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1. Introduction
This memo is a short reaction to a write-up of a foamy heavy crude model by Dan

Joseph (1997a, 1997b). His model differs from a related model by Hammond (1997a,
1997b) by the fact that it is essentially a two-equation model (with as variables pressure
and void fraction), so that  no equations are written down for the quantity of dissolved
gas. It also treats the gas phase as being incompressible. It is not an equilibrium model in
the sense that gas fraction different from equilibrium can occur, but that these relax back
to the equilibrium state by first order kinetics with a certain time constant. In this sense the
model is similar to Hammond’s model (1997b), where relaxation of the dissolved gas
fraction occurs, also modelled by a linear kinetics mechanism.

The development of two different models for the same phenomenon in the current
foamy heavy crude project might be justified by the fact that the objective of the two
models is not the same. The Hammond model tries to give a more accurate description at
the price of being more difficult to solve and needing possibly more closure relations. The
Joseph model is probably better suited to get a rough understanding of the physics and it is
more easy to solve. The model has some limitations as well, which will be discussed
throughout this memo and especially in the conclusions.

2. Relation between void fraction and pressure
The first part of Dan’s reasoning is the following. If the quantity of gas that can be

dissolved in a oil is a linear function of pressure, which is supported by the measurements
of Svrcek & Mehrotra (1982, 1989), then the gas fraction of free gas in the oil should be a
linear function of pressure as well. This reasoning supposes that:
• uniformity of gas fraction exists;
• the pressure variations are small enough for the gas to be considered as incompressible.

The second part of his reasoning is to admit that there might be a deviation from
equilibrium behaviour (that is to say, the quantity of dissolved gas might sometimes be
different from the quantity which can be dissolved under thermo-dynamic equilibrium at a
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given pressure) and that this can be accounted for by linear relaxation of void fraction or
pressure towards the equilibrium value.

Let us reconsider his derivation. The problem is schematically resumed in figure 2.1.

Vl

Vl

Vg

t=0, psat, T t>0, p<psat, T, V=Vl+Vg

Figure 2.1 Expansion of a live oil by bubble nucleation during de-pressurisation

The pressure in a live oil, which is initially at saturation pressure, is decreased. The
quantity of gas which can be dissolved then decreases, so that some of the gas evolves out
of the oil and small bubbles are formed. It is supposed that these bubble stay in the oil, at a
homogeneous phase fraction φ  , defined by

φ =
+
V

V V
g

l g

(2.1)

where Vl is the volume of the liquid and Vg  the volume of the gas phase which is created.
We suppose that the liquid phase can be considered as incompressible and that the liquid
phase density ρ l  does not depend very much on the quantity of dissolved gas, which
seems to be a reasonable hypothesis (see figure 2.2).

The mass fraction of dissolved gas at a given pressure is approximately a linear
function of pressure, as for example shown in figure 2.3

( )ξ = K T p (2.2)
Dan expresses this in a fictive void fraction

$ ,

,

φ =
+

V

V V
g r

g r l

(2.3)
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Figure 2.2  Density of Athasca bitumen saturated with CO2 as a function of pressure
for different temperatures (297.6 K, 315.0 K, 336.0 K, 365.5 K.), data from Svrcek &

Mehrotra., 1982.
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Figure 2.3 Mass fraction of CO2 in Athasca bitumen as a function of pressure for
different temperatures (297.6 K, 315.0 K, 336.0 K, 365.5 K.), data from Svrcek &

Mehrotra., 1982; The slopes of the linear regressions are given by 1.39⋅10-8 Pa-1, 1.06⋅10-

8 Pa-1, 8.77⋅10-9 Pa-1, 5.66⋅10-9 Pa-1.
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where Vg,r is the volume of gas which is released if the pressure is dropped to atmospheric
pressure and Vl is the volume of the live crude oil.

