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Abstract

The velocity field of a binary mixture of incompressible miscible liquids is non-solenoidal

when the densities of the two liquids are different.  If the mixture density is linear in the volume

fraction, as in the case of simple (ideal) mixtures or very nearly for glycerin and water, then the

velocity can be decomposed into a solenoidal and an expansion part.  In the context of this

theory, we derive a new solution which describes the smoothing of an initial plane

discontinuity in concentration across a channel bounded by side walls.  The requirement that

the velocity vanishes on the side wall introduces a different initial discontinuity not present in

the solenoidal theory.  The problem may be reduced to a partial differential equation in two

similarity variables one for the smoothing of a concentration discontinuity without sidewalls

and the other for the smoothing the velocity discontinuity at the sidewall.  The similarity

equations are solved explicitly in a special case.

1. Introduction

In classical studies of mixing incompressible liquids (miscible displacements,

boundary convection, Taylor dispersion, reaction and diffusion, transport of diffusing

dyes, Marangoni convection, diffusion controlled solidification, etc.), it is universally

assumed that the mixture is incompressible, hence ∇ •u = 0.  This assumption is

incorrect when the densities of the mixing fluids are constants but not the same.

Incompressibility only implies that the density of the mixture will not vary with pressure;
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it may vary with temperature or concentration and in this case, ∇ •u ≠ 0.  Landau and

Lifshitz [1987] have derived a continuum theory of binary mixtures of compressible

miscible liquids which does not involve averaging over molecules of different species.

Joseph [1990] extended this theory to the case of linear mixtures of incompressible

liquids for where ∇ •u ≠ 0; the theory was developed further by Galdi, Joseph, Preziosi,

and Rionero [1991]. The theory takes an especially simple form when it is assumed that

the density a linear function of the volume fraction as is true of glycerin and water

mixtures.  The velocity field u of such a mixture of incompressible fluids is not in general

solenoidal; instead, it can be decomposed into a solenoidal and an expansion part.  The

expansion velocity is induced by diffusion which is proportional to the gradient of the

volume fraction.  Hu and Joseph [1992] studied the instability of miscible displacement

in a Hele-Shaw cell and found stability in cases where the classical theory gives rise to

instability.  A recent book by Joseph and Renardy [1992] is a convenient and

comprehensive source for these and related results.  The theory also embraces the

possibility that stresses are induced by gradients of concentration and density in diffusing

miscible liquids, as in the theory of Korteweg [1901].  Such stresses could be important

in regions of high gradients giving rise to effects which can mimic surface tension.  Even

when the Korteweg stress is not considered, a simple, non-classical one-dimensional

solution for diffusion in a pipe which gives rise to an exponential rather than linear

variation of the water fraction along the axis can be derived.  This solution is stable, but

the decay rates depend strongly on non-classical terms (Joseph, Huang and Hu [1996] .)

Joseph and Renardy [1992] also derived their theory by ensemble averaging over

molecules of different species.  They identified u as a mass averaged velocity and the

solenoidal part w as the volume averaged velocity.  Recently, Camacho and Brenner

[1995] rederived Joseph’s theory, apparently without any knowledge of the prior work,

for the case of more than two species in the special case in which the diffusion coefficient

and viscosity of the mixture are constants independent of volume concentrations.  They

considered the problem of the smoothing of an initial discontinuity at a plane.

The nature of the boundary condition at a solid wall can be considered.  For miscible

liquids, like glycerin and water, the mixture looks and feels like any other liquid and it is

natural to think that the no-slip condition u = 0 which applies to solutions of Navier-

Stokes equation, like (3) ought to apply.  This is the point of view adopted by Landau and

Lifshitz [1987], by Camacho and Brenner [1995], in our earlier work (see Joseph and

Renardy [1992]) and here.  However, in mixtures we do not know, at present, what is the
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appropriate average of the species velocities to insert in the viscous stress terms in the

momentum balance, or in the no-slip condition at a solid boundary.  In simple (ideal)

mixtures the volume averaged velocity is certainly solenoidal, but if some other averaged

velocity satisfies the no-slip condition, then diffusional wall layers will be found in the

neighborhood of solid boundaries.  This phenomenon will be illustrated by adopting the

common assumptions that it is the mass averaged velocity that appears in the viscous

terms and does not slip at walls, then examining a problem of inter diffusion in a binary

simple (ideal) mixture in the presence of a wall.

Gases are different than liquids, because the molecules between species of different

types are not held together by short range forces at a distance; collisions are the

dominating dynamical processes.  It is perhaps more natural to consider averages over the

two species of a binary mixture of gases, which unlike the constituents of miscible

liquids, are not tied together in lock step by molecular fields of force.  When viewed in

this way, we may identify u with the mass averaged velocity and the solenoidal part w

with the volume averaged velocity.  We may then consider whether w, u or some

combination of these ought to vanish at a solid wall.

Careful experiments on isobaric interdiffusion of binary gases in porous plugs by

Graham [1833] and others lead to the conclusion that the total mass flux does not vanish

even though the pressure is the same at either end of a capillary tube.  Jackson [1977] has

shown that Graham’s law which implies the existence of a mass flux in isobaric

conditions holds from free molecule to continuum flow.  On pages 25 to 33 of his book,

Jackson [1977] generalized a kinetic theory argument of Maxwell for a pure gas to a gas

consisting of a mixture of two substances to show that a weighted mass averaged

velocity, which is neither the mass or volume averaged velocity ought to vanish at a solid

wall.

