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Abstract

A direct numerical simulation of spatially periodic wavy core flows is carried out

under the assumption that the densities of the two fluids are identical and that the viscosity

of the oil core is so large that it moves as a rigid solid which may nevertheless be deformed

by pressure forces in the water.  The waves which develop are asymmetric with steep

slopes in the high pressure region at the front face of the wave crest and shallower slopes at

low pressure region at lee side of the crest.  The simulation gives excellent agreement with

the experiments of Bai et al.[1992] on up flow in vertical core flow where axisymmetric

bamboo waves are observed.  We find a threshold Reynolds number; the pressure force of

the water on the core relative to a fixed reference pressure is negative for Reynolds

numbers below the threshold and is positive above.  The wave length increases with the

holdup ratio when the Reynolds number is smaller than a second threshold and decreases

for larger Reynolds numbers.  We verify that very high pressures are generated at

stagnation points on the wave front.  It is suggested that the positive pressure force is

required to levitate the core off the wall when the densities are not matched and to center the

core when they are.  A further conjecture is that the principal features which govern wavy

core flows cannot be obtained from any theory in which inertia is neglected.
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1.  Introduction

Lubricated pipelining of viscous materials like heavy crude, slurries and capsules is

robustly stable and has a high economic potential.  The viscous material does not touch the

wall.  In the case of crude oil, the drag reduction which can be achieved by lubrication is of

the order of the viscosity ratio with increased throughputs of ten thousand or more (for

more background see Joseph and Renardy 1992).  These lubricated flows are called core

flows because the viscous material flows in a core lubricated all around by water.

A surprising property of core flow is that the flow in a horizontal line will lubricate

with the core levitated off the wall even if the core is lighter or heavier than lubricating

water.  This levitation could not take place without a hydrodynamic lifting action due to

waves sculpted on the core surface.  In the case of very viscous liquids, the waves are

basically standing waves which are convected with the core as it moves downstream.  This

picture suggests a lubrication mechanism for the levitation of the core analogous to

mechanisms which levitate loaded slider leavings at low Reynolds numbers.  Ooms, Segal,

Vander Wees, Meerhoff and Oliemans [1984] and Oliemans and Ooms [1986] gave a semi-

empirical model of this type and showed that it generated buoyant forces proportional to the

first power of the velocity to balance gravity.  In this theory, the shape of the wave must be

given as empirical input.

Consider water lubricated pipelining of crude oil.  The oil rises up against the pipe

wall because it is lighter than the water.  It continues to flow because it is lubricated by

waves.  However, the conventional mechanisms of lubrication cannot work.  The saw

tooth waves shown in Figure 1.1 are like an array of slipper bearings and the stationary oil

core is pushed off the top wall by lubrication forces.  If W  were reversed, the core would

be sucked into the wall, so the slipper bearing picture is obligatory if you want levitation.
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Figure 1.1.  (after Ooms et al., Int. J. Multiphase Flow, 10, 41-60, 1984).  The 

core is at rest and the pipe wall moves to the left.

Obviously the saw tooth waves are unstable since the pressure is highest just where

the gap is smallest, so the wave must steepen where it was gentle, and smooth where it was

sharp.  This leads us to the cartoon in Figure 1.2.  To get a lift from this kind of wave it

appears that we need inertia, as in flying.  Liu's [1982] formula for capsule lift-off in a

pipeline in which the critical lift off velocity is proportional to the square root of gravity

times the density difference is an inertial criterion.  It is likely that inertial dynamics is also

involved in lubricated oil and slurry lines.  At high speeds the core flows may literally "fly"

down the tube.  In all of this, the position of the viscous points of stagnation where the

pressures are high is of critical importance.

In this paper we confine our attention to the direct numerical simulation of

axisymmetric core flows.  The shape of the interface and the secondary motions which

develop in a "flying" core flow are consistent with the picture arising intuition (see Figure

1.2).
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Figure 1.2.  (After Feng, Huang & Joseph [1995]) (a) The interface

resembles a slipper bearing with the gentle slope propagating into the water.  (b) The high
pressure at the front of the wave crest steepens the interface and the low pressure at the
back makes the interface less steep.  (c) The pressure distribution in the trough drives one
eddy in each trough.

 Less intuitive is the existence of a threshold  Reynolds number corresponding to a

change in the sign of the pressure force on the core, from suction at Reynolds numbers

below the threshold, as in the reversed slipper bearing in which the slipper is sucked to the

wall, to compression for Reynolds numbers greater than the threshold as in flying  core

flow in which the core can be pushed off the wall by stagnation pressure.
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2.  Governing equations

 Consider two concentric immiscible fluids flowing down an infinite horizontal

pipeline; the core is occupied by fluid 1 and the annulus by fluid 2.  Assume also that the

core is axisymmetric with interfacial waves.  The waves are periodic along the axis and

move at certain uniform speed c.  The governing equations are

1
r

∂
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where (u,v)  are the radial and axial velocity, and

P = −βx + p(r, x,t) + Co(t) (2.2)

is the pressure, β  is the driving pressure gradient, (µ i ,ρi ) are the viscosity and density in

the core i = 1 and annulus i = 2 .  We seek a periodic solution in which the time t  enters

only as x-ct  in a wave which propagates with a constant speed c.  Then, we can express

the condition that motion be periodic with period L  in x  as follow:

u = u(x − ct,r) = u(x + L − ct,r)

v = v(x − ct,r) = v(x + L − ct,r) (2.3)

p(x − ct,r) = p(x + L − ct,r) .
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  We next introduce new variables

z = x − ct (2.4)

and  w(z,r) = v(x − ct,r) − c,

u(z,r) = u(x − ct,r), (2.5)

P(z,r) = P(x − ct,r) = −β(z + ct) + p(r, z) + Co(t).

The system of equations arising from (2.1), (2.4) and (2.5) is to be time independent

Co(t) − βct = Cpi

where Cpi  is constant.  In these new variables, z  replaces x  in (2.1) and

1
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.

At the pipe wall r = R2

u=0, w=-c, (2.7)

and at the center of the core r = 0 , we require

u=0, 
∂w

∂z
= 0 .  (2.8)

The interface is given by

r = f (z) = f (z + L). (2.9)
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Here, between the water and oil, the kinematics condition is

 u = df
dt

= ∂f
∂t

+ v ∂f
∂x

= w ∂f
∂z

, (2.10)

and the velocity condition is  [[Û]] = 0 , where [[•]] = (•)1 − (•)2  and

Û = (u,w). (2.11)

The normal stress condition is

−[[P]] + 2Hσ( ) + n •[[2µD Û[ ]]]• n = 0 , (2.12)

and the shear stress condition is

t • [[2µD[Û]]]• n = 0 , (2.13)

where D[U] = 1
2

(∇Û + ∇ÛT ), 2H is the sum of the principal curvatures, σ  is the

coefficient of interfacial tension, n = n12  is the normal from liquid 1 to 2, and t  is the

tangent vector.

