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1 Introduction

This model is motivated by the need to explain anomalous features associ-
ated with production from reservoirs of so-called foamy oils. These oils are
described by some of their properties of response to pressure declines; it is
noted that they nucleate dispersed gas bubbles and display obvious foami-
ness in well head samples produced by solution gas drive in which oil and
gas is produced by the draw down of pressure.

When compared with the response of conventional oils, the response of
foamy oils to draw down of pressure is more favorable; primary recovery
factor (percentage of the oil in the reservoir which can be recovered) the
rate of production, the ratio of oil to gas which is recovered and the length
of time that a given pressure gradient can be maintained are all increased
substantially; the reasons for the favorable response of foamy oils in solution
gas drive are not well understood and tentative explanations which have
been put forward are controversial (see Maini (1996) and Pooladi-Darvish
and Firoozabadi (1997) for recent reviews).

One property of foamy oils which has not been emphasized in the lit-
erature on solution gas drive is that these oils carry copious amounts of
dissolved gases in the condensed state. The relevant thermodynamic prop-
erty for this is \gas solubility"; a function of temperature and pressure at
equilibrium which gives the volume fraction of dispersed gas from the crude
oil by outgassing. Tables of solubility of methane, carbon dioxide and other
gases in various Canadian crude oils have been given by Svrcek and Mehorta
(1982), Peng, Fu Bird and Hsi ( )1 and others. Naturally, if there is a lot
of dissolved gas in, there is potential for a lot of gas to come out. The oils
considered to be foamy evidently cavitate small dispersed bubbles which
move with the crude oil in which they are dispersed. Experiments done
by Pooladi-Darvish and Firoozabadi (1997) have shown that bubbles which
arise from depressurization of silicone oil and heavy crude of equivalent vis-
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cosity are very di�erent; the bubbles in the silicone oil are larger and much
more mobile than the ones in crude oil. Viscosity alone is not enough to
demobilize dispersed gas; it is necessary to look at other properties like sur-
facce tension and surface active agents. Obviously there are suface active
agents which are present naturally in foamy crudes which allow them to
foam, but the precise agents, their composition and the mechanics by which
they are released apparently have not been studied.

Having said all this, we might test the validity of the notion that a foamy
oil is a heavy crude with high gas solubility which cavitates (or nucleates)
in small dispersed, relatively immobile gas bubbles which foam possibly
under rapid depressurization. Subject to revision, such a de�nition does
lend itself to laboratory tests which could allow one discriminate between the
\foaminess" of di�erent foamy oils. Two tests are suggested: (1) solubility,

(2) foaming threshold.
In solution gas drive of foamy oil the depressurization of the sample leads

to cavitation of small dispersed bubbles. The volume fraction of dispersed
gas increases the volume of our composite uid and it acts as a pump, gas
coming out of solution pumps the uid outward. This pumping action is
well described by the continuity equation (16) which implies that in a closed
volume � with boundary @� containing dispersed bubbles of volume fraction
�.

Z
�

1

1� �

d�

dt
d� =

I
@�

u:n (1)

Where n is the outward normal on @� and u is the velocity of our composite
uid.

The relative velocity of dispersed gas is important; if the bubbles coalesce
and move relative to the oil more gas and less oil will be produced. Good
recovery is sometimes described by a critical gas saturation value; this value
is a volume fraction of the gas in the pores of a sand pack so that when a
critical amount of dispersed gas is collected in the pores, the gas connects
and moves out of the system. Maini [1996] identi�es this critical saturation
as a percolation limit, whilst Firoozabadi, Ottensen and Mikkelsen [1992]
and Pooladi-Darvish and Firoozabadi [1997] identify this even by visual
observation of bubbles in a viewing window. The values given by Firoozabadi
et al are about 5 times smaller than those given by Maini and his coworkers.

When the gas percolates, the good news about recovery is over; it is no
wonder that all authors �nd that the critical saturation values are about the
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same as the primary recovery factors (which is the fraction of oil recovered by
solution gas to oil in the reservoir) even when they disagree about de�nitions.
The description of recovery and saturation might be usefuly framed in terms
of holdup

h = U0=Ug (2)

where U0 is the volume ow rate of oil over the cross sectional area of oil,
similarly for gas. For dispersed gas bubbles moving with the oil h = 1, when
the gas bubbles are trapped in the sand, Ug = 0 and h = 1 and when the
oil is trapped, h = 0. Trapped oil is not good for production, but the values
of h greater than or equal to a number not too much smaller than one are
interesting.

The literature on solution gas drive of foamy oils focuses on analysis of
nucleation and growth of gas bubbles; no satisfactory discussion of the forces
which induce these bubbles to move relative to the oil has been given. One
obvious mechanism for producing such a relative motion is buoyancy; if this
mechanism is important for critical gas saturation and primary production
we could expect to see large di�erences between critical values in horizontal
and vertical sand packs.