The mass fraction of dissolved gas can be written as

ξ
ρ

=
N M

V
g d g

l l

, (2.4)

where Ng,d  are the number of moles of dissolved gas and Mg is the molar mass. When
released to atmospheric pressure pa and ambient temperature Ta these Ng,d moles of gas
occupy the volume Vg,r, which is related to Ng,d by

N
p V

RTg d
a g r

a
,

,=  (2.5)

where R=8.31 J⋅mole-1⋅K-1 is the gas constant, assuming that an ideal gas law holds.
Combination of (2.3), (2.4) and (2.5) then results in

ξ
ρ ρ

φ
φ

= =
−

p M
RT

V
V

p M
RT

a g

a l

g r

l

a g

a l

,
$
$1

(2.6)

and after inserting (2.2), the relation between this fictive void fraction $φ  and the pressure
becomes:

$φ

ρ

=
+

p

p
p M

KRT
a g

a l

(2.7)

or inverting it

p
p M

KRT
a g

a l

=
−ρ
φ

φ
$
$1

(2.8)

For low fictive void fractions $φ << 1

( )$
$

$ $ $φ
φ

φ φ φ
1

1
−

≈ + ≈ (2.9)

and then (2.8) becomes the second equation on page 4 of Dan’s memo
( )p T C= +γ φ$ (2.10)

with the difference that we have supposed that ξ  is a linear function of p and that
ξ = 0  at p=0, which seems a reasonable hypothesis according to figure (2.3). γ  and K are
thus related by

( ) ( )γ
ρ

T
p M

K T RT
a g

a l

= (2.11)

Dan’s model is essentially incompressible for the gas phase. This can be easily seen
by equation (2.6) which states that the fictive volume fraction is proportional to the mass
fraction of dissolved gas (or the pressure) if $φ << 1. If $φ  however increases due to an
increasing pressure then the incompressibility hypothesis becomes less and less good, the
gas occupying less space due to the increased pressure.

We are however not really looking for a relation between this fictive void fraction
and the pressure, but rather for a relationship between the real void fraction, defined
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by (2.1) and the pressure. If we assume that no bubbles move out of the system, then the
total number of moles of gas in the system remains constant. At the saturation pressure all
the gas is dissolved and the number of moles in the system is given by

N
Kp V

Mg d
sat l l

g
, = ρ

 (2.12)

when the pressure is decreased the number of dissolved moles of gas decreases and the
number of moles of free gas increases

Kp V
M

KV
M

V
RT

psat l l

g

l l

g

gρ ρ= +






 (2.13)

This can be re-written as
1

1 1

−

− −







= ≡φ

ρ
φ

M

K RT

p
p

p
g

l

sat

* (2.14)

or as

φ

ρ

= −

− −







1

1 1

p
M

K RT
pg

l

*

*

(2.15)

For

1 1−





 <<

M
K RT

g

lρ
φ (2.16a)

so for very solubilities or for low void fraction, first order expansion leads to

1− =
M

K RT
pg

lρ
φ * (2.16b)

This can be re-written, using (2.11) in

p
p
p

T
T

psat

a

a
sat+ 






 =γ φ (2.17)

which looks very alike equation (4) in Dan’s paper. For notation convenience we define

′= 





γ γ p

p
T
T

sat

a

a (2.18)

So that
p psat+ ′ =γ φ (2.19)

So Dan’s result seems all right, but the way he obtained it is not completely correct, and
his equation (3) should yield:

( ) ( )γ φ φ γ φ φ$ $
2 1 1 2− = ′ − (2.20)

For Zuata oil at room temperature
′ = ≈ ⋅

⋅ × × ×
≈

−

−
γ

ρp

M

K RTsat

g

l

16 10
35 10 10 8 31 293

19
3

9 3. .
.
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which shows us that a little bit below the bubble pressure (otherwise there is no
nucleation) an increase of 2% in pressure is associated with a rise in void fraction of 0.01.

3. Non-equilibrium behaviour
We assume that (2.19) holds in an equilibrium situation and that in a distortion from

equilibrium the system relaxes back to the equilibrium according to a first order rate
mechanism:

D
Dt

eqφ α
φ φ

τ
= −

−
(3.1)

where φeq  is given by a solution of equation (2.19)
p peq sat+ ′ =γ φ (3.2)

The porosity α  appears in this equations for the case in which the nucleation happens in a
porous medium where only a α  part of the volume is not occupied by rock or sand. This
is related with the definition of the derivative D/Dt, which is a substantial time derivative,
indicating that the gas fraction in an volume element changes both by mass transfer and by
transport of gas fraction into this element