In addition, we prescribe the oil flow rate

Qo = 1
L

{ 2πrv(r, z)dr}dz
0

f

∫
0

L

∫ , (2.14)

and water flow rate

Qw = 1
L

{
0

L

∫ 2πrv(r, z)dr}dz
f

R2

∫ . (2.15)
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3.  Rigid Deformable Core flow

In many situations, the viscosity of the oil is much greater than the viscosity of

water.  We shall assume that the core is solid with standing waves on the interface.  A

consequence of this assumption is that non-rigid motions of the core may be neglected.  In

this rigid deformable core model, the core is stationary (Û1 = 0 ) and water moves.  The

velocity for wavy core flow can be written ( Figure 3.1) as  

Û = uer + wez = Unn + Ust   (3.1)

where Un is normal component and Us is tangential component of the velocity on the

interface r=f(z).

Uu

w

Us

Un

s

n
e

e

r

z

^

t

Figure 3.1.  The velocity components are in different coordinates.  

The continuity of the shear stress gives rise to

∂Us1

∂n
= µ2

µ1

∂Us2

∂n
= m

∂Us2

∂n
. (3.2)

So, no matter what is the value 
∂Us2

∂n
= O(1) ,  

∂Us1

∂n
~ O(m).   

For heavy crudes in water m = µ2

µ1

= O(10−5 )  is very small, compatible with the

assumption that Û1 is effectively zero.
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From continuity of velocity on the interface, [[Û]] = 0, we also obtain that the water

velocity is zero on the interface.  Since the relative velocity in the solid core vanishes, the

speed c of the advected wave, in coordinates in which the wall is stationary, is exactly the

core velocity c=w(r,z)  which is constant, independent of r and z when r ≤ f (z).  In this

case (2.14) reduces to

Qo = πR1
2c , (3.3)

and R1
2 = 1

L
f 2 (z)dz

0

L

∫ . (3.4)

The viscous part of the normal stress on the interface vanishes:

n • [[2µD[Û]]] • n = 2µ1

∂Un1

∂n
− 2µ2

∂Un2

∂n
= 0  (3.5)

since
∂Us

∂s
+ ∂Un

∂n
= 0

and on the interface

∂US

∂s
= 0 . (3.6)

Therefore, the normal stress balance (2.12) reduces to

[[P]] = 2Hσ . (3.7)

 Although the core is assumed to be a deformable rigid body, there is a mass flow of

oil in the pipeline, which is driven by pressure βz .  The pressure in the core is

P1 = −βz + Cp1 , (3.8)

while the pressure in the annulus is

P2 = −βz + p(r, z) + Cp2 . (3.9)
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Since the pressure level is indeterminate we may, without loss of generality, put

Cp2 = 0 . (3.10) 

In the water, f ≤ r ≤ R2 , we have

1
r

∂
∂r

ru( ) + ∂w

∂z
= 0

ρ2 u
∂u

∂r
+ w

∂u

∂z




 = − ∂p

∂r
+ µ2

1
r

∂
∂r

r
∂u

∂r




 + ∂ 2u

∂z2 − u

r2







(3.11)

 ρ2 u
∂w

∂r
+ w

∂w

∂z




 = β − ∂p

∂z
+ µ2

1
r

∂
∂r

r
∂w

∂r




 + ∂ 2w

∂z2







 .

And in the oil core, 0 < r < f

dP1

dz
= −β .

The normal stress balance at r = f  which is given by (3.8), then becomes

σ

f 1+ df
dz







2
−

σ d2 f
dz2

1+ df
dz







2





3/2 = [[P]] = P1 − P2 = C − p . (3.12)

  To solve our problem we must prescribe β , and compute c, or we may give c and

compute β .  Since the momentum change in one wavelength is zero, we may relate c and

β  by the force balance shown in Figure 3.2 and expressed as

AβL = Fz = 2π f (nP2 + tτ) • ezds
0

SL

∫ = 2π (nP2 + tτ) • ez f 1 + (df dz)2 dz
0

L

∫ ,

        = 2π (P2sinθ + τcosθ ) f 1 + (df dz)2 dz
0

L

∫ (3.14)

where tanθ = df

dz
, (3.15)
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and βL is the pressure drop, A  is the area of the cross section of the core, SL  is the arc

length in one wavelength r=f,  n is the unit normal vector, t  is the unit tangent vector, ez

is the unit vector in the axial direction, and τ  is the shear stress.

c

L

A A

P2

τ

n

t

Figure 3.2.  Force balance on the wave core is based on one wavelength.  The 

pressure drop is βL and AβL = Fz   is the force.

The pressure P2  and shear stress τ  depend on c  implicitly; we give c and compute

P2  and τ .  The corresponding β  is given by iteration using (3.14).

We must now solve (3.11) for L  periodic functions u, w , p  subject to the

conditions that w=c, at r=R2 ,w=u=0  at r=f(z)  where Qw  is prescribed by (2.15), the

pressure and interfacial tension are related by (3.12) and β  and c  are related by (3.14).  To

solve this, we first prescribe the shape f0(z)  of the wave with a prescribed mean R1  and,

of course, its length L0  and the speed c.  We next construct a sequence of iterations in

which c, R1, and Qw  are fixed.  We first compute u, w  and p  satisfying all the conditions

except (3.12).  The pressure p0 , belonging to f0(z), then determines a new shape f1(z)  to

satisfy (3.12).  A certain constant C1 is required to maintain the value of R1  in the iteration.

At the next stage we repeat the calculation of u1, w1  and p1.  This gives a new f2(z)  and C2

and so on.  

We can, therefore, calculate convergent solutions corresponding to each and every

triplet (c, R1,Qw ) .  We do not expect all these solutions to be stable.  In experiments we get

one R1  when we prescribe the inputs Qw  and Qo or c.   This should be equivalent to

prescribing two other independent bits of data,  say c  and R1 .  Then we would expect one
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Qw  for each c  and R1 to appear in experiments, but we calculate a family of solutions for

the given c  and R1  and any Qw .   When the parameters are taken for perfect core flow, we

get perfect core flow from our simulation; most of these perfect core flows are actually

unstable.  Our simulation then can be regarded as giving rise to a one parameter family of

wavy core flows whose stability is yet to be tested.  
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4.  The holdup ratio in wavy core flow

The holdup ratio h  is the ratio Qo/Qw  of volume flow rates to the ratio Vo/Vw of

volume in the pipe:

h = Qo / Qw

Vo / Vw

= Qo Qw

R1
2 (R2

2 − R1
2 )

, (4.1)

The holdup ratio depends on the fluid properties and flow parameters but is most strongly

influenced by flow type.  Equation (4.1) can be represented as the ratio of superficial

velocities

h = Qo πR1
2

Qw π(R2
2 − R1

2 )
= c0

cw

, (4.2)

where co = Qo

πR1
2 , (4.3)

 cw = Qw

π(R2
2 − R1

2 )
, (4.4)

and c=co  for rigid core flow.