The model proposed here does not require information about nucleation,
bubble growth, compressibility or forces which produce relative velocity.
We put up a one phase or mixture theory in which the dispersed gas is
described by a gas fraction �eld in a single uid in which the viscosity,
density and mobility in Darcy's law all depend on the gas fraction. This uid
satis�es the usual Darcy law, and the continuity equation together with a
kinetic (constitutive) equation required by the condensation and outgassing
of methane (or other gases) in heavy crude. The theory depends only on
parameters which an be measured in a PVT cell and sand pack. The virtue
of the model is simplicity, but it can only work when the gas is dispersed.
Certainly such a theory could not be expected to give rise to a percolation
threshold or even to a critical gas fraction. We hope that it can describe
many features of solution gas drive of foamy oils in the regimes when the
bubbles in the mixture are dispersed and even when they are trapped in
foam.

It is our idea the increased recovery and production are generated by the
pumping of nucleating and growing gas bubbles embodied in (1). However
recovery factors and production rates are not the same and we might test
some ideas: if two foamy oils have the same viscosity, the one with higher
solubility will have higher primary recovery and production rate; if two
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foamy oils have the same solubility, the one with lower viscosity will have
a higher rate of production but a lower primary recovery. If the oil foams
in situ, the primary recovery factor increases and the rate of production
decreases.

2 Solubility of gas in crude oil

In this model we avoid all constitutive equations regarding nucleation rates,
bubble growth, and compressibility. In our model we have only foamy oil
and dispersed gas, but the dispersed gas enters only through

� =
V dispersed gas

Total Volume

We propose to describe the evolution of � by an evolution equation for
uniform samples in a PVT cell of the form

@�

@t
= f(p; �)

where f(p; �) is to be determined from experiments. We have equilibrium
whenever

f(p; �) = 0

Svrcek and Mehrota (1982) give volumetric solubility curves (CO2 and
methane CH4, in �gure 1 below). In these �gures �̂ is the volume fraction
of gas that can be evolved out of bitumen when the pressure is dropped to
less than one atmosphere at a temperature of 100�C. We can assume that
this tells you how much dispersed gas can come out of solution of condensed
gas which is at a saturation value at any pressure and temperature. We are
going to assume that this �̂ determines the dispersed gas fraction � following
an argument put forward in section 4.

In the present approach we have no way to predict the size or size dis-
tribution of gas bubbles. This means that we are free to choose the size
and distribution to measure � and the most convenient choice is when all
the released gas is collected at the top of the cell. Figure 2 describes a
depressurization experiment
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Figure 1: (Svrcek and Mehrota [1982]) Solubility curves: �̂ vs. p
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Figure 2: Total depressurization experiment
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Now we do the same experiment at (p2; T1). If p2 > p1, more gas is
condensed in the liquid. Therefore Vg is larger and

�̂2 =
Vg

Vg+Vl
at T = T1

�̂2 > �̂1
(3)

These measurements give rise to the solubility isotherms shown in �gure
1 with caveat that in the actual experiments of Svrcek & Mehorta, the
temperature is put at 100�C instead of T1. I don't think that makes a big
di�erence.

The two �gures in �gure 1 show that the solubility isotherms are in the
form

p = (T )�̂+ C = (T )�̂+ p0 (4)

where C is a constant which could depend on T . The constant C is the zero
�̂ crossing p = p0 at �̂ = 0. This is a low pressure threshold below which no
gas can be dissolved.

3 Soluble gas.

I think of a gas as condensed and miscible in bitumen. Let 	 be the volume
fraction of soluble gas in bitumen. Then the liquid saturates with volume
fraction 	s at ps. 	s increases with ps; you get more gas into solution at
high pressure and low temperature. The viscosity goes down rapidly as 	2

(and ps) goes up. You need only a little 	 to make a lot of �̂, because a
phase change is involved.

The continuity equation for a miscible binary mixture of incompressible
liquids g and b is

d�

d	

d	

dt
+ � divu = 0

where

� = �g	+ �b(1�	) (5)

d�

d	
= �g � �b (6)

We can think that �g here is dissolved gas and �b is heavy crude. Experi-
ments indicate that dissolved CO2 has the same density as bitumen.

�g = �b
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Dissolved methane has a density only slightly di�erent than bitumen (see
�gures 6 and 11). Hence

div u = 0 (7)

We can treat oil and dissolved gas as a one phase uid and need not write
a separate equation for dissolved gas.

In our one phase model

� given by (5) is constant (8)

(see �gure 6 and 11 of Svrcek &Mehorta [1982] in �gure 3 below). Since �(�̂)
is a constant, the dissolved gas doesn't e�ect the dynamics of the mixture.