Mo and Rosenberger [1991] did molecular-dynamics simulations of flow with binary

diffusion in a two-dimensional channel with atomically rough walls.  They found that the

no-slip condition for the mass averaged velocity arises when the mean free path in the gas

mixture is of the same order of magnitude or smaller than the atomic-wall-roughness

amplitude.  However, if there are concentration gradients along the wall, the component

velocities at the wall do not vanish.  Thus, the no-slip condition is established via the

mutual cancellation of the non-vanishing, opposing slip velocities of the components.

Mo and Rosenberger note that their work does not settle the apparent contradiction

between the results of isobaric interdiffusion experiments and the expected vanishing of



4

the mass averaged velocity at all locations; they speculate about possible reasons for the

discrepancy.

The sidewall effects, which are the focus of this paper, would disappear if the volume

averaged velocity were to vanish at solid wall.  This possibility seems to have been

rejected by all workers in their subject, but the nature of the boundary conditions at a

solid wall still needs clarification.

In this paper, we consider the smoothing of an initial discontinuity at a plane in the

presence of a sidewall.  When no sidewall is present a transient velocity u is generated,

but the evolution of the concentration follows the same equation as in the classical case of

matched densities in which u ≡ 0.  However, the solution with u ≠ 0 cannot hold when

there are sidewalls on which u = 0 is imposed.  In this case, we shall show that there is

an initial discontinuity also at the sidewall which is smoothed by diffusion.  The physical

problem which might be used to compare with analysis could be framed as molecular

mixing of a glycerin-water mixture which evolves when fresh water is placed carefully on

the top of glycerin in a container with bottom and top and sidewalls.  In the classical case

we get the famous error function similarity solution when we take the top and bottom to

infinity, even with the sidewalls in place.  We look at this problem again with the revised

theory and we show that the boundary conditions at the sidewalls are incompatible with

the one-dimensional similarity solution.  Even in the two-dimensional case a PDE in x, y

and t must be solved.  We were astonished to find that this PDE could be rigorously

reduced to a two-dimensional PDE in two similarity variables (ξ ,  η) = (x,  y) / D* t

where D*  is the scaling factor for diffusion coefficient.  This PDE can be posed as an

inner solution supported at one of the walls and subject to the condition that it reduces to

the one-dimensional outer solution far from the wall.

To simplify our study of the non-linear problem governed by (1), (2) and (3), we

looked for solutions as a power series in the normalized density difference
ζ = (ρG −ρW ) / ρG  (about 0.2 for glycerin and water) and truncated at first order.  This is

a sensible perturbation because the essential new features of the theory associate mainly

with effects of the weight difference of the two species.  The perturbation problem can be

solved in principle by Fourier transform techniques and it can actually be solved in closed

form for a certain special case.  The special case is probably fairly representative and it

satisfies precisely all the conditions required of the inner solution.
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2.  Governing Equations and Boundary Conditions

The governing equations (Joseph and Renardy [1992], Vol. 2, Chapter X) expressing

the diffusion of species, balance of mass and momentum for simple incompressible

binary mixtures can be formulated as

∂φ
∂t

+ ∇• φu( ) = ∇•
D

1− ζφ
∇φ

 
 
  

 
 , (1)

∇ • u −
ζD

1 − ζφ
∇φ

 
 
  

 
 = 0 (2)

and

ρ
∂u
∂ t

+ (u •∇)u
 
 

 
 = ρg − ∇p + µ

1

3
∇ ∇ •u( )+ ∇2u   

   
−

2

3
∇µ ∇ • u( ) + 2∇µ • D u[ ] (3)

where φ is the volume fraction, u is the mass averaged velocity, ζ is the normalized

density difference, D is the diffusion coefficient, ρ is the density and µ is the viscosity.

Note that D, ρ and µ  are functions of φ .

Define the expansion velocity ue  and the vortical velocity w as

ue =
def

∇h =
ζD

1 −ζφ
∇φ (4)

and

w =
def

u − ue (5)

where h  is given by

h = h(φ ) =
ζD

1 − ζφ
dφ

0

φ

∫ . (6)

The expansion velocity ue  has a zero curl and a non-zero divergence and ∇ ∧ u = ∇ ∧ w .

Here ζ is a primary parameter.  The expansion velocity ue  is proportional to ζ and D, the

diffusion coefficient, and is zero for two species with the same density.  The viscosity, µ
= µ(φ) is a rapidly varying function in general.  We could think of φ as the water fraction

of glycerin-water mixture, then empirically (Segur [1953]) µ(φ) may be approximated by
µG exp[α1φ + α2φ

2 + α3φ
3] and, for example, at 60oC, the coefficients are α1 = −10.8,
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α2 = 9.47, and α3 = −3.83 .  And according to the simple mixture assumption, the

density is given by ρ = ρG 1 − ζφ( ).  In the case of glycerin-water mixtures, the model

gives less than 1% error with the maximum error near φ = 0.5.  Values of D(φ)  for

glycerin-water mixtures may be obtained form Table 1 in the paper on miscible

displacement in capillary tubes by Petitjeans and Maxworthy [1996] (they measured
D(Cg ) , where Cg  is the percentage of glycerin by weight, over the whole range

0 ≤ Cg ≤ 1.)  Their paper and the companion paper on numerical simulation of miscible

displacement by Chen and Meiburg [1996] make some comparisons between the usual

solenoidal theories in which the weight difference is neglected and the non-solenoidal

theory under study here.