Here, we consider the holdup ratio in perfect core flow and wavy core flow.  A

perfect core annular flow has a perfectly cylindrical interface of uniform radius without

waves and is perfectly centered on the pipe axis with an annulus of lubricating water all

around.  The velocity W   and flow rate Q  of a perfect core flow is

Wo (r) = β
4µ1

R1
2 − r2( ) + β

4µ2
R2

2 − R1
2( ) , (4.5)

Ww (r) = β
4µ2

R2
2 − r2( ) , (4.6)

Qo = 2π rWo

0

R1

∫ dr = 2π β
16µ1

R1
4 + β

8µ2
(R2

2R1
2 − R1

4 )







, (4.7)
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Qw = 2π rWw (r)dr

R1

R2

∫ = 2π β
16µ2

R2
2 − R1

2( )2







. (4.8)

(4.7) and (4.8) can be written as

Qo = − βπR1
4

8µ2
m + 2 a2 −1( )( ), (4.9)

and Qw = − βπR1
4

8µ2
a2 −1( )2

. (4.10)

The ratio of the flow rates, the input ratio,  is

γ = Qo

Qw

= m + 2(a2 − 1)
(a2 − 1)2 , (4.11)

where m = µ2

µ1

,  a = R2

R1

= 1 + 1
γ

(1 + 1 + mγ ) .

The oil fraction is given by

η2 = R1

R2







2

= 1
a2 = 1

1 + 1
γ

1 + 1 + mγ( )
, (4.12)

while the water fraction is given by

1 − η2 = 1 − 1

1 + 1
γ

1 + 1 + mγ( )
=

1 + 1 + mγ
γ + 1 + 1 + mγ

. (4.13)

The volume ratio is proportional to the fraction ratio.  Hence

V0

Vw

= η2

1 − η2 = γ
1 + 1 + mγ

. (4.14)

The equation for the holdup ratio is therefore
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h = Qo / Qw

Vo / Vw

= γ
γ

1 + 1 + mγ

= 1 + 1 + mγ . (4.15)

For very viscous oil, m ≈ 0, and h ≈ 2.  

Now let us consider the holdup ratio for wavy core flow in the system of

coordinates in which the wall is stationary.  Given a periodic function f(x-ct) =f(z)  with

wave length L, the average diameter of the oil core is R1, where

1
L

f 2 (z)dz
0

L

∫ = R1
2 . (4.16)

The input rate for a rigid core is related to the wave speed by

Qo = πR1
2c = cπ

L
f 2 z( )dz

0

L

∫ (4.17)

Since both water and oil flow rates are specified, the total flow rate at each cross section is

constant:

Qtotal = Qo + Qw = πf 2 (z)c + 2π rv r, z( )dr
f (z )

R2

∫ (4.18)

where v(r, z) = 0 r = R2

c r = f (z)


  and the flow inputs Qo  and Qw  are independent of z.

Then, the water input can be written as

Qw = Qtotal − Qo = πc f 2 (z) − R1
2[ ] + 2π rv(r, z)dr

f (z )

R2

∫ (4.19)

independent of z .

Equation (4.19) gives an interesting z dependent decomposition of the constant

water input Qw.  We may write (4.19) as
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Qw = Φ(z) + Ψ (z), (4.20)

where Φ = πC f 2 (z) − R1
2[ ]  (4.21)

and Ψ (z) = 2π rv(r, z)dr
f (z )

R2

∫  . (4.22)

Suppose that a wave crest at z=0  just touches the pipe wall, f(z)=R2 .  In this case, the

water flow Qw  is entirely due to the forward motion of the water trapped in troughs and

Ψ (z) = 0 ,   Φ(0) = πc[R2
2 − R1

2 ]

so that Φ(z)  can be said to represent the trapped water.  On the other hand, for perfect core

flow  Φ = 0  for all z.

When Qo  and Qw  are given, the wave speed c  and the average diameter of the oil

core depends on the wave shape f (z) .  The holdup ratio for wavy core flow is then given

by

h = Qo Qw

R1
2 (R2

2 − R1
2 )

= πcR1
2

πc f 2 − R1
2[ ] + 2π rvdr

f

R2

∫

R2
2 − R1

2

R1
2 . (4.23)

For perfect core annular flow, the flow rate of trapped water is zero since the core

radius is uniform f 2 = R1
2 .  Using W  from (4.8) we get h=2 .  Let us focus on the flow

rates at the cross section of the wave crest, where f = f max  and assume that f max = R2 .

Then the integral in (4.23) vanishes and the holdup ratio is 1.  Therefore, the holdup ratio

for wavy core flow is between 1 and 2.

In the transition from a perfect core flow to a wavy core flow, the wave troughs

will carry extra water even if the average diameter of the oil core is unchanged; this

increases the water flow rate.  However, when the water flow rate is fixed, the system can

not increase the water flow rate.  Therefore, the average diameter of the core will increase,
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reducing the water flow rate.  In the wavy flow, more oil is in the pipe than in perfect core

flow, and the holdup ratio is less than 2.  Of course, the speed of the core must decrease

when there is more oil and oil flow rate is fixed.

The pressure gradient β  is related to the difference in area of the core at a crest and

average area, this is measured by

d = πc[ f 2 (0) − R1
2 ]. (4.24)

The gap between the pipe wall and wave crest is smaller when d is larger, provided that the

volume of oil in the pipe is fixed.  Smaller gaps imply high friction and large values of the

pressure gradient.

5.  Comparison with experiments

Our simulations are for the case in which the density of oil and water are the same;

when they are not the same and the pipe in horizontal, the oil core will rise or sink.  Some

representative wave shapes, which look like those in experiments, are for density matched

flows in Figure 5.1.

a

0 1 2 3 4 5
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b

0 1 2 3 4 5

c

0 1 2 3 4 5

d

0 1 2 3 4 5

e

0 1 2 3 4 5

f

0 1 2 3 4 5

g

0 1 2 3 4 5

h

0 1 2 3 4 5
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i

0 1 2 3 4 5

Figure 5.1.  Selected wave shapes for water lubricated axisymmetric flow of oil and

water with the same density ρ=1.0g/cm3, µ2=0.01 poise and σ=26dyne/cm for oil and

water.  The pipe diameter is R2=1.0cm.  Qo and Qw are in cm3/sec.  The data for each

frame is given as the triplet (R1, Qo, Qw), a (0.37, 4.30, 2.73), b (0.37, 8.6, 5.47 ), c

(0.37, 17.2, 10.93), d (0.41, 10.56, 3.67), e (0.41, 18.48, 6.43), f (0.41, 26.41, 9.19),

g (0.43, 34.85, 8.76), h (0.43, 43.57, 10.96) and i (0.43, 69.71, 17.53).  The core is

stationary and the wall moves to the right.