I have developed a good theory for mixtures of incompressible miscible
lliquids; for example, see Chapter 10 of my Springer book with Y. Renardy,
\Fundamentals of two-uid dynamics" or T. Liao & D.D. Joseph, \Sidewall
e�ects in the smoothing of an initial discontinuity of concentration", J. Fluid
Mech., 342, 37-51, (1997).
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Figure 3: The density of bitumen & condensed gas mixtures. The density
is nearly constant over very wide ranges of pressure. We can imagine that
the mixture density is independent of pressure. Since gas solubility is a
strong function of pressure; the density is also more or less independent of
the fraction �̂ of dissolved gas at constant temperature.
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available to go into solution; then �̂ = ~� when p > ~p.
Now drop the pressure; gas nucleates, bubbles grow and expand, but

they stay dispersed and don't percolate out. Then

~�� �(p) = �̂(p) (9)

Equation (9) says that when p < ~p, the dispersed gas fraction is just the
right amount to keep the outgassed liquid at its saturation solubility �̂(p).
Then, combining (4) and (9) we get

p = _( ~T )�̂+ c = ( ~T )�̂+ p0 � �

= ~c( ~T )� � (10)1

where

~c( ~T ) = ~p

because � = 0 at p = ~p.
Equation (4)

p+ � = ~p (10)2

is our equilibrium isotherm for dispersed gas.

5 Constitutive equation relating p and dispersed

gas fraction

I will assume that the evolution of p and � is governed by a rate equation
of Maxwells type

�
dp

dt
+ p = ��+ ~p (11)

dp
dt = 0 when p and � are at equilibrium and satisfy (10)2. When p is below

this value, say, and � at equilibrium, then dp
dt > 0 and the pressure will

increase to its equilibrium value. All in all, we get stress (p) relaxation to
equilibrium from (11). When � = 0; p� ~p relax to zero exponentially.

Logically, in a �rst order constitutive theory, I should also include a
term proportional to d�=dt. I haven't �gured out a way to eliminate this
possibility, and we could include it in the future and see what it predicts.
Inclusion of such a term would lead to an Oldroyd B type of model with a
retardation as well as relaxation time � . Let us proceed with the Maxwell
model; the relaxation time ��� is the only unknown, to-be-determined

parameter in this theory.
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6 Governing equations:

We have to introduce porosity for porous media.

8<
:

� porosity
� mobility
d(�)
dt = @�(�)

@t + u � r(�)

(12)

Equations for porous media are

��rp = u Darcy law
� = �(�)

(13)

and the continuity equation

d�

d�

d'

dt
+ �(�) div u = 0 (14)

where

�(�) = �g�+ �
�
(1� �) � �

�
(1� �) (15)

because �g << �
�
where �

�
is the unique density of bitumen plus dissolved

gas which �gure 3 shows can be taken as constant. Hence (14) reduces to

�
1

1� �

d�

dt
+ divu = 0 (16)

or

dlog(1� �)

dt
+ divu = 0 (17)

We have 5 equations

8<
:

u = ��rp
dlog(1��)

dt
+ divu = 0

� dp

dt
= ��� p+ C

(18)

for 5 unknowns u; p; �.
Reduction to 2 equations in p and �:
After writing

� = p� ~p;
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taking � constant, we get two equations in two unknwons

��
@�

@t
+ �r� � r� = (1� �) div�r� (19)

�
�
�
@�

@t
� �jr�j2

�
+ '+ � = 0: (20)

(19) and (20) are the fundamental equations of my model.

� We can eliminate � from these equations; this gives rise to a very
nonlinear PDE in the pressure �.

� Equilibrium solutions. I de�ne these to be those for which

� = 0

In this case

u = ��r� = �r� (21)

The uid moves from high to low pressure; at the same time there are
more dispersed gas bubbles when p is smaller. So the uid will ow to
the region of higher � (lower p). The bubbles are a barometer.

If � = 0; we can eliminate ', even
�(�) = �(��

 )

and

�
@�

@t
� �jr�j2 = ( + �)div�r�: (22)

This is an interesting non-linear di�usion equation, worthy of analysis.