( )D
Dt t

φ ∂αφ
∂

= + ⋅∇ φq (3.2a)

Substituting (3.2) in (3.1) we obtain

κ φ γ φD
Dt

p psat= − ′ − + (3.3)

where

κ τγ
α

= ′
(3.4)

Equation (3.3) is the first equation on page 5 of Dan’s paper.
On of the restrictions of Dan’s theory is that bubbles should move all the time with

the liquid phase. This can be explained as follows. The void fraction is not a fundamental
parameter in the nucleation problem. The rate of nucleation is determined by the difference
between the available quantity of dissolved gas and the quantity which thermodynamically
can be present at the given temperature and pressure. This rate of nucleation can, in the
case that the bubbles move with the liquid phase, be expressed in a void fraction and a
pressure, which is essentially what Dan does. But in a case where the bubbles leave the oil
zone in which they have been nucleated or in a case where the oil leaves the bubbles
behind, this does not seem possible to me. Void fraction can be constantly reduced by
transport of bubbles out of the reservoir without this affecting the nucleation rate. So this
is one of the things that we have to keep in mind.

In a revision (Joseph, 1997c), Dan writes a relaxation equation in pressure. This
equation can be obtained by supposing that close to equilibrium the substantial derivative
of pressure and void fraction are related by (2.19):

D
Dt

Dp
Dt

φ
γ

= −
′

1
(3.4a)

Substituting this in equation (3.4) we obtain
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τ
α

γ φDp
Dt

p psat= ′ + − (3.4b)

In my opinion the relaxation equation should not be given as in (3.3), neither as in (3.4b),
but rather as:

′ ≈ ′ + −τ
α

φ γ φp
D
Dt

p psat (3.4c)

which is a non-linear differential equation and which cannot be transformed in one of the
equations proposed by Dan. I will defend this proposition more in detail in section 4.

Density of dissolved gas
I must admit that I have difficulties following Dan’s argument about the density of

dissolved gas and the density of pure liquid. Very ingeniously, he is defining a volume
fraction Ψ  of dissolved gas. What is however this volume fraction of dissolved gas ? If
we imagine the gas molecules sitting individually between oil molecules it is difficult to see
what the relative volumes of each phase are. Therefore I will refrain from arguing about
equation (5) in Dan’s paper.

I think that there are two things you can measure. The first is the compressibility c of
a dead oil

δρ
ρ

δl p

l p

c p,

,

= (3.5)

The second is the compressibility ′c  of a live oil
δρ
ρ

δl

l

c p= ′ (3.7)

The difference between c and ′c  comes from the fact that the density of the oil
changes when its composition changes. In the Svrcek & Mehrotra (1982) experiments for
solubility of CO2 in Athabasca bitumen the constant ′c  proves to be close to zero. This is
however not a general rule as shown by the CH4 data in the same paper.

Now it is possible to define a constant d by the definition:
δρ
ρ

δ δξl

l

c p d= − (3.6)

as is done by Hammond (1997b) so that with help of (2.2)
c dK c− = ′ (3.7)

The constant d does however not have any fundamental value as such because it is
impossible to distinguish the effects of compressibility and composition change.

4. Transport equations

4.1. Mixture transport for incompressible flow
The transport of the foamy crude is governed by a system of 3 transport equations

(one for the liquid without dissolved gas, one for the dissolved gas and one for the free
gas) completed by the Darcy equation for the mixture (Hammond, 1997a)

( )( ){ } ( )( ){ }∂
∂

α φ ξ ρ φ ξ ρ
t l l1 1 1 1 0− − + ∇ ⋅ − − =q (4.1a)
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( ){ } ( ){ }∂
∂

α φ ξρ φ ξρ
t

fl l
l g1 1− + ∇ ⋅ − = − →q (4.1b)

{ } { }∂
∂

αφρ φρ
t

fg g
l g+ ∇ ⋅ = →q (4.1c)

q u= = −α λ∇ p (4.1d)
This write-up assumes that the gas bubbles move with the same velocity as the liquid,
although and extension of the model including relative velocities is possible by including
two Darcy equations and relative permeabilities.