In terms of w, h and φ, the governing equations (1), (2), (3) can be written as

∂h

∂ t
+ w • ∇( )h = D∇2h − ∇h • ∇h , (7a)

∂φ
∂t

+ w •∇( )φ = ∇ • D∇φ( ) , (7b)

∇ •w = 0 (8)

and

ρ
∂w
∂t

+ (w • ∇)w + (∇w) • ∇h − ∇h • ∇w( ) 
 

 
 + ρ∇ D∇2h −

1

2
(∇h • ∇h)   

   

= ρg − ∇p + µ∇2w +
4

3
µ∇(∇2h) −

2

3
∇µ∇2h + 2∇µ • D w[ ]+ 2∇µ • D ∇h[ ]. (9)

The diffusive flux of any species across an impermeable, bounding surface vanishes.

If n is the outward at such a surface (from the fluid to solid), we have

n • ∇φ = 0 (10)

at an impermeable boundary.
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3. Problem setup

The problem under consideration is shown in Figure 1.  Species 1 with density ρW  is

placed over species 2 with density ρG , ρG>ρW , in the semi-infinite y > 0 to the right of a

rigid wall at y = 0, −∞ < x < ∞.  We can think that species 1 is fresh water and species 2 is

glycerin.

The fluids are at rest and of uniform composition initially,

u(x,y,0) = 0 and φ (x, y,0) =
0    for   x > 0

1    for   x < 0
 
 
 

(11)

and, at the rigid wall y = 0, we have

 u(x,0,t) = 0 and 
∂φ
∂y y =0

= 0. (12)

We also require that

lim
x→ ±∞
y>0,  t>0

u(x,y,t) = 0 , lim
x→ +∞
y>0,  t>0

φ (x, y,t) = 0, lim
x→ −∞
y>0,  t>0

φ (x, y,t) = 1 (13)

and

lim
y→∞
t>0

u(x,y,t) = U(x,t), lim
y→∞
t>0

φ (x, y, t) = Φ(x,t) (14)

Species 2 
(glycerin)

Species 1 
(water)

g

x

y

wall

Figure 1.  Two miscible liquids occupy the upper half plane.  Initially, heavy fluid is on the
right and light fluid is on the left with gravity g = gex  in the direction of increasing x.
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where U and Φ are the solutions for the one-dimensional problem which are given in

Joseph and Renardy [1992].  Explicitly, we have

U = Ue =
ζD

1 −ζΦ
∇Φ =

ζD

1− ζΦ
∂Φ
∂x

ex (15)

or, equivalently,

W = 0 (16)

and Φ satisfies the equation:

∂Φ
∂ t

=
∂
∂x

D(Φ )
∂Φ
∂x

 
 

 
 . (17)

4.  Similarity Transformation

In two dimensions, let

g = gex , w = wx ex + wyey ,

D w[ ] =
∂wx

∂x
ex ⊗ ex +

1

2

∂wy

∂x
+

∂wx

∂y

 
 
  

 
 ex ⊗ ey + ey ⊗ ex( )+

∂wy

∂y
ey ⊗ ey

and

D[∇h] =
∂ 2h

∂x2 ex ⊗ ex +
∂ 2h

∂x∂y
ex ⊗ ey + ey ⊗ ex( )+

∂ 2h

∂y2 ey ⊗ ey ,

then, the equation of motion (9) gives rise to two scalar equations:

ρ
∂wx

∂t
+ (wx

∂wx

∂x
+ wy

∂wx

∂y
) +

∂h

∂y

∂wx

∂y
−

∂h

∂y

∂wy

∂x

 
 
  

 
 + ρ

∂
∂x

D∇2h −
1

2
(∇h •∇h)   

   

         = ρg −
∂p

∂x
+ µ∇2wx +

4

3
µ

∂
∂x

(∇2h) −
2

3

∂µ
∂x

∇2h

         + 2
∂µ
∂x

∂wx

∂x
+

∂µ
∂y

∂wy

∂x
+

∂wx

∂y

 
 
  

 
 + 2

∂µ
∂x

∂ 2h

∂x2 + 2
∂µ
∂y

∂2h

∂x∂y
(18)

and
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ρ
∂wy

∂t
+ (wx

∂wy

∂x
+ wy

∂wy

∂y
) +

∂h

∂x

∂wy

∂x
−

∂h

∂x

∂wx

∂y

 
 
  

 
 + ρ

∂
∂y

D∇2h −
1

2
(∇h •∇h)   

   

           = −
∂p

∂y
+ µ∇2wy +

4

3
µ

∂
∂y

(∇2h) −
2

3

∂µ
∂y

∇2h

           +
∂µ
∂x

∂wy

∂x
+

∂wx

∂y

 
 
  

 
 + 2

∂µ
∂y

∂wy

∂y
+ 2

∂µ
∂x

∂2h

∂x∂y
+ 2

∂µ
∂y

∂ 2h

∂y2 . (19)

