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Abstract

The lift force on a circular particle in plane Poiseuille flow is studied by numerical

simulation. We obtain the lift force as a function of the distance from the centerline of the particle

to the wall. This function can be divided into stable and unstable equilibrium branches. The

results show the existence of four different branches between the wall and the centerline, with the

following order: wall – stable – unstable – stable – unstable – centerline, meaning that the branch

close to the wall is stable, while the branch close to the centerline is unstable.

 The lift force is determined by the relative motion between the particle and its surrounding

fluid. Joseph and Ocando (2002) found that the relative motion can be characterized by the slip

velocity and the angular slip velocity discrepancy. By numerical simulation, the slip velocity and

the angular slip velocity discrepancy are also obtained as functions of the distance from the

centerline of the particle to the wall. Correlations for the lift force are then derived in terms of the

slip velocity and the angular slip velocity discrepancy. Using dimensionless parameters, the

correlation is a power law for the stable branch near the wall and a linear relation (which can be

taken as a power law with the power of one) for the stable branch near the centerline. The

correlations are compared to analytical expressions for lift force in the literature and we believe

that the correlations capture the essence of the mechanism of the lift force.

1.Introduction:

There are many studies of the lifting of free particles in shear flow. A fairly complete recent

list of references can be found in Patankar, Huang, Ko and Joseph (2001a) and Joseph and

Ocando (2002). Different analytical expressions for the lift force can be found in the literature.

Auton (1987) gave a formula for the lift on a particle in an inviscid fluid in which uniform motion

is perturbed by a weak shear. Bretherton (1962) found an expression for the lift per unit length on

a cylinder (two-dimensional sphere) in an unbounded linear shear flow at small values of

Reynolds number. Saffman (1965, 1968) gave an expression for the lift on a sphere in an

unbounded linear shear flow. Saffman’s equation is in the form of the slip velocity multiplied by

a factor, which can be identified as a density multiplied by a circulation as in the famous formula
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�U�  for aerodynamic lift. A number of formulas like Saffman’s exist and a review of such

formulas can be found in McLaughlin (1991).

Segrè and Silberberg (1961, 1962) studied the migration of dilute suspensions of neutrally

buoyant spheres in pipe flows. The particles migrate away from the wall and centerline and

accumulate at 0.6 of a pipe radius. Formulas like Saffman’s can not explain the Segrè and

Silberberg effect because they can not account for the migration away from both the wall and the

centerline.

Ho and Leal (1974) analyzed the motion of a neutrally buoyant particle in both simple shear

flow and plane Poiseuille flows. They found that for Couette flow, the equilibrium position is the

centerline, whereas for Poiseuille flow, it is 0.6 of the channel half-width from the centerline

which is in good agreement with Segrè and Silberberg (1961, 1962). To understand the Segrè

and Silberberg effect, the effect of the curvature of the undisturbed velocity profile was found to

be important. Details of the theoretical analysis of lift can be found in Vasseur and Cox (1976),

Schonberg and Hinch(1989), and Asmolov (1999).

Joseph and Ocando (2002) analyzed the role of the slip velocity and the angular slip velocity

on migration and lift. The angular slip velocity is defined as fpsΩ ����  2/����
p

Ω ,

where ( 2/�� � ) is the angular velocity of the fluid at a point where the shear rate is ��  and 
p

�  is

the angular velocity of the particle. They showed that the discrepancy between the angular slip

velocity of a migrating particle and the angular slip velocity at its equilibrium position, �s -�se, is

the quantity that changes sign above and below the equilibrium position. Thus, this discrepancy

can be used to account for the migration from both the wall and the centerline to the equilibrium

position.

In this paper we focus on the lift force on a single particle in plane Poiseuille flow. Joseph

and Ocando (2002) pointed out qualitatively the lift force is proportional to the product of the slip

velocity and the angular slip velocity discrepancy. In the present paper, quantitative expressions

for the lift force in terms of the slip velocity and the angular slip velocity discrepancy are

obtained using the method of correlations.

The method of correlations applied to real or to numerical experiments is a way to derive

formulae and analytic expressions from the processing of data. A famous example of the success

of the method of correlations is the Richardson-Zaki correlation (1954) which is obtained by

processing the data of fluidization experiments. Richardson-Zaki correlation describes the
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complicated dynamics of fluidization by drag and is widely used for modeling the drag force on

particles in solid-liquid mixtures.