On purpose I have deviated a little bit from Dan’s definition of the velocity because I
think that (4.1d) more clearly indicates that q is a ratio between volume flow rate and
area, whereas u  is a local velocity in the porous medium. The equations (4.1a)-(4.1d) is a
set of six equations of six variables, φ , ξ , q and p, assuming that q has three components.
α  is a parameter and closure modelling of λ  and f l g→  should be provided, as well a
constitutive equations for ρ l  and ρ g .

If we choose to add all three, we obtain a mixture conservation equation

( ) ( ) ( )∂
∂

αρ ρ ∂
∂

αρ ρ∇
t t

+ ∇ ⋅ = + ⋅ + ⋅∇ ρ =q q q 0 (4.2)

with the mixture density defined by
( )ρ φ ρ φρ= − +1 l g (4.3)

Assuming that the gas density is much lower than the oil density: ρ ρg l<< , (4.3) writes

( )ρ φ ρ≈ −1 l (4.3)
Substituting this mixture density in equation (4.2) and re-arranging we obtain an equation
for the void fraction evolution

( ) ( )∂
∂

αφ φ
t

+ ⋅∇ φ = − ∇ ⋅q q1 (4.4)

Inserting the Darcy equation (4.1d) in equations (3.4b) and (4.4) we obtain

( ) ( )α ∂φ
∂

λ∇ φ λ∇
t

p p− ⋅∇ φ = − ∇ ⋅ −1 (4.5a)

( )α ∂
∂

λ α γ φ τp
t

p p psat− ∇ = ′ + −2 / (4.5b)

which relates void fraction and pressure drop.
There seems to be an incompatibility between the complete model shown by

equations (4.1a)-(4.1c) and the neglect of the gas phase density compared to the liquid
phase density. If we add (4.1a) and (4.1c) and we suppose that the liquid is
incompressible, then we obtain:

( ) ( )∂
∂

αφ φ ρ
t

f l g
l+ ⋅∇ φ − − ∇ ⋅ = →q q1 / (4.6)

which together with (4.4) would impose f l g
l

→ ≈/ ρ 0 . This however represents the fact
that the liquid density is hardly effected by the transfer of mass.
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4.2. Other method
It is possible to avoid making hypotheses on what the relaxation equation (3.3)

or (3.4b) should look like, altogether eliminate the dissolved gas fraction as a parameter
and to keep compressibility in the model. This can simply be done by adding
equations (4.1a) and (4.1b) and by substituting constitutive equations in the result and in
equation (4.1c). The transport equations are then

( ){ } ( ){ }∂
∂

α φ ρ φ ρ
t

fl l
l g1 1− + ∇ ⋅ − = − →q (4.7a)

{ } { }∂
∂

αφρ φρ
t

fg g
l g+ ∇ ⋅ = →q (4.7b)

The constitutive equations for the densities can be written as
( )[ ]ρ ρl l sat satc p p= ′ −, exp (4.8a)

ρ
ρ

g
g sat

satp
p= , (4.8b)

and after substitution in (4.7)

( ) ( ){ } ( ){ }′ − + ⋅∇



+ − + ∇ ⋅ − = − →c

p
t

p
t

f l g
l1 1 1φ α ∂

∂
∂
∂

α φ φ ρq q / (4.9a)

{ } { }φ α ∂
∂

∂
∂

αφ φ ρp
t

p p
t

f pl g
sat g sat+ ⋅∇



+ + ∇ ⋅





= →q q / , (4.9b)

The transfer term f l g→  does however depend on ξ . A simple way to model it would be a
linear kinetics mechanism (Hammond, 1997b)

( )f
Kpl g

l
→ = − −α φ ρ ξ

τ
1 (4.10)

supposing that the pressure is lower than the saturation pressure of the mixture. We could
now imagine that if the liquid is super-saturated, i.e. ξ − >Kp 0 , that the “void fraction is
under-saturated”. Or in other words, gas has to be transferred from the liquid into the free
gas phase. This is indicated by substituting (2.2) in (2.14)

ξ γ φ− ′ =K Kpsat (4.11)
Substituting the ξ  value this obtained in equation (4.10) we obtain

( )
( ) ( )

f
K p p

M p

RT
M

K RT

l g
l

sat
g

l

g

l

→ = −
− − −

− −

















ρ φ α
φ

φ
ρ

ρ
φ τ

1
1

1 1

(4.12a)