The components wx  and wy  of w may be expressed in terms of a stream function ψ :

wx = −
∂ψ
∂y

 and wy =
∂ψ
∂x

. (20)

Now we introduce Boltzmann similarity variables:

ξ =
def x

D*t
 and η =

def y

D*t
(21)

where D*  is the scaling factor of the diffusion coefficient D and carry out the

transformation on the basic equations, putting down details of routine but tedious

calculations in the Appendix.  We find that the diffusion equation (7) and the equation of

motion (18) and (19) transform into the following equations:

−D*

2
ξ

∂h

∂ξ
+ η

∂h

∂η
 
 
  

 
 −

∂ψ
∂η

∂h

∂ξ
+

∂ψ
∂ξ

∂h

∂η
+ ˆ ∇ h • ˆ ∇ h = D ˆ ∇ 2h , (22a)

−D*

2
ξ

∂φ
∂ξ

+ η
∂φ
∂η

 
 
  

 
 −

∂ψ
∂η

∂φ
∂ξ

+
∂ψ
∂ξ

∂φ
∂η

= ˆ ∇ • D ˆ ∇ φ( ), (22b)

ρ
D*

2

∂ψ
∂η

+ ξ
∂2ψ
∂η∂ξ

+ η
∂ 2ψ
∂η2

 
 
  

 
 +

∂ψ
∂η

∂ 2ψ
∂ξ∂η

−
∂ψ
∂ξ

∂2ψ
∂η2 −

∂h

∂η
∂ 2ψ
∂η2 −

∂h

∂η
∂ 2ψ
∂ξ2

 
 
 

 
 
 

+ρ
∂
∂ξ

D ˆ ∇ 2h −
1

2
( ˆ ∇ h • ˆ ∇ h)   

   
= (D*t)3 /2ρg − D*t

∂p

∂ξ
− µ ˆ ∇ 2

∂ψ
∂η

+
4

3
µ

∂
∂ξ

( ˆ ∇ 2h)

−
2

3

∂µ
∂ξ

ˆ ∇ 2h − 2
∂µ
∂ξ

∂ψ
∂ξ∂η

+
∂ 2µ
∂η

∂ 2ψ
∂ξ 2 −

∂2ψ
∂η2

 
 
  

 
 + 2

∂µ
∂ξ

∂ 2h

∂ξ 2 + 2
∂µ
∂η

∂ 2h

∂ξ∂η
(23)

and
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ρ
−D*

2

∂ψ
∂ξ

+ ξ
∂2ψ
∂ξ 2 + η

∂ 2ψ
∂η∂ξ

 
 
  

 
 −

∂ψ
∂η

∂2ψ
∂ξ 2 +

∂ψ
∂ξ

∂ 2ψ
∂ξ∂η

+
∂h

∂ξ
∂ 2ψ
∂ξ2 −

∂h

∂ξ
∂ 2ψ
∂η2

 

 
  

 
 

+ρ
∂
∂η

D ˆ ∇ 2h −
1

2
( ˆ ∇ h • ˆ ∇ h)   

   
= −D*t

∂p

∂η
+ µ ˆ ∇ 2

∂ψ
∂ξ

+
4

3
µ

∂
∂η

( ˆ ∇ 2h)

−
2

3

∂µ
∂η

ˆ ∇ 2h +
∂µ
∂ξ

∂ 2ψ
∂ξ 2 −

∂2ψ
∂η2

 
 
  

 
 + 2

∂µ
∂η

∂ 2ψ
∂ξ∂η

+ 2
∂µ
∂ξ

∂ 2h

∂ξ∂η
+ 2

∂µ
∂η

∂ 2h

∂η2 (24)

where

ˆ ∇ =
def

ex
∂

∂ξ
+ ey

∂
∂η

 and ˆ ∇ 2 =
def ∂2

∂ξ2 +
∂2

∂η2 . (25)

Equation (22) is in similarity form but (23) and (24) are not because the variable t appears

on the coefficients of pressure gradient and gravity terms.  The pressure gradient terms

may be eliminated by cross differentiation of (23) and (24) which gives

∂
∂η

ρ
D*

2

∂ψ
∂η

+ ξ
∂ 2ψ
∂ηξ

+ η
∂2ψ
∂η2

 
 
  

 
 +

∂ψ
∂η

∂ψ
∂ξ∂η

−
∂ψ
∂ξ

∂ 2ψ
∂η2 −

∂h

∂η
∂2ψ
∂η2 −

∂h

∂η
∂2ψ
∂ξ 2

 
 
 

 
 
 

−
∂

∂ξ
ρ

−D*

2

∂ψ
∂ξ

+ ξ
∂ 2ψ
∂ξ 2 + η

∂2ψ
∂ηξ

 
 
  

 
 −

∂ψ
∂η

∂ 2ψ
∂ξ 2 +

∂ψ
∂ξ

∂2ψ
∂ξ∂η

+
∂h

∂ξ
∂2ψ
∂ξ 2 −

∂h

∂ξ
∂ 2ψ
∂η2

 

 
  

 
 

+
∂ρ
∂η

∂
∂ξ

D ˆ ∇ 2h −
1

2
( ˆ ∇ h • ˆ ∇ h)   

   
−

∂ρ
∂ξ

∂
∂η

D ˆ ∇ 2h −
1

2
( ˆ ∇ h • ˆ ∇ h)   

