = 1 (Figs. 4 and 5), the fluid is as responsive to the effects
of shear as to the conduction of heat. The temperature, as before,
hecomes negative, but the velocity, being more responsive to the com-
bined action of the shear and the reversed buoyant force, can cool less
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by convection than formerly, and the negative temperatures which do
develop are of a smaller magnitude than for Pr = 0.1. Also, because
the increased effect of the shear reinforces the negative buoyant force
to decelerate the fluid strongly, the direction of the velocity is re-
versed. This, of course, initiates heating by convection, and the buoyant
force increases, tending again to accelerate the fluid and to reverse
the direction of the velocity. The approach to the static terminal state

\d=0 w=104
Pr.=10
Ra.=10°
Gr.=10%

0.10 — R
" T4=0.01
&
>
v
E d=0.03
o
5
Q.
£ 4=0.06 d=0.05
O
[ \

| | | | I

7 e s */a %6 Vi ‘
Radius, R

Fia. 6. Transient temperature profiles.

is thus (as for Pr = 10) of the underdamped variety. The velocity and
temperature will thus oscillate at fixed frequencies and decaying am-
plitudes about the new configuration of equilibrium.

RESPONSE TO PERIODIC PRESSURE-RESONANCE

In order to discuss the resonance phenomena we shall consider the
effect of a pulsating pressure gradient on the velocity and temperature
fields. There is some question about the practicability of this solution
and Siegel and Perlmutter®® have suggested the fully developed solu-
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tions will not be applicable because the thermal entrance region under
these conditions is of great length. However, a resonance phenomenon
in a viscous and heat conducting fluid is a novel feature and it is of

some interest that the governing differential system does accommodate
such solutions.

w =10%
Pr= 10,
Raz 10°
Gr.=10%
80
60

u/8
D
o

Velocity,

~n
o

Yoo Yo s Y % e |

Radius, R

F1c. 7. Transient velocity profiles.

In particular we seek the response of the fluid to the pressure pulsa-
tion under the conditions that the temperature excesses at the inner
outer walls of an annular channel are @, and zero, respectively, at
initial and subsequent times. The non dimensional pressure gradient

is given as a sinusoidal variation from the constant pressure gradient
E; of the initial state

E(t) = E(1 — sinwt).
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The solution of the problem given by Eq. (21) is evaluated explicitly
for the given conditions as

UR 7))« LmColanB) [ 20, [R,
l :l Aum(“m +R ) I [

O(R, 7) ] + B /(1 — smoT) [ T ] -

om O(.,Z,

_ wEi(Ra + o(m m o‘m'}}m < ﬁ
m

[ (cosmT — e(rm—ﬂm)r) -+
29l (B — Vm)® + 0]

—/m

1
: N\ Ei Ra %xém %1 m
o s B )t 1 o~

] .
— e~ rmtbm)®) 4 o sin w71) lém — ym}) . (22)
S

It will be observed that the solution is composed of a time-inde-
pendent and time-dependent part.

[U(R, ) ] _ [Uﬁe) + UyR, r)}

O(R, 1) O,(R) + Oy(R, 7)|

If circumstances are such that y,, is imaginary, i.e. G,> 2 Zn (l — ; )2
f

then the transients of the time dependent part will be oscﬂlatory.

In the underdamped case it is possible to distort the velocity and
temperature profiles after the effects of transition by suitable choices
of the exciting frequency w.

To show this we consider the case for Pr = 1. For this case y,, =
= —R/*and B,, = «f. After the effects of the transition have decayed
the time dependent part Eq. (22) may be rewritten

>U2(R’ T) ]OmO ( ) . : (Z,z,,
= E;sinc
[@(R, r)] 2 Vonlet + Ba) ( o ‘”[ 1] +
B« + R,) coswt R, — ot — ?
)+ w‘[ ]+

T A TR + 20%al, — &, 242

<%y

N w?E; sin ot a2 (3R, — at— w?) .
- (am + Ro)* + 20%(an, — Bo) + 0| 348 — R, + 2

A constant pressure gradient gives rise to a displacement in the

oscillatory systems of magnitude (Ra -+ «})~1. The periodic gradient
gives rise to distortion of magnitude

[(am + Bo)* + 2% (af, — Ry) + @]
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This distortion is maximum for a given integer m if the exciting

f
requency w = wm == <Gr - “;171)1/2'

The distortion is then maximum and equal to 1/(2«%R}/*). Hence we
may conclude that any harmonic of the solution can be stimulated by
a suitable choice of exciting frequency.

If Pr + 1 there will exist M such that for M > M+y,, is purely real.
Resonant frequencies for this general case are given for m << M by

al, 1\27Ys
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