Bai, Chen and Joseph [1992] did experiments and calculated stability results for

vertical axisymmetric core flow in the case when the buoyant force and pressure force on

the oil are both against gravity (up flow).  They observed "bamboo" waves for their oil

ρo=0.905g/cm3 and µo=6.01 poise in water with ρw=0.995g/cm3 and µw=0.01 poise.  We

have simulated the same flow, with the same parameters except that our core is infinitely

viscous.  The results show that µo=6.01 is not yet asymptotically infinitely viscous, but

nevertheless the agreements are satisfactory.

The equations that we used for our simulation are follow.  In the water, we have

1
r

∂
∂r

ru( ) + ∂w

∂z
= 0

,

ρ2 u
∂u

∂r
+ w

∂u

∂z




 = − ∂p

∂r
+ µ2

1
r

∂
∂r

r
∂u

∂r




 + ∂ 2u

∂z2 − u

r2





 , (5.1)

 
ρ2 u

∂w

∂r
+ w

∂w

∂z




 = β + ρcg − ∂p

∂z
− ρ2g + µ2

1
r

∂
∂r

r
∂w

∂r




 + ∂ 2w

∂z2





  .
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The pressure in the water is

P2 (r, z) = −βz + p(r, z) − ρcgz + C2 (5.2)

while the pressure in the core is

P1 = −βz − ρcgz + C1 (5.3)

where g is gravity and ρc  is the composite density of the mixture

ρc = ρ1η
2 + (1 − η2 )ρ2, (5.4)

and η = R1

R2

.

We compared wavelengths, wave speeds and wave shapes from our computation

with experiments and the linear theory of stability in Bai, Chen & Joseph [1992].  In our

comparison, the flow parameters are based on the experimental information, such as flow

rates of oil and water, oil volume ratio and holdup ratio.  In Bai, Chen and Joseph [1992],

the holdup ratio is a constant 1.39 and the volume ratio of the oil yields the following

formula:

R1
2

R2
2 = 1 − 1

1 + 0.72 Qo Qw( ) . (5.5)
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The results are given in Table 5.1.

     input       flowrate                   computations              experiments                      I                                II                 
    no.           Q           o                     Q            w                      L       (cm)         c      (cm/s)         L       (cm)          c      (cm/s)         L       (cm)          c      (cm/s)         L       (cm)          c      (cm/s)     

    1               25.38            13.17             1.32              55.59             1.21              57.7               0.82              79.84             0.79              52.02       

    2               18.19            13.17             1.66              46.45             1.31              43.28             0.92              80.21             0.96              42.54       

    3               11.01            13.17             1.70              37.30             1.41              35.65             1.22              79.76             1.22              33.51       

    4                             7.42            13.17             1.33              32.73             1.22              27.81             1.65              77.00             1.33              29.42       

    5                             7.42                          6.46             1.77              20.88             1.374            19.16             1.56              58.91             1.25              17.94       

    6               11.01                          6.46             1.66              25.45             1.79              22.90             1.23              58.12             1.16              22.17       

    7               14.60                          6.46             1.39              3        0.02             1.34              28.22             1.05              54.80             1.02              26.68       

    8               18.19                          6.46             1.15              34.59             1.17              31.06             0.95              50.85             0.87              31.33       

    9               21.78                          6.46             0.96              39.17             0.90              36.25             0.86              49.38             0.79              35.71       

Table 5.1.  Comparison of computed and measured values of the wave speed c and

wave length L with theory of stability.  In column I and II, data from Bai, Chen & Joseph

[1992]  were computed by linear theory of stability.  In column I, the computations were
carried out for the values of Qo and Qw prescribed in the experiments.  In column II, the

calculations were done the prescribed Qo and measured value of R1 corresponding to the

observed holdup ratio h=1.39.

The comparison of computed and measured values of the wave speed and

wavelength of bamboo waves is given in Table 5.1.  The computed values are slightly

larger than the measured values, due to the fact that motion in the core is neglected with

better agreement for faster flow.

Computed wave shapes and the observed shapes of bamboo waves are compared in

Figure 5.2-5.3.  The pictures were taken in a vertical pipeline with motor oil

(ρo = 0.905gm / cm3,µo = 6.01poise) and water (ρw = 0.995gm / cm3,µw = 0.01poise).

Both water and oil flow against gravity.  The water flow rate is fixed at 200 cm3/min

while oil flow rate is 429, 825 and 1216 cm3/min  respectively.
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a b

Figure 5.2.  Computed waves (a) and bamboo waves (b) when [Qw, Qo] =

[200, 429] cm3/min.



23

a b

Figure 5.3.  Computed waves (a) and bamboo waves (b) [Qw, Qo] = [200,

825] cm3/min.
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a b

Figure 5.4.  Computed waves (a) and bamboo waves (b) [Qw, Qo] = [200,

1216] cm3/min.
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The computed and observed shapes are alike.  In fast flow, the velocity in the oil

core is small compared with the velocity in the annulus and the oil core can be considered to

be a rigid deformable body.  In slower flow (Figure 5.2), the flow inside the core is not so

much smaller than the  flow in annulus and the stems of the waves are more readily

stretched by  buoyancy.  Even in this case the agreements are satisfactory.

6.  Dimensionless equations

Analysis of this simulation is most useful when carried out in terms of

dimensionless variables.  In the dimensional equations, we used following parameters:

(R2, R1, µ2, ρ2 , σ , Qo, Qw ).