   

= −
2

3

∂µ
∂ξ

∂( ˆ ∇ 2h)

∂η
+ 2

∂2µ
∂η∂ξ

∂2h

∂ξ2 +
∂
∂η

−2
∂µ
∂ξ

∂ψ
∂ξ∂η

+
∂µ
∂η

∂2ψ
∂ξ 2 −

∂2ψ
∂η2

 
 
  

 
 + 2

∂µ
∂η

∂2h

∂ξ∂η

+
2

3

∂µ
∂η

∂( ˆ ∇ 2h)

∂ξ
− 2

∂2µ
∂ξ 2

∂ 2h

∂ξ∂η
−

∂
∂ξ

∂µ
∂ξ

∂ 2ψ
∂ξ2 −

∂ 2ψ
∂η2

 
 
  

 
 + 2

∂µ
∂η

∂ 2ψ
∂ξ∂η

+ 2
∂µ
∂η

∂ 2h

∂η2

−
∂
∂η

µ ˆ ∇ 2
∂ψ
∂η

−
∂
∂ξ

µ ˆ ∇ 2
∂ψ
∂ξ

+
4

3

∂µ
∂η

∂ ( ˆ ∇ 2h)

∂ξ
−

4

3

∂µ
∂ξ

∂( ˆ ∇ 2h)

∂η
+

∂ρ
∂η

g(D*t)3 /2 . (26)

This equation is in similar form whenever the last term of (26) vanishes as in the
situations of negligible gravity or at first order in ζ where ρ(ξ , η;ζ) → ρ0(ξ ) .  More

generally, the spoiler term may be neglected precisely at the early times for which non-

classical effects are most important.
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To actually solve problems by similarity methods the governing equations as well as

the initial and the boundary conditions have to be successfully transformed.  Under the

similarity transform (21), the initial condition and boundary conditions given in (11),

(12), (13) and (14) can be transformed into the following similar forms:

A.)   





 lim

ξ → +∞
η→∞

φ (ξ ,η) = 0 and lim
ξ →−∞
η→∞

φ (ξ , η) = 1,

 lim
η→0

∂φ
∂η

= 0,

lim
ξ → +∞
η>0

φ (ξ ,η) = 0 and lim
ξ → −∞
η>0

φ (ξ ,η) = 1,

lim
η→∞

φ(ξ , η) = Φ(ξ ),

 (27)

B.)







lim
ξ → ±∞
η→∞

∂ψ (ξ ,η)

∂ξ
= lim

ξ →±∞
η→ ∞

∂ψ (ξ , η)

∂η
= 0,

lim
η→0

∂ψ (ξ , η)

∂ξ
= lim

η →0

ζD

1 − ζφ
∂φ
∂η

 and lim
η→0

∂ψ (ξ , η)

∂η
= lim

η →0

−ζD

1 − ζφ
∂φ
∂ξ

,

lim
ξ → ±∞
η>0

∂ψ (ξ ,η)

∂ξ
= lim

ξ →±∞
η>0

∂ψ (ξ , η)

∂η
= 0,

lim
η→∞

∂ψ (ξ ,η)

∂ξ
= lim

η→ ∞

∂ψ (ξ , η)

∂η
= 0,

 (28)

C.) lim
ξ → ∞

ψ (ξ , η) , lim
ξ → −∞

ψ(ξ ,η) , lim
η→∞

ψ(ξ ,η)  and lim
η→0

ψ (ξ ,η)  are constants, (29)

where Φ(ξ) satisfies the similarity equation from (17):

−D*

2
ξ

∂Φ
∂ξ

 
 
  

 
 =

∂
∂ξ

D(Φ )
∂Φ
∂ξ

 
 
  

 
 . (30)

Note that both Φ  and D only depend on ξ. Therefore, whenever (26) admits a similarity

form, the problem prescribed in section 3 will be governed by (22) and (26) with

conditions (27), (28), and (29).

The foregoing reduction shows that we are here dealing with the smoothing of two
discontinuities; of the concentration at x = 0 when t = 0+, and the tangential component of

u at the sidewall y = 0 at t = 0+.  The smoothing of the concentration discontinuity

generates a velocity ex • u  in the diffusion layer which is incompatible with no-slip on

the wall at y = 0.  The mechanism for carrying out the reduction of the velocity is also
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diffusive and propagates from the point (x, y, t) = (0, 0, 0) into the interior with a speed

proportional to D / t .

5. Perturbation equations

For better understanding, we shall carry out our perturbation on the un-transformed

system (7), (8), and (9) with initial and boundary conditions given in (11), (12), (13), and

(14).  Let the Taylor expansion of a function f on ζ around ζ = 0 be denoted by
f (ζ) = f 0 + f1ζ + O[ζ 2]  and expand u, w, p, h, ρ, µ, D, and φ.   Immediately, (4) and (5)

imply

w 0 = u0 and w1 = u1 − D0∇φ0 (31)

and (4) and (6) imply

h0 = 0  and ∇h1 = D0∇φ0. (32)

Since µ = µ φ( )  and D = D φ( ), we have

µ0 = µ(φ0)  and D0 = D(φ0) . (33)

Moreover, since ρ = ρG 1 − ζφ( ), we find that

ρ0 = ρG  and ρ1 = −ρ0φ0 . (34)