For low void fractions, this can be written as

( )f K
p pl g

l
sat→ = − − − ′ρ φ α γ φ

τ
1 (4.12b)

This looks a lot like the right-hand size of equation (3.3), which is of course not
surprising, since both are based on equation (2.2). Instead of (4.10), which depends on ξ ,
we now have a transfer term which only depends on void fraction and pressure. Without
the assumption of low void fractions, the transfer term should yield
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Recalling the definition of the substantial derivative D/Dt
D
Dt t

= + ⋅∇∂
∂

q (4.13)

we can write (4.9) as

( ) ( )′ − − = − − − ∇ ⋅→c
Dp
Dt

D
Dt

f l g
l1 1φ φ ρ φ/ q (4.14a)

φ φ ρ φ∇Dp
Dt

p
D
Dt

f p pl g
sat g sat+ = − ⋅→ / , q (4.14b)

There are a few interesting observations that we can make about these equations.
Combining the equations in order to obtain two equations with either Dp Dt/  or D Dtφ /
in the left-hand side, we obtain

( ) ( ) ( )

( )( ) ( )

D
Dt

c p
K p p

p M
RT

c p

c p p

sat
sat g

l

l

g sat

φ φ
φ

α
τ ρ

φ
φ
φ

ρ
ρ

φ λ∇

= +
− ′






 − −






 +

− ′







+ − ′ − ∇ ⋅ −

−

1
1

1
1

1 1

1

{

}
,

(4.15a)

( ) ( )

( )
( )

Dp
Dt

c p K p p p M
RT

p
p

p p

sat sat g

l

l sat

g sat

= + − ′







−
−









 −








− ∇ ⋅ −
−

−

1
1

1

1

1φ
φ

α
τ φ ρ

ρ
ρ

λ∇
φ φ

{

}

, (4.15b)

As a limiting behaviour for ′ << <<c p φ 1 these simplify to:

( ) ( ) ( )D
Dt

K p p
p M
RT

psat
sat g

l

φ α
τ ρ

φ φ λ∇= − −





+ − ∇ ⋅ −1 (4.16a)

( ) ( )
( )

Dp
Dt

K p p p M
RT

p p
p psat sat g

l

l

g sat
sat=

−
−









 −






−

∇ ⋅ −
−

α
τ φ ρ

ρ
ρ

λ∇
φ φ, 1

(4.16b)

The first of these equations looks very much alike equation (4.5a) which we had earlier
obtained, with the difference that a contribution to of the mass transference occurs. The
second equations is significantly different from (4.5b) and it does not look particularly nice
for low void fraction.

Instead, it seems a better idea of replacing (4.16b) with another equation which
follows directly from substituting (4.12b) in (4.14b)

( ) ( ) ( ) ( ) ( )D p
Dt

K p p
p M
RT

p p psat
sat g

l

l

g sat
sat

φ α
τ

φ
ρ

φ ρ
ρ

φ λ∇= − − −





 − ∇ ⋅ −1

,

(4.17)

which of course is nothing else than the mass transport into the compressible gas phase as
represented by equation (4.1c).

For low void fractions this equation reduces to

( )p
D
Dt

K p p
p M
RT

psat
sat g

l

l

g sat
sat

φ α
τ ρ

φ ρ
ρ

≈ − −







,

(4.17)

which makes think that neither (3.3), nor (3.4b) is the right equation, but that the
relaxation occurs according to
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′ = − ′ − +τ φ γ φp
D
Dt

p psat (4.18)

which would then not result in a nice telegraph equations such a obtained by Dan.
We can conclude from equations (4.16b) and (4.17), that the transport equations

(4.1) cannot be reduced to Dan’s equation (3.4b) or (4.5b).