� E�ects of Gravity

x g

u = ��r(p+ �gx)
� = �g�+ �l(1� �) �= �l(1� �)
u = ��rp� ��lgr(1� �)x
For equilibrium rp = r�
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� Perturbation of constant state solutions

The basic equations (19) and (20) admit constant state solutions � =
c1; � = c2 where c1 and c2 are independent of x or t. Of course

c1 + c2 = 0 (23)

is our solution. We can perturb this and neglect terms which are
quadratic in the perturbation variables

� = c1 +���
� = c2 + ���

(24)

then

��
@'''

@t
= (1 � c1)�1r

2��� (25)

��
@���

@t
+ ���+��� = 0 (26)

where �1 = �(c1). We may eliminate ��� or ��� from (25) and (26); in
both cases we �nd a telegraph equation

@2���

@t2
+

1

��

@���

@t
=

(1� c1)�

��2
r2���: (27)

The same equation is satis�ed by '''. This equation gives rise to a wave
equation with a wave speed

V =

r
(1� c1)�

��2
(28)

The waves are damped; this is an e�ect of the second term in (27). If
the relaxation time � ! 0, then the e�ects of wave propagation gives
way to di�usion

@�

@t
=

(1� c1)�

�
r2�: (29)

Let us consider the solution of the telegraph equation (27) for \Stokes
1st problem" (see Joseph [1990], pgs. 582-584) to the sudden pres-
surization of our uid at the boundary y = 0 of a semi-in�nite region
y � 0. We must solve (27) satisfying

�(y; t) = 0; t � 0; y � 0 (30)
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The pressure at y = 0 is suddenly raised and held at value �0.

�(y; t) = �0H(t) (31)

where H(t) is Heaviside's step function and

�(y; t)! 0 as y !1 (32)

Equation (27) in one dimension is

@2�

@t2
+

1

��

@�

@t
=

(1� C1)�

��2
r2� (33)

This problem may be solved by Laplace transforms. The discontinuity
propagates into the uid with a speed V and attenuation given by

�(y; y=V ) = �0 exp
h��y
2V

i
(34)

7 Special Solutions

Our basic equations are (19) and (20). We can investigate some special
types of solutions:

� Steady solutions

� Traveling wave solutions in one space dimension x in which x and t
appear only in the combination � = x� vt for a constant V .

� Primary depletion

Here we treat the same one dimensional model considered by Sheng
et al. (1996). At x = 0 there is no ow, u = 0 at x = 0; hence

@p

@x
= 0 at x = 0: (35)

The pressure decline is prescribed at x = L

p = ~p(t) at x = L: (36)

Initially, at t = 0, the pressure is C4, a constant

p = C4 for 0 � x � L at t = 0+:
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I do not know if we have enough conditions to solve this problem in
the general case (19) and (20). However, the problem may be solved
in the equilibrium theory governed by (22) in one dimesion:

�
@�

@t
� �

�
@�

@x

�2

= ( + �)
@

@x

�
@�

@x

�
(37)

This is a two-point boundary initial-value problem appropriate for the
2nd order PDE (37).
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8 Appendix: A di�erent constitutive equation

For constitutive law we assume

�
d�

dt
+ � = c� p ; (38)

which is a statement that the volume fraction relaxes toward the equilibrium
value, with time constant � . In addition we have Darcys law,

��rp = u ; (39)

and conservation of mass (in the approximation that gas density is much
less than liquid density),

d log(1� �)

dt
+r:u = 0 : (40)

The material derivative d=dt is de�ned by

d

dt
= �

@

@t
+ u:r : (41)

Combining (41) and (39), and expanding the material derivative, we obtain

�
@�

@t
� �rp:r�+ (1� �)r:�rp = 0 (42)

as before. Combining (38) and (39), and expanding the material derivative,
we obtain

�
@�

@t
� ��rp:r�+ � = c� p : (43)

Equations (42) and (43) are the basic governing equations in this form of
the theory. Clearly, when � = 0, we recovery exactly the same equilibrium
theory as was derived above. It is also clear that this version of the theory
supports steady uniform states as solution, again exactly as found above.
The governing equations for small perturbations around these steady states
are however di�erent, as we shall now show. As before, introduce small
perturbation quantities, setting

� = c1 + � (44)

p = c2 + � (45)
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where equilibrium demands c1 + c2 = 0. Substituting these quantities into
(42) and (43), neglecting quantities of second order in perturbations and
treating the mobility as a constant, we obtain

�
@�

@t
+ (1� c1)�r

2� = 0 (46)

�
@�

@t
+ � = �� : (47)

If we now take the time derivative of (47), and use (46) to replace @�=@t by
the Laplacian of �, we �nd

�
�� �(1� c1)�r

2
� @�
@t

= (1� c1)�r
2� : (48)

The perturbation volume fraction satis�es an identical equation. Initial and
boundary conditions on the perturbation pressure are the same here as for
the model presented above.

The evolution equation for the perturbation pressure, (48), is very dif-
ferent in character from the telegraph equation found for the pressure re-
laxation form of the constitutive law. It is lower order in time, and, from
Laplace transform solutions, appears not to exhibit wave propagation; rather,
the solutions are di�usive in character although similarity solutions in x=t1=2

do not exist (except as an asymptotic state at large t). The rate of advance
of the pressure perturbation front is found from these Laplace transform
solutions to be faster in early time than would be the case for classical
di�usion.
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