In the dimensionless formulation, the lengths are scaled with the pipe radius R2, pressures

are scaled by ρ2U
2 , and velocities are scaled with U.  Therefore

u = Uu (6.1)

w = Uw (6.2)

r, z, f , L = R2r , R2z, R2 f , R2 L , (6.3)

R1
2 = 1

L
f 2dz

0

L

∫ = R2
2

L
f 2dz

0

L

∫ (6.4)

η2 = R1
2

R2
2 = 1

L
f 2dz

0

L

∫ . (6.5)

Then (3.11) becomes

1
r

∂
∂r

ru( ) + ∂w

∂z
= 0



26

u
∂u

∂r
+ w

∂u

∂z
= − ∂p

∂r
+ 1

R̂
  

1
r

∂
∂r

r
∂u

∂r




 + ∂ 2u

∂z 2
− u

r 2







(6.6)

 u
∂w

∂r
+ w

∂w

∂z
= β − ∂p

∂z
+  

1

R̂
   

1
r

∂
∂r

r
∂w

∂r




 + ∂ 2w

∂z 2







where R̂  = ρ2 R2U

µ2

. (6.7)

We prefer the Reynolds number

R =
def ρ2 (R2 − R1)c

µ2

 , (6.8)

hence; the relationship between U  and c  is

c = UR2

(R2 − R1)
= U

1 − η
, (6.9)

and a dimensionless wall speed is

c = c

U
= 1

1 − η
. (6.10)

At the boundary

u = w = 0 at  r = f , (6.11)

u = 0, w = 1
1 − η

at r = 1. (6.12)

The normal stress balance equation becomes

 [[P ]] = S

1+ df
dz











2
−

S d2 f
dz 2

1+ df
dz





















3/2 (6.14)

where S = σ
ρ2U

2R2

=  
J

R2 , (6.15)
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and J = ρ2 R2σ
µ2

2 . (6.16)

The dimensionless oil flow rate

Q0 = Q0

UR2
2 = πc

L
f 2dz

0

L

∫ = πcη2 = πη2

1 − η
, (6.17)

 is determined if η  is given.

The dimensionless water flow rate may be expressed by the holdup ratio h  using (4.2)

Qw = Qw

R2
2U

= 1
R2

2U
2πrcwdr =

R1

R2

∫ 1
h

2πcrdr = π(1 − η2 )
(1 − η)h

= π(1 + η)
hη

1

∫ . (6.19)

Therefore, only four parameters are required for a complete description of our

problem:

R, η , J  and h .

All possible problems of scale up can be solved in this set of parameters.

7.  Variation of the flow properties with parameters

Now we shall show how wavelength, pressure gradients, pressure distributions on

the interface and wave shape vary with R,  η, h, J.

We have already established that for a highly viscous core in which the oil moves as

a rigid body, the holdup ratio varies between h=2 for perfect core flow and h=1 for the

“waviest” possible core flow.  In experiments, a single unique h is selected when the flow

inputs are prescribed so that all but one of the family of solutions for 1<h<2  are apparently

unstable.  The stable flow selects a certain h = h̃  and a certain wave length L̃ = L(Qo ,Qw , h̃).

This wavelength appears to be associated to a degree with the length of wave that leads to



28

the maximum rate of growth of small disturbances perturbing perfect core annular flow (see

Table 6.1).  The holdup ratio for the bamboo waves which appear in up flow in the vertical

pipeline studied in the experiments of Bai, Chen and Joseph [1992] was about 1.39

independent of the inputs Qw and Qo and the same h=1.39  is attained in down flow at large

Reynolds numbers.  These observations have motivated us to compute many results for

h=1.4.

In our computation we choose J=13x104 corresponding to the actual physical

parameters in wavy core flow in water in which µ2=0.01 poise ρ=1 g/cm3, σ=26 dyne/cm,

in a pipe of a 1cm diameter.  A value of η=0.8 is fairly typical of experiments.  The

definition of the dimensionless parameter p*  and gradient β*  are

p* = p( f (z),z) − P2 ( f (0),0)
µ 2 ρR2

2 ,

and β* = ρR2
2

µ 2 β .

We remind the reader that the overall pressure as such as to make p*=0 at the crest of the

wave.

Figure 7.1 shows that the wavelength decreases with R  and the pressure gradient

increases linearly with R  for fixed values of η, h and J.

Figures 7.2 and 7.3 show that the wave steepens at the front and relaxes at the back

of a wave crest at the Reynolds number is increased.  The steepening is produced by the

high pressures at the stagnation point on the wave front (of Figure 7.16).  The pressure

force, the area under the pressure curve, changes sign for 10<R <150.  The variation of the

pressure force and pressure peak with R is very nearly linear.  We expected inertia to lead

to a variation with R 2 but evidently the high pressures that are generated by inertia are

dissipated by deforming the interface, at least when R≤ 750 .
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Figures 7.4, 7.5 and 7.6 show how the wavelength, the pressure gradient, pressure

distribution and wave forms vary with h when [η, R, J] = [0.8, 600, 13x104].  The wave

shape is more unsymmetric and the pressure force is greater when h is close to 1.  The

wavelength is a decreasing function of h when R=600, but is an increasing function of h

when R=0 for the same parameters (cf. Figure 7.12).

Figures 7.7, 7.8 and 7.9 shown how the wavelength, the pressure gradient and

wave forms vary with η when [R, h, J] = [600, 1.4, 13x104].  The wavelength decreases

and the positive pressure peak and wave front slope all increase as the gap get smaller.

This suggests that the levitating pressure force will intensify as the gap gets smaller when

the density of the oil and water are different.

Figures 7.10, 7.11 and 7.12 show how the wavelength, the pressure gradient,

pressure distribution and wave forms vary with h when [η, R, J] = [0.8, 0, 13x104].  The

wave shape is more unsymmetric and the pressure force is greater when h is close to 1.

The wavelength is an increasing function of h when R=0.

Figures 7.13, 7.14 and 7.15 show how the wavelength, the pressure gradient and

wave forms vary with η where [h, R , J] = [1.4, 0, 13x104].  The pressure force is

negative under all conditions, and it is even more negative when gap is small.  The wave

forms nevertheless are steeper on the front than on the rear face, though this asymmetry is

less pronounced than at higher Reynolds numbers.
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Figure 7.1.  (a) Dimensionless wavelength L  vs Reynolds number R  (6.8) for [η ,

h, J] = [0.8, 1.4, 13x104];  (b) Pressure gradient β*  vs R   under same conditions.

-1 105

-5 104

0

5 104

1 105

0 0.2

p
*

0.4 0.6 0.8 1_ _
z / L

R =150

10

0

a



31

-4.0 105

-2.0 105

0

2.0 105

4.0 105

6.0 105

8.0 105
p

*

0 0.2 0.4 0.6 0.8 1_ _
z / L

R =750

450
250

b
Figure 7.2.  (a) Pressure distributions on the interface p *(z / L ) for R =0, 10, 150

when [η, h, J] = [0.8, 1.4, 13x104].  Note that the pressure force, the area under the
pressure curve, is negative for R  =0, 10 and is positive when R  =150.  (b) Pressure

distributions on the interface for R  =250, 450, 750 when [η, h, J] = [0.8, 1.4, 13x104].
All the pressure forces are positive with the greatest pressure at the forward points of
stagnation.
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Figure 7.3.  Wave shape ( f / L  vs z / L ) for three R =250, 450, 750 when [η, h,
J] = [0.8, 1.4, 13x104].
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Figure 7.4.  (a) Wavelength L  vs h for [η, R  , J] = [0.8, 600, 13x104];  (b)