After expanding the equations and using (32), we identify the equations which hold at

zero and first order.  Thus, at zero order, we have

∂φ0

∂ t
+ w0 • ∇φ0 = ∇• D0∇φ0( ), (35)

∇ •w 0 = 0 (36)

and

ρ0
∂w0

∂t
+ (w 0 •∇)w 0

 
 
 

 
 
 

= ρ0g − ∇p0 + µ0∇
2w0 + ∇µ0 • 2D w0[ ] (37)

with the initial and boundary conditions
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w 0(x,y,0) = 0  and φ0(x, y,0) =
0    for   x > 0

1    for   x < 0
 
 
 

,

 w 0(x,0, t) = 0  and 
∂φ0

∂y y=0

= 0 ,

lim
x→ ±∞
y>0,  t>0

w 0(x,y,t) = 0 , lim
x→ +∞
y>0,  t>0

φ0(x, y,t) = 0 , lim
x→ −∞
y>0,  t>0

φ0(x, y,t) = 1

and
lim
y→∞
t>0

w0(x,y,t) = 0 , lim
y→∞
t>0

φ0(x, y,t) = Φ(x, t )

where Φ  is the 1-D solution.  The solutions of this system are

φ0 = Φ(x,t), w 0 = 0 and p0 = ρ0g • x . (38)

Therefore, (31), (33) and (34) give

u0 = 0  and u1 = w1 + D0∇Φ = w1 + D0
∂Φ
∂x

ex (39)

and

µ0 = µ0 (x,t) = µ(Φ) , D0 = D0(x,t) = D(Φ)  and ρ1 = ρ1(x,t) = −ρGΦ (40)

which do not depend on y.  From (32), we have

∇h1 = ∇h1( )(x,t) = D0∇Φ = D0
∂Φ
∂x

ex (41)

which also does not depend on y.

Applying (38), (40) and (41), we find that the governing equations at the first order

are

∂h1

∂t
= D0∇

2h1, (42a)

∂φ1

∂t
+ w1 • ∇φ0 = D0∇

2φ1 + D1∇
2φ0 , (42b)

∇ •w1 = 0 (43)

and
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ρ0
∂w1

∂t
= −∇p1 + µ0∇

2w1 + 2∇µ0 •D w1[ ]+ f (44)

where

  f = f(x,t) = f x (x,t)ex + f y (x,t)ey

 =
def

ρ1g +
4

3
µ0∇(∇2h1) −

2

3
∇µ0∇

2h1 + 2∇µ0 • D ∇h1[ ]− ρ0∇ D0∇
2h1( ) (45)

And the initial and boundary conditions are

w1(x, y,0) = φ1(x, y, 0) = 0 , (46)

w1(x,0,t) = −D0 ∇Φ y =0 = −D0∇Φ , 
∂φ1

∂y y =0

= 0 , (47)

lim
x→ ±∞
y>0,  t>0

w1(x, y, t) = lim
x→ ±∞
y>0 , t>0

φ1(x, y,t) = 0 (48)

and
lim
y→∞
t>0

w1(x, y, t) = lim
y→ ∞
t>0

φ1(x, y,t) = 0. (49)

Note that because ∇h1 = D0∇φ0 and w 0 = 0, equations (42a) and (35) are identical.

Since the gravity term in (45) does not depend on y, the condition required for the

similarity transformation under (26) are satisfied.  Using (40), (41), g = gex  and the

property that Φ, µ0  and D0 are independent of y, we find that (45) reduces to

  f = f xex + f yey

     = −ρGΦg +
4

3
µ0 − ρGD0

 
 

 
 

∂ 2

∂x2 D0
∂Φ
∂x

 
 

 
 +

∂
∂x

D0
∂Φ
∂x

 
 

 
 

4

3

∂µ0

∂x
− ρG

∂D0

∂x

 
 

 
 

 
 
 

 
 
 
ex , (50)

that is, f = f(x,t) and f y = f • ey = 0 .

Introducing a dimensionless stream function ˆ ψ  for w1 such that

w1 =
−D*

2 π
−

∂ ˆ ψ 
∂y

ex +
∂ ˆ ψ 
∂x

ey

 
 
  

 
 =

−1

2

D*

πt
−

∂ ˆ ψ 
∂η

ex +
∂ ˆ ψ 
∂ξ

ey

 
 
  

 
  (51)

and applying cross differentiation on (44), we find that the f term and the pressure term

are eliminated and obtain
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ρ0
∂
∂ t

∂2 ˆ ψ 
∂x2 +

∂2 ˆ ψ 
∂y2

 
 
  

 
 = µ0

∂ 4 ˆ ψ 
∂x 4 + 2

∂ 4 ˆ ψ 
∂x2∂y2 +

∂ 4 ˆ ψ 
∂y4

 
 
  

 
 

+ 2
∂µ0

∂x

∂ 3 ˆ ψ 
∂x3 +

∂ 3 ˆ ψ 
∂x∂y2

 
 
  

 
 +

∂2µ0

∂x2

 
 
  

 
 ∂ 2 ˆ ψ 

∂x2 −
∂2 ˆ ψ 
∂y2

 
 
  

 
 . (52)

The similarity form of this equation is

µ0
∂ 4 ˆ ψ 
∂ξ 4 + 2

∂ 4 ˆ ψ 
∂ξ 2∂η2 +

∂4 ˆ ψ 
∂η4

 
 