The method of correlations has been heavily used in our studies of solid-liquid flows. From

numerical data, we have drawn power law correlations for single particle lift and for the bed

expansion of many particles in slurries (Patankar et al. 2001a; Choi and Joseph 2001; Patankar,

Ko, Choi, and Joseph 2001b). The prediction of the power laws for proppant transport from

numerical simulation is verified by the engineering correlations obtained from experimental data

in Patankar, Joseph, Wang, Barree, Conway and Asadi (2002) and Wang, Joseph, Patankar,

Conway and Barree (2002). The existence of such power laws is an expression of self-similarity,

which has not yet been predicted from analysis or physics. The flow of dispersed matter appears

to obey those self-similar rules to a large degree (Barenblatt 1996).

2. Governing equations and numerical methods:

The numerical methods used here is described in Joseph (2000), Choi and Joseph (2001) and

Patankar et al. (2001a) and will not be described in detail here. Suffice to say that the method is

based on unstructured body-fitted moving grids (ALE method). The two-dimensional

computational domain is shown in figure 1. l and W are the length and width of the channel

respectively, and d is the diameter of the particle. The simulation is performed with a periodic

boundary condition in the x-direction. The solutions are essentially independent of the channel

length l for sufficiently large l. The geometric parameters are W/d = 12, l/d = 22 where d = 1cm.

The values of these parameters are taken from Patankar et al. (2001a) where they justified that the

solutions are essentially independent of the selected geometric parameters. A constant pressure

gradient p� is applied which gives rise to Poiseuille flow.

Particle of diameter d

Channel width W

Poiseuille

flow

y

x

U
max

wall

w

dy

du
 ���

llength Channel
Figure 1:The two-dimensional rectangular computational domain.
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The governing equation for the fluid is the Navier-Stokes equations:

� �  uguu
u 2�������

�

�
�
	



���

�

�
�ff ρP

t
ρ (2.1)

where f�  is the fluid density which is 1g/cc in our simulations. � �t,xu  is the fluid

velocity, � �tP ,x  is the pressure, � is the viscosity of the fluid, and g is the gravitational

acceleration and 
y

eg g�� , where 
y

e is the unit vector in the y-direction.

The motion of solid particles satisfies Newton’s law:

� �

� �
� � � �� ��

�

������

�

�����
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(2.2)

where m is the mass of the particle, I is the moment of inertia tensor, 
p

U  is the translational

velocity, �p is the angular velocity, and X is the coordinate of the center of mass of the particle.

We consider circular particles of diameter d with the mass per unit length m = �p�d
2
/4 and the

moment of inertia per unit length I = �p�d
4
/32. The particle density �p enters this problem through

the buoyant weight (3.1) and as a factor in the left side of (2.2) which vanishes in steady flow.

The no-slip condition is imposed on the particle boundaries:

� �.
pp

XxΩUu ���� . (2.3)

The pressure is split as following:

x

,

eg

xexg

ppP

ppP

f

xf

������

�����

�

�

(2.4)

where 
x

e  is the unit vector in the x-direction.  The applied pressure gradient term then appears as

a body force and p is solved in the simulation.

We refer Poiseuille flow without particles as the basic flow. The velocity profile of the basic

flow is given by: yyWpyu ))(2/()( �� � . Flows are indexed by a Reynolds number

�

��
2

d
R

wf
�

� (2.5)
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based on the wall shear rate Wp
w

)2/( �� �� .

3. Stable and unstable equilibrium regions:

An equilibrium is achieved for a freely moving and rotating circular particle with a given

density in Poiseuille flow when the particle migrates to a position ye of steady rectilinear motion

in which the acceleration and angular acceleration vanish and the hydrodynamic lift just balances

the buoyant weight. Two types of simulations are performed, unconstrained simulation and

constrained simulation. In unconstrained simulations, a particle is allowed to move and rotate

freely to migrate to its equilibrium position. The initial translational and angular velocities of the

particle are prescribed and initial-value problems are solved to obtain the equilibrium state. In

constrained simulations, the position of the particle in the y-direction yp is fixed and the particle is

allowed to move in x-direction and rotate. The solution of the flow evolves dynamically to a

steady state at which the lift force per unit length L on the particle is computed. Such a steady

state will be an equilibrium at y=yp if the density of the particle is selected so that L just balances

the buoyant weight per unit length, satisfying:

4
)(

2d
gL fp

�
���� . (3.1)

From steady solutions of constrained simulations, we are able to obtain L on the particle at

any position y in the channel. We can divide the curve of L vs. y from the wall to the centerline

into four branches by three “turning points” (see figure 2). The “turning point” is defined as the

position where the slope of the L vs. y curve is zero. On the first and third branches of steady

solutions, the slope of L vs. y curve is positive, and the equilibrium points on these branches are

stable. On the second and fourth branches of steady solutions, the slope of L vs. y curve is

negative, and the equilibrium points are unstable. We will indicate the unstable branches by

dotted lines in the figures.
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Figure 2. A plot of L vs. y for R=20 from constrained simulations. The stable and unstable

branches and three turning points are illustrated. Unstable branches are indicated by dotted

lines. Two stable equilibrium points for a particle with 
p

�  = 1.01 f� are shown.