Pressure gradient β* vs h under the same conditions.
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Figure 7.5.  Pressure distributions on the interface for different h when [η, R , J] =
[0.8, 600, 13x104].
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Figure 7.6.  Wave shape f / L  vs z / L  under the conditions specified in Figure
7.5.
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Figure 7.7.  (a) Wavelength L  vs η for [R , h, J] = [600, 1.4, 13x104];  (b)

Pressure gradient β* vs η under the same conditions.
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Figure 7.8.  Pressure distributions on the interface for different η when [R , h, J] =
[600, 1.4, 13x104].   
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Figure 7.9.  Wave shapes for the conditions of Figure 7.9.
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Figure 7.10.  (a) Wavelength L  vs h for [η, R  , J] = [0.8, 0, 13x104];  (b)

Pressure gradient β* vs h under the same conditions.
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Figure 7.11.  Pressure distributions on the interface for different h when [η, R  , J]
= [0.8, 0, 13x104].
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Figure 7.12  Wave shape f / L  vs z / L  under the conditions specified in Figure
7.11.
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Figure 7.13.  (a) Wavelength L  vs η for [R , h, J] = [0, 1.4, 13x104];  (b)

Pressure gradient β* vs η under the same conditions.
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Figure 7.14.  Pressure distributions on the interface for different η when [R , h, J]
= [0, 1.4, 13x104].   
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a

b

c

d
Figure 7.16.  Secondary motions for (a) [R , η , h, J] = [0, 0.8, 1.4, 13x104], (b)

[R, η , h, J] = [750, 0.8, 1.4, 13x104]; The pressure at the stagnation point on the steep
slope at the right corresponds to the pressure maximum shown in Figure 7.2(b), (c) the
eddies for Stokes flow as the same condition of (a),  (d) the eddies as the same condition of
(b).
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When the flow is driven by pressure, there is friction between the core and wall

which induces a secondary motion most easily seen in a frame moving with the core.

Figure 7.16 shows these secondary motions for R=0 and R=750.  The pressure

distributions are shown in Figure 7.2 for R=0 and for R=750.  The flow has two parts; a

more or less straight flow from left to right and an eddy.  There are two points where the

flow separates or rejoins the main flow.  The high pressure at the front of the crest of the

wave propagating into the water appears to be associated with a dividing streamline, while

the low pressure at the back of the crest of the wave is related to rejoining the streamline.

The pressure is high and positive at separation point and low and negative at the

reattachment point.  The wave forms are more symmetric when R=0 and the pressure

variations are moderate with positive pressure on the right at separation points and slightly

larger negative pressures at the left, at reattachment points.  Overall, the pressure force for

R=0 is negative and the eddy is more or less centrally located.  When R=750, the wave

form, the secondary motion and the pressure distribution are profoundly influenced by

inertia.  The forward slope of the wave steepens and the rearward slope relaxes, the eddy

moves down and to the forward face;  the stagnation pressures there grow hugely while the

reattachment pressures decline.  All this results in a strongly positive pressure force.

Figure 7.17 shows that the wavelength increases with surface tension, which

smooths the wave.   



41

2

2.2

2.4

2.6

2.8

3

3.2

_ L
3.4

5.0 104 1.5 105 2.5 105 3.5 105 4.5 105

a

b

J

Figure 7.17.  Wavelength L  vs J (a) [R , η , h] = [0, 0.8, 1.4];  (b) [R , η , h] =
[600, 0.8, 1.4].

8.  Threshold Reynolds numbers and levitation of wavy core flows

The total pressure force on the core is an integral of the pressure on the core

surface, the area under the pressure curves shown, say, in Figures 7.2, 7.5, 7.8, 7.11 and

7.14.  The total pressure force is negative at zero and small Reynolds numbers, and is more

and more positive as the Reynolds number is increased past a threshold.  Figure 8.1 shows

that the wavelength L (h) is an increasing function of h when R =0 and is a decreasing

function of h when R  is greater than some threshold.
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Figure 8.1.  Wavelength L  vs h for (a) [η, R  , J] = [0.8, 0, 13x104], and for (b)

[η , R , J] = [0.8, 600, 13x104]

The concept of a threshold may be formulated in terms of the pressure force

Fr = 2π
L

p*n•er
ds
dz

dz
0

S
L
∫ (8.1)

where n is the normal to the core S is the arc length.  Figure 8.2 gives the locus of points

on where Fr = 0 , with Fr < 0  below and Fr > 0  above.  The threshold value is always

positive though it decreases with h, since Fr < 0  for Stokes flow.  In Figure 8.3 we plotted

Fr  for h=1.9 where η=0.9.  This is a case in which lubrication theory might be used;

however, Rc is about 2.25 so that the pressure force is negative for lubrication theory (see

section 9).
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Figure 8.2.  Threshold Reynolds numbers R  vs h for [η, J] = [0.8, 13x104].
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[0.9, 1.9, 13x104].
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Figure 8.4.  The slope dL/dh of the wavelength changes with holdup ratio for [η ,
R, J]=[0.8, 100, 13x104].  

We may argue that a positive levitation of a lighter or a heavier than water core flow

requires a positive pressure force to push the core away from wall.  The pressure forces are

associated with the form of waves that they generate.  Waves also develop in Stokes flow,

but the pressure forces associated with these waves are negative like those on the reversed

slipper bearing which pull the slipper to the wall.  When the Reynolds number is higher

than the threshold, high positive pressures are generated, especially at the stagnation point

on the steep part of the wave front (Figure 7.16).

In the axisymmetric problem with matched density considered here, lateral motions

of the core off center are not generated by pressure forces, whether they be positive or

negative, because the same pressure acts all around the core.  We may consider what might

happen if the core moved to a slightly eccentric position due to a small difference in

density.  The pressure distribution in the narrow part of gap would intensify and the

pressure in the wide part of the gap would relax according to the predicted variation of
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pressure with η  shown in Figure 7.8.  In this case a more positive pressure would be

generated in the narrow gap which would levitate the core.  The equilibrium position of the

core would then be determined by a balance between buoyancy and levitation by pressure

forces which, in the case of matched densities, would center the core.  In eccentric

horizontal core flows of lighter-than-water oils which are in experiments, the waves in the

small gap near the top wall are shorter and the positive pressures are higher than in the large

gap at the bottom (see Figure 8.5), the speed of the core is increased, the core moves to the

center and the shape of the wave tends to the axisymmetric ones studied here.

Figure 8.5.  The core moves from right to left.  Steep crests propagate into the

water.  The lighter core levitated off the top wall by high pressures produced at stagnation

points at the steep slope on the top.  The wave crests are closer together at the top than the

bottom.
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9.  Lubrication theory

Lubrication theory is valid when inertia is neglected (Stokes flow), when the wave

amplitude is small and the radial velocity u  and ∂w ∂z  are negligible.  The last conditions

imply that secondary motions are not present or are very weak.  The required conditions

can be achieved in the limit in which R and 2-h tend to zero, in Stokes flows which perturb

perfect core flows.  Small gaps are one way to achieve small R , but other possibilities are

compatible with lubrication theory.  It is of value to examine the lubrication theory in bright

light since it is very popular with applied mathematicians and has played an historically

important role in the development of the theory of core flows.