  

 
 + 2

∂µ0

∂ξ
∂3 ˆ ψ 
∂ξ3 +

∂ 3 ˆ ψ 
∂ξ∂η2

 
 
  

 
 +

∂2µ0

∂ξ 2

∂2 ˆ ψ 
∂ξ 2 −

∂2 ˆ ψ 
∂η2

 
 
  

 
 

+ρ0D
∂2 ˆ ψ 
∂ξ2 +

1

2
ξ

∂3 ˆ ψ 
∂ξ3 + η

∂3 ˆ ψ 
∂η∂ξ2 + ξ

∂ 3 ˆ ψ 
∂ξ∂η2 + η

∂3 ˆ ψ 
∂η3

 
 
  

 
 +

∂2 ˆ ψ 
∂η2

 
 
 

 
 
 

= 0 (53)

and the conditions are similar to those in (28) and (29) except that conditions on the wall

η = 0 now read

lim
η→0

∂ ˆ ψ 
∂ξ

= 0 and lim
η→0

∂ ˆ ψ 
∂η

= E(ξ ) (54)

where

E(ξ) =
def

−
2 π
D* D0

∂Φ
∂ξ

 
 
  

 
 . (55)

Defining a similarity-type of dimensionless velocity ˆ u 1 for u1 by

ˆ u 1 = 2
πt

D* u1 (56)

and using (39) and (51), we find that

ˆ u 1 =
∂ ˆ ψ 
∂η

+
2 π
D* D0

∂Φ
∂ξ

 
 
  

 
 ex −

∂ ˆ ψ 
∂ξ

ey . (57)

This can be calculated after (53) is solved.

After the stream function is found, the pressure can be obtained from (44) which may

be written as follows:
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∂p1

∂x
= ρ0

D*

4 π
1

t t

∂ ˆ ψ 
∂η

+ ξ ∂2 ˆ ψ 
∂η∂ξ

+ η ∂ 2 ˆ ψ 
∂η2

 
 
  

 
 

+ 1

2 π D*

1

t t
µ0

ˆ ∇ 2 ∂ ˆ ψ 
∂η

+ 2
∂µ0

∂ξ
∂ 2 ˆ ψ 
∂ξ∂η

− ∂µ0

∂η
∂2ψ
∂ξ2 − ∂ 2ψ

∂η2

 
 
  

 
  

 
 

 
 
 

+ f x

∂p1

∂y
= −ρ0

D*

4 π
t−3 /2 ∂ ˆ ψ 

∂ξ
+ ξ ∂2 ˆ ψ 

∂ξ 2 + η ∂ 2 ˆ ψ 
∂η∂ξ

 
 
  

 
 

− 1

2 π D*
t−3/2 µ0

ˆ ∇ 2 ∂ ˆ ψ 
∂ξ

+ ∂µ0

∂ξ
∂2 ˆ ψ 
∂ξ 2 − ∂2 ˆ ψ 

∂η2

 
 
  

 
 + 2

∂µ0

∂η
∂2 ˆ ψ 
∂ξ∂η

 
 
 

 
 
 

+ f y

 (58)

where f x  and f y  are given by (50).  Similarly, φ1 can be calculated from (42b) once the

stream function is known.

The equations just given express well the changes in the fluid mechanics of diffusion

in a binary mixture when a small difference of density of the mixing fluids is not

neglected.  The equations are all linear and could be solved by numerical methods.  In the

absence of any particular application the motivation for such a solution is basically to

understand the new features.  We may enhance our understanding more efficiently by

solving the problem by quadrature in a special case in which the equations simplify

greatly.

6.  Exact Solution

In order to simplify equation (53) further, we may consider the case in which the
viscosity µ0  is constant independent of φ as was done by Camacho and Brenner [1995].

For glycerin-water mixtures, the viscosity is rapidly varying, so that the assumption of

constant viscosity would introduce errors.  For glycerin-water mixtures,

ρ0Dmax

µ0

<< 1 (59)

where Dmax  is the maximum of D(φ).  When (59) holds and µ0  is constant, (53) reduces

to a biharmonic equation:

∂ 4 ˆ ψ 
∂ξ 4 + 2

∂ 4 ˆ ψ 
∂ξ2∂η2 +

∂4 ˆ ψ 
∂η4 = 0 . (60)
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Using Fourier transform on ξ and applying the convolution theorem, we find that the

solution of (60) can be expressed by a Poisson type of integral:

ˆ ψ ξ , η( ) =
1

π
η2E(s)

(ξ − s)2 + η2
−∞

∞

∫ ds . (61)

Moreover, when the diffusion coefficient is a constant, that is, D = D0 = D* = Dmax ,

we find that

Φ ξ( )=
1

2
−

1

2
erf

ξ
2

 
  

 
  (62)

and

E(ξ) = exp −
1

4
ξ 2 

 
 
 

. (63)

In this case, the streamlines given by (61) with (63) are shown in Figure 2, where

lim
ξ → ±∞

ˆ ψ (ξ ,η) = lim
η →0

ˆ ψ (ξ ,η) = 0  and lim
η→∞

ˆ ψ (ξ ,η) =
2

π
.

In Figure 3 we plotted the perturbation velocity field of ˆ u 1.  And Figure 4 shows the

velocity magnitude of ˆ u 1.