 From the L vs. y curve, the equilibrium position for a particle with a certain 
p

�  can be

determined. The lift force required to balance the buoyant weight of a particle can be computed

from (3.1). If we draw a line on which L equals to this required lift force, the points of

intersections between this line and the L vs. y curve are the equilibrium points for this particle.

For heavier-than-fluid particles with certain densities, there exist multiple stable equilibrium

positions from the wall to the centerline (see figure 2 where two stable equilibrium points for a

particle with 
p

�  = 1.01 f� are shown). However, for a neutrally buoyant particle (L=0), only one

stable equilibrium point exists from the wall to the centerline.

Ho and Leal (1974) showed that the equilibrium position of a neutrally buoyant freely

moving and rotating sphere is between the wall and the centerline. They assumed that the plane

bounding walls were so closely spaced that the lift could be obtained by perturbing Stokes flow

with inertia. They calculated dimensionless lateral force vs. lateral position curves  (equivalent to

our L vs. y curve) for simple shear flow and two-dimensional Poiseuille flow which are shown in

figure 3. Comparing the dashed line in figure 3 which is for two-dimensional Poiseuille flow and

the L vs. y curve in figure 2, one can see that both of the two plots imply the centerline is an

unstable equilibrium position. However, the dashed line in figure 3 indicates that there are two
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branches from the wall to the centerline: wall – stable – unstable – centerline, whereas four

branches exist according to figure 2. Ho and Leal only considered neutrally buoyant particle and

did not include the gravity term in the governing equation used in their calculation. The frame of

their work did not enable them to study the multi-equilibrium positions of heavier-than-fluid

particles. The results shown in figure 2 and 3 are not strictly comparable; Ho and Leal studied

spheres (3D) between plane walls at indefinitely small R whereas our calculation is for 2D

particles at much higher Reynolds numbers.

Figure 3.Lateral force as a function of lateral position, both in dimensionless form. —-, simple

shear flow; - - -, 2D Poiseuille flow. (Adapted from Ho and Leal 1974)

The distinction between stable and unstable equilibrium is essential to understand the

mechanism of the lift. Joseph and Ocando (2002) showed that the angular slip velocity

discrepancy �s -�se has the same sign as the lift force across a stable equilibrium position, in

contrast, the discrepancy has the opposite sign as the lift force across an unstable equilibrium
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position. Correlations between the lift force and the slip velocities are achieved only on the stable

branches of steady solution.

4.Lift correlations

The lift force on a particle in a shear flow is determined by the relative motion between the

particle and its surrounding fluid. Joseph and Ocando (2002) showed that the relative motion can

be characterized by the slip velocity Us = Uf – Up and the angular slip velocity discrepancy �s -

�se. Joseph and Ocando (2002) proposed that 
ss

CUL ��  where
sess

����� . In the present

paper, we determine the constant C using the method of correlations. The correlation is a power

law for the stable branch of steady solutions near the wall and a linear relation for the stable

branch of steady solutions near the centerline.

The analysis of the equilibrium of a neutrally buoyant or heavier-than-fluid particle can be

framed in a uniform way by looking for the equilibrium position where the net force L on the

particle vanishes:

L 04/)( 2
������� dgL fp . (4.1)

For the particle to migrate to its equilibrium position, the net force L must change sign across the

equilibrium position. Joseph and Ocando (2002) showed that �s -�se is the quantity that changes

sign above and below the equilibrium position. We summarize the correlation between �s -�se

and L for the neutrally buoyant and heavier-than-fluid particles as following: �s - �se>0 when the

particle is below the equilibrium position and �s - �se<0 when the particle is above the

equilibrium position. Across a stable equilibrium position, negative �s -�se leads to negative L,

positive �s -�se leads to positive L; across an unstable equilibrium position, negative �s -�se

leads to positive L, positive �s -�se leads to negative L.

Motivated by the conclusion that the sign of �s -�se is the same with the sign of L across a

stable equilibrium position, we seek the correlations between L and the product )(
sess

ΩΩU �� .

L, Us and �s can all be computed as functions of y by constrained simulation which is

independent of �p. As an example, figure 4 shows the relative values of L, Us and �s at R=20.
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Figure 4. L(y), Us(y) and �s(y) computed by constrained simulation at R=20.