 After applying the assumptions of lubrication theory,  the governing equations

(3.11) reduce to

0 = β − ∂p

∂z
+ µ2

1
r

∂
∂r

r
∂w

∂r




 .  (9.1)    

where w=0  at r=f(z)  and w=-c  at r=R2.  Hence

w(r) = 1
4µ

dP2

dz
(r2 − f 2 (z)) −

c + 1
4µ

dP2

dz
(R2 − f 2 (z))

ln
R2

f







ln
r

f







, (9.2)

where P2 = −βz + p(z) + P2 (0) , (9.3)

and 
P2 (0) − P2 (L)

L
= β . (9.4)

The pressure difference is opposed by the integral of the shear stress on the wall,

βL • πR2
2 = 2πR2 µ2

dw(r)
dr

0

L

∫ r = R2
dx (9.5)

After combining (9.2) and (9.5), we relate the wave speed c  to the pressure gradient
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c = − 1
4µ2

dP

dz
(R2

2 − f 2 ). (9.6)

This equation can be also obtained from (4.5) with µ1 → ∞ .  For a given speed c, the

pressure gradient is determined by the shape of the core.

dP2

dz
= −β + dp

dz
= − 4µc

R2
2 − f 2 (z) .  (9.7)

Since p  is a periodic function, the driving pressure gradient is given by

β = P2 (0) − P2 (L)
L

= 1
L

4µc

R2
2 − f 2 (z)

dz
0

L

∫ . (9.8)

The periodic pressure, a functional of f(z), is

p(z) − P2 (0) = βz − 4µc

R2
2 − f 2 (z)

dz
0

z

∫ . (9.9)

In the perfect core annular flow f(z)=R1  is uniform and (9.8) and (9.9) show that p(z)-

P2(0)=0  and pressure gradient will be constant.

We carried out an analysis of these equation by assuming f(z) and computing p(z).

Of course, the normal stress balance is not satisfied by the assumed shape but we could

iterate all of the assumed shapes to a unique one which satisfies the reduced normal stress

balance (3.12)

P1 − P2 = σ
f 1 + f ' 2

− σf "
(1 + f ' 2 )3/ 2 . (9.10)

Here

P1 = −βz + P1(0) (9.11)

in the core and (9.7) implies that

P2 = − 4µc

R2
2 − f 2 (z)

dz
0

x

∫ − P2 (0) (9.12)
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in the annulus.  The pressure jump across the interface is then

P1 − P2 = −βz + 4µ2c

R2
2 − f 2 (z)

0

z

∫ dz + Cp , (9.13)

where Cp = P1(0) − P2 (0) .

Our iteration starts with any trial wave,  say f1(z).   Then we compute

P1 − P2 = −βz + 4µ2c

R2
2 − f1

2 (z)
0

z

∫ dz + Cp

and carry out the first iteration using the normal stress balance to compute f2(z):

−βz + 4µ2c

R2
2 − f1

2 (z)
0

z

∫ dz + Cp = σ
f 2 1 + f 2'

2
− σf 2"

(1 + f 2'
2 )3/ 2

 .

We then compute

P1 − P2 = −βz + 4µ2c

R2
2 − f 2

2 (z)
0

z

∫ dz + Cp

and so on.  This iteration converges to the unique solution shown in Figure 9.1 for each of

three very different guesses for f1(z).
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Figure 9.1.  Pressure distribution and wave shape from lubrication theory
when [η, h, J]= [0.8, 1.9, 13x104].
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The wave is nearly symmetric, but the pressure force is slightly negative.  Figure

9.2 compares the pressure distribution from lubrication theory and Stokes flow; in both

cases the area under the pressure curve is negative.  To use lubrication theory as a

predictive tool, it is necessary at least to study the stability of the flow with h near 2, in

most cases they will be unstable.  Stable flows may be unstable to off-center perturbations

of the type considered by Huang and Joseph [1994] at small but finite Reynolds numbers

since the unbalanced core could possibly be sucked to the wall by the negative pressure

force.

-1.000 104

0

1.000 104

0 0.5 1

lubrication theory

p
*

Stokes flow

_ _
z / L

Figure 9.2.  Comparison of pressure distributions when [η, h, J]= [0.8, 1.9,
13x104].

  10.  Conclusions

Core annular flows of liquids with  the same density and a high viscosity ratio were

computed in a direct numerical simulation.  It was assumed that flow is axisymmetric and

the core is solid with adveceted periodic standing interfacial waves fixed on the moving

core.  These assumptions reduce the number of parameters defining the problem to four :
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Reynolds number, radius ratio, holdup ratio and surface tension parameter.  In dimensional

terms, for given material parameters, we get solutions when the volume flow rates of oil,

water and the holdup ratio are prescribed.  Only the flow rates are given in experiments and

the holdup is then determined by stability, so we are computing a family of the solutions

most of which are unstable.

The numerical solutions have the properties predicted by Joseph in Feng et al. ; the

high pressures on the forward facing slope of the wave, where the water enters into a

converging gap, steepen the wave and reduction of the pressure on the lee side smooths the

wave.  This leads to unsymmetric waves unlike those which levitate a slipper bearing.  The

problem of levitation does not arise in the density matched core, but the pressure

distributions which actually develop in this case seem to be such as to center a slightly

displaced core only when the Reynolds number is greater than a threshold value which

depends on the parameters but in all cases is strictly positive.  Levitation of core flow by

inertia is a new and potentially interesting idea which has been given an explicit predictable

form by the analysis of this paper.
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Appendix – Computational Solution of the Core Annular Flow

The axisymmetric core annular flow with the deformable oil core is governed by

Eq. (3.11) subject to the normal stress condition specified in Eq. (3.12) and the force

balance on the oil core described in Eq. (3.14). For each given value of the parameter triplet

(c, R
1
, h), computational solution of these equation is carried out to determine the flow of
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water, the shape and location of the free surface of the oil core, and the wavelength. This

calculation involves an iterative solution between the calculation of the flow filed of water

and the calculation of the free surface shape. In the following discussion, important details

of these two steps and the overall solution algorithm are described.

Computation of the Flow Field of Water

The velocity and the pressure field involve solution of momentum and continuity

equation (Eq. (3.11)) for the specified wave speed c and the available free surface shape

and wavelength. Relevant details of the discretization method and the solution technique

and the procedure for the determination of the pressure gradient β are now described.