To compute φ1, we find that, from (42b), φ1 is governing by the following similarity
equation when  µ0  and D are constants.

ˆ ∇ 2φ1 +
1

2
ξ

∂φ1

∂ξ
+ η

∂φ1

∂η
 
 
  

 
 =

−1

4π
exp

−1

4
ξ 2 

 
 
 
⋅
∂ ˆ ψ 
∂η

(64)

with the conditions similar to those in (27) except that the non-zero terms there are

replaced by zeros.  This system requires a numerical solution which we will not pursue

here at this moment.

To compute pressure p1, we find that when  µ0  and D are constants, and under the

assumption of (59), equation (58) gives rise to

p1(x,y,t) =
2µ0D

π3 /2

y(x − Dts)

(x − Dts)2 + y2[ ]2
E(s)

−∞

∞

∫ ds
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+
µ0

3 π D

1

t3/ 2 x exp
−1

4

x2

Dt

 

  
 

  
 

 
  

 
 − ρGg Φ (x,t)dx∫ . (65)

Note that p1 does not have a solution in similarity form for reasons apparent in the

discussion following (25).
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Figure 2.  Dimensionless Streamline for w1 obtained from the stream function (56) with (60).

Figure 3.  The perturbation velocity ˆ u 1where ξ ∈ [−10,10]  η ∈[0,14]

 η=20
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η=0
ξ = −20  0   +20

Figure 4.  Contour plot of the velocity magnitude of the perturbation velocity ˆ u 1  within
ξ ∈ [−20, 20]  η ∈[0, 20]  .  The black region has the magnitude 0; the blue
region, about 0.1; the green region, about 0.5 and the white region has the maximal
magnitude 1.0.

7. Discussion

We considered the problem of smoothing of an initial discontinuity of concentration

of a simple binary mixture, like glycerin-water, in the presence of a sidewall.  The

assumption that the velocity is solenoidal, which is usually made in fluid mechanics

studies of diffusion, is incorrect when the difference in the density of the diffusing fluids

is taken into account; if there are concentration gradients or the concentration is evolving,

then the velocity is not solenoidal.  In the density matched solenoidal case, no velocity is

generated, and the presence of a sidewall will not effect the evolution of concentration.

When the fluid mechanics of diffusing liquids is corrected to account for different

densities, then a velocity must develop and then decay.  If no sidewall is present, the

evolution equation for the concentration reduces to the one for matched densities in

which there is no velocity; the concentration equations are the same.  When the sidewall

is present, and u = 0 there, the corrected theory cannot remain one dimensional because

the velocity generated in the diffusing layer is not compatible with the no-slip condition.

The resolution of this second discontinuity is also carried out by diffusion; a great

surprise is that the whole system of very nonlinear PDE’s can be reduced by two

similarity variables, one for x to smooth the concentration discontinuity and one for y to

smooth the velocity discontinuity at the sidewall.  We derived a perturbation theory for a
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small density difference which is a typical case and is particularly focused on the

underlying physics and solved it by quadrature in a special but perhaps representative

case.  The pressure also is given here as a quadrature, but unlike the stream function and

concentration the pressure cannot be put into similarity form.

The double similarity solution given here is the first of its kind.  The velocity

discontinuity which is at the bottom of this kind of mathematics arises when the (mass

averaged) velocity u vanishes there, or some combination of u and w vanishes there.  But

if the solenoidal part (volume averaged) velocity w vanishes at the sidewall, then the

velocity discontinuity will disappear.

The discussion issue raised here by the analysis of diffusion at sidewalls focuses on a

correct mathematical description of boundary conditions for diffusing mixtures of liquids

and gases; this issue has not yet been satisfactorily resolved.
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Appendix.  Change of variable for the similarity transformation

∂ξ
∂t

,
∂η
∂t

 
 

 
 =

−1

2t

x

D*t
,

y

D*t

 
 
  

 
 =

−ξ
2t

,
−η
2t

 
 

 
 ,

∇ = ex
∂
∂x

+ ey
∂
∂y

=
1

D*t
ˆ ∇ ,  ˆ ∇ =

def

ex
∂

∂ξ
+ ey

∂
∂η

,

∇2 =
∂ 2

∂x 2 +
∂2

∂y2 =
1

D*t
ˆ ∇ 2,  ˆ ∇ 2 =

def ∂2

∂ξ2 +
∂2

∂η2

∂h

∂ t
=

−1

2t
ξ

∂h

∂ξ
+ η

∂h

∂η
 
 
  

 
,
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∂wx

∂t
= −

∂
∂t

∂ψ
∂y

 
 
  

 
 = −

∂
∂ t

1

D*t

∂ψ
∂η

 
 
  

 
 =

1

2t D*t

∂ψ
∂η

+ ξ
∂ 2ψ
∂η∂ξ

+ η
∂2ψ
∂η2

 
 
  

 
 

and

∂wy

∂t
=

∂
∂ t

∂ψ
∂x

 
 

 
 =

∂
∂ t

1

D*t

∂ψ
∂ξ

 
 
  

 
 =

−1

2t D*t

∂ψ
∂ξ

+ ξ
∂ 2ψ
∂ξ 2 + η

∂2ψ
∂ηξ

 
 
  

 
 .
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