5. Interpretation of the equations
Under the low void fraction and low compressibility assumptions, the model is

described by

α ∂φ
∂

λ∇ α
τ ρ

φ ρ
ρt

p K
p
p

p M
pRT

psat sat g

l

l

g sat
sat− ⋅∇ φ = −





−








1

,

(5.1a)

( ) ( )α ∂φ
∂

λ∇ α
τ ρ

φ λ∇
t

p K p p
p M
RT

psat
sat g

l

− ⋅∇ φ = − −





+ ∇ ⋅ − (5.1b)

The mobility λ  will in generally depend on φ  and thus on the spatial co-ordinate because
of pore-blocking by bubbles and because of reduction of dissolved gas concentration
associated with the increase in void fraction. If the dissolved gas concentration decreases
then the viscosity of the live oil increases, which creates a decrease in mobility.

A combination of equations (5.1a) and (5.1b) gives

( ) ( )∇ ⋅ = − − −





 −






λ∇ α

τ ρ
φ ρ

ρ
p K p p

p M
RT

p
psat

sat g

l

l sat

g sat,

1 (5.2)

which is a diffusion equation for the pressure. If the pressure goes not too much
below the saturation pressure then ρ ρl sat gp p/ ( ) >> 1 so that the first term on the right-
hand side of (5.1b) can be neglected

( )α ∂φ
∂

λ∇ λ∇
t

p p− ⋅∇ φ = ∇ ⋅ − (5.3)

Assume that we start at p psat=  and φ = 0 . If in a small volume the pressure is then
slightly decreased then the right-hand side of equation (5.1a) becomes positive. The left-
hand side tells us then that the void fraction in the cell has to increase (nucleation of
bubble !).

In one-dimensional space co-ordinates the system is described by
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∂
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∂
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

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−








1
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(5.4a)
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λ ∂
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x x x

p
x

− = −



 (5.4b)

These can be further simplified by supposing that the mobility is constant and by dropping
inertia
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∂
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





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(5.5a)
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2 (5.5b)
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It should be pretty straight forward to solve (5.5) numerically, but analytical solution
seems pretty tough to me. Maybe it is possible supposing that a very small pressure
variation already creates a significant increase in void fraction, in which case the equation
become de-coupled.

6. Conclusions
I am not sure that all this is right, but I am sure that Dan or Paul Hammond will

correct me if I am wrong. There might still be some typing or fundamental errors in the
memo which I have not found yet.

Concerning the equilibrium behaviour it seems possible to base our initial arguments
on the dissolved gas fraction, eliminating it afterwards, because this directly gives access
to a more correct pressure-void fraction relation (equation 2.14) which then for low void
fractions reduces to the relation found by Dan (equation 2.19). This method avoids as well
the introduction of the variable $φ  which by some people is confused with a void fraction,
whereas it is a fictive void fraction of gas in solution. There seems to be some erroneous
arguments in Dan’s memo (see equation 2.20) although he ends up with more or less the
right equilibrium equation.

The corrected relaxation equation should in my opinion be given by (4.18), which is
almost linear when the pressure variations are small, but which is different from the
equations given by Dan. In fact, the product of pressure and void fraction pφ  relaxes back
to equilibrium by interface mass transfer, instead of only the pressure or only the void
fraction. The present write-up permits as well to keep liquid compressibility in the model ,
although I think that this is not essential. It has been shown that the criteria for neglect of
compressibility yields ′ <<c p φ . If the void fraction is not small, then the model equations
are resumed by (4.15a) and (4.17), although for both of these equations the mass transfer
term is based on the small void fraction assumption. This can be solved by using
equation (4.12b) instead of (4.12a).

The main limitation of the model is that it seems impossible to include drift between
the gas and liquid phase. Even if this can be done by including an additional Darcy
equation for the velocity of the gas, it becomes impossible to relate the quantity of
dissolved gas to the void fraction. Furthermore, Dan’s model is only valid for low void
fractions and still lower products of pressure and compressibility, although this
shortcomings can be removed if it turns out to be necessary, as shown in the preceding
sections. Another limitation of the model is that the modelling of mass transfer by
nucleation is more or less fixed and more difficult to modify then in Paul’s model. The
advantage of the model is that it is more easy to solve. For these reasons I think that the
model might be very useful to do parameter studies which might give an idea about how
production can be increased or optimised. It is probably less well suited for inclusion in a
reservoir simulation code.

Acknowledgements: I would like to thank Prof. Dan Joseph and Dr. Paul Hammond
for discussions on the subject of modelling of the behaviour of foamy crudes and for their
help. I am looking forward to further interactions and co-operations.
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