Discretization Method and Solution Technique – The control volume based

computational method of Patankar (1980) is used for the solution of the Navier-Stokes

equations governing the flow of water. In this method, the domain of interest is divided

into a set of control volumes. Values of scalar unknowns including pressure are stored at

the main grid points. A staggered grid is used for storing the velocity components to avoid

the occurrence of checker boarding of the pressure field. Thus, a normal velocity

component is stored on each control volume face. This gives rise to momentum control

volumes in the z- or r-directions to be displaced in the z- or r-directions respectively. The

discretization equations for z- or r-direction velocity components are constructed by

integrating the z- and r-direction momentum equations over the control volumes staggered

in z- and r-directions respectively. The continuity equation is discretized over the main

control volume. The convective-diffusive fluxes over the control volume faces are

computed using the Power-law scheme (Patankar, 1980). The resulting discretization

method expresses perfect conservation over individual control volumes and the entire

domain.
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Two important issues need to be addressed in the application of this discretization

method for predicting the flow field of water – the representation of the free surface and the

treatment of the periodicity conditions. In the present study, an axisymmetric cylindrical

grid is used to discretize the entire domain (0 ≤ r ≤ R2, 0 ≤ x ≤ L). The rigid core is

represented by imposing a zero velocity on the control volumes that lie in the oil core

through the use of a high viscosity. This procedure approximates the wavy interface using

a stepped grid. A grid independence study was carried out to determine the size of the grid

necessary for accurate prediction of the water flow and the interface shape using increase

number of grid points until the accuracy of the pressure distribution no significant change.

The prediction of the core annular flow is carried assuming that the deformation of the

wavy interface is spatially periodic. This enables prediction of flow over segment of the

pipe corresponding to one wavelength. Thus, all variables in Eq. (3.11) are periodic at z =

0 and L. During discretization, the control volume faces at z = 0 and L are treated as

topologically coincident to incorporate this periodicity condition (Patankar, Liu, and

Sparrow, 1977).

The discretized momentum and continuity equations are solved using the SIMPLER

algorithm (Patankar, 1980) that addresses the velocity-pressure coupling effectively. The

algorithm involves sequential solution of the pressure, momentum, and pressure-correction

equations. The line-by-line method is used for the solution of the discretization equations

for each variable. The circular Tri-Diagonal-Matrix-Algorithm (TDMA) is used for solution

of the discretization equations along lines in the periodic direction.

Determination of the Pressure Gradient β – Since we have chosen to

specify the wave speed c, the corresponding pressure gradient β in Eq. (3.11) has to be

calculated. The condition of force balance on the oil core expressed in Eq. (3.14) provides

a natural method for its determination. Thus, in each iteration of the SIMPLER procedure

for calculating the water flow field, the value of β is updated according to Eq. (3.14) based
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on the available pressure P2 and the shear stress τ on the free surface of the oil core. At

convergence of the internal iterations for the calculation of the water flow field, the value of

β is determined for the specified wave speed c and the available free surface shape.

Determination of the Free Surface Shape

Computational prediction of the free surface shape involves discretization and

solution of the normal stress equation with an iterative adjustment of the surface shape for

obtaining the prescribed average core radius R1 and the holdup ratio h. Important details of

these steps are now described.

Discretization and Solution of the Normal Stress Condition – The shape

of the interface is governed by the normal stress and pressure jump condition reproduced

below.

d 2 f

dz2 −
1 + df

dz






2

f
+ 1

σ
1 + df

dz






2





3

2

Cp − p(z)( ) = 0 (A.1)

The solution of this equation is sought for the available pressure variation p(z) on the free

surface that is determined from calculation of the water flow field. The unknown shape f(z)

is represented by discrete values of f at the same locations in z-direction used in the

calculation of the flow field of water. The equations for these values of f(z) are constructed

by integrating the above equation over the main control volumes in the z-direction.  The last

term in the equation is treated explicitly as a source term and is assumed to be constant over

the control volume. The resulting discretization equation has the following form.
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ai f i = bi f i+1 + ci f i−1 + S∆zi (A.2)

where bi = 1
zi+1 − zi

, ci = 1
zi − zi−1

, ai = bi + ci +
1 + df *i

dz






2

f *i
2

∆zi  ,

Si = 1
σ

1 + df *i

dz






2





3

2

Cp − pi **( ),

and ∆zi = (zi+1 − zi−1) 2 .

Similar to the flow field calculation, the periodicity of fi values is accounted for in the

above equations by recognizing that in the equation for fN, the fi+1 is replace by f1 while in

the equations for f1, the fi-1 is replaced by fN. The single * in Eq. (A.2) represent available

values that are updated within the inner iteration for determining the free surface shape

while the **s on pi denote that these values are kept constant during the free surface

calculation and updated only in the outer iteration.

Adjustment for Fixed R1 and h – The unknown pressure jump Cp and the

wavelength L provide the two degrees of freedom necessary to determine the free surface

shape consistent with the specified values of the average plug radius R1 and the holdup

ratio h. After each iteration during calculation of the fi  values, the value of Cp is increased

or decreased according to whether the available fi  values imply a value of R1 larger or

smaller than that desired. Similarly, the wavelength L is increased or decreased if the

current value of the holdup ratio h is larger or smaller than its prescribed value. The amount

of adjustment in the values of Cp and L is determined using the secant method. It uses the

predictions from the last two iterations to determine the sensitivity of R1 and h to changes

in Cp and L. The sensitivity coefficients are then used for inferring the changes in Cp and L

to be made in the next iteration. At convergence, this procedure provides a free surface

shape and location having the desired R1 and h for the surface pressure variation

determined from the flow field calculation.
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Overall Solution Algorithm

The overall solution method involves an outer iteration between the flow field

calculation for water and the determination of the free surface and is outlined below.

1. Prescribe the values of wave speed c, average core radius R1, and the holdup ratio h.

2. Assume a free surface shape. Calculate the velocity and pressure fields in the water

region for the specified wave speed c. During each iteration of the flow field calculation,

the pressure gradient β is adjusted to satisfy the force balance on the oil plug.

3. The shape of the free surface is determined by solving the equation describing the

normal stress condition for the surface pressure determined from step 2. The wavelength

and the pressure jump are adjusted in each iteration so that at convergence the free surface

shape is determined for the prescribed average core radius R1 and holdup ratio h.

4. The new free surface is now used in determining the flow field in step 2. Thus, steps 2

and 3 are repeated till convergence to obtain a self-consistent flow field of water and free

surface shape of the oil core for the prescribed values of the parameter triplet (c, R
1
, h).

The overall solution method correctly predicted the perfect core flow.  Further, it

predicted the same free surface shape in the flow field of water irrespective of the initial

guess surface.  This constituted a rigorous test for the correctness of the computational

technique.  Consequently, the above method was applied for computing the details of the

wavy core flow for a range of the parameter triplet (c, R1, h).
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