Local dimensionless parameters which depend on y are used to express the correlations

between L and )(
sess

ΩΩU �� . The local dimensionless net force is:

� �
2

2 4/)()(4
)(

��

����
�

dgyLd
y

fpf ��

� (4.2)

Two local Reynolds numbers are based on Us and �s -�se respectively:

�

� dyU
yR

sf

U

)(
)( � (4.3)

�

�
2

])([
)(

dy
yR

sesf ���
�

�
(4.4)

The correlations between L and )(
sess

ΩΩU ��  can be expressed as the correlations between �

and )(
�

� RRU .  We define the product of 
U

R  and 
�

R as F:

� �
2

32 )()(
)(

�

� dyyU
RRyF

sessf

U

���
���

�
(4.5)

To derive the correlations between �(y) and F(y), a stable equilibrium position need to be

chosen as the reference. Recall the L vs. y curve, every point on the stable branches of steady

solutions at a given y is a possible equilibrium for a certain �p and is a candidate for the reference

position. We present two forms of the correlations, one with the single equilibrium position of a

neutrally buoyant particle as the reference, the other with the multi-equilibrium positions of a

heavier-than-fluid particle as the references.
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4.1 Correlations with the single equilibrium position of a neutrally buoyant particle

as the reference

For a neutrally buoyant particle, a single equilibrium position exists at N

e
yy �  (the

superscript is for “neutral”) with:

0)( �
N

e
yL  and N

se

N

es
y ��� )( .

Considering  �p = �f, the dimensionless parameters have the following form:

2

)(4
)(

��

�
�

ydL
y

f
�  and 

� �
2

32 )()(
)(

�

� dyyU
yF

N

sessf ���
� .

From our simulation, the equilibrium position of a neutrally buoyant particle is always on the

stable branch of steady solutions near the centerline. L(y) and N

ses
y ��� )(  are positive at every

point on the stable branch of steady solutions near the wall; L(y) and N

ses
y ��� )(  change sign

across N

e
y  on the stable branch of steady solutions near the centerline. Hence, in this section, we

will refer the stable branch of steady solutions near the wall as the stable branch of steady

solutions away from equilibrium, and the stable branch of steady solutions near the centerline as

the stable branch of steady solutions through equilibrium. It should be emphasized that the lift

force L is obtained from the steady solutions from constrained simulations and does not depend

on �p. Therefore, the correlations apply to both neutrally buoyant particles and heavier-than-fluid

particles even though the equilibrium of a neutrally buoyant particle is chosen as the reference.

We find that the correlation between �(y) and F(y) is a power law on the stable branch of

steady solutions away from equilibrium and a linear relation on the stable branch of steady

solutions through equilibrium.

myaFy )()( ��     on the stable branch of steady solutions away from equilibrium; (4.6)

)()( ykFy ��     on the stable branch of steady solutions through equilibrium. (4.7)

The correlations are derived for Poiseuille flows with the Reynolds number R = 10, 20 and 40. In

figure 5, the correlations for the stable branch of steady solutions away from equilibrium are

plotted. It can be seen that power laws fit the data well. Following are the power law correlations

along with the correlation coefficients �2
.

400.0)(94.17)( yFy �� ,  �
2
=0.999,  R=10; (4.8)

411.0)(29.27)( yFy �� ,  �
2
=0.986,  R=20; (4.9)
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448.0)(01.38)( yFy �� ,  �
2
=0.995,  R=40. (4.10)

�(y) = 27.288F(y)
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�
2
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Figure 5 The power law correlations between �(y) and F(y) for the stable branch of steady

solutions away from equilibrium in the flows with R = 10, 20 and 40.

 In figure 6, the linear correlation between �(y) and F(y) for the stable branch of steady

solutions through equilibrium in the flow with R=20 is plotted. The plots for flows with R=10 and

20 are skipped whereas the linear equations along with the correlation coefficients are listed

below.

)(17.53)( yFy �� ,  �
2
=0.983,  R=10; (4.11)

)(74.30)( yFy �� ,  �
2
=0.990,  R=20; (4.12)

)(35.24)( yFy �� ,   �
2
=0.999,  R=40. (4.13)
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Figure 6. The linear correlation between �(y) and F(y) for the stable branch of steady solutions

through equilibrium in the flow with R=20.

It is noticed that the prefactor a and the exponent m in the power law correlations and the

slope k in the linear correlations are functions of the Reynolds number R. In table 1, these

coefficients are listed.

R a m k

10 17.94 0.400 53.17

20 27.29 0.411 30.74

40 38.01 0.448 24.35

Table 1.The prefactor a, the exponent m and the slope k as functions of the Reynolds number R.

We plot a, m and k as functions of R in figures 7, 8 and 9 respectively.
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Figure 7. The prefactor a vs. the Reynolds number R..
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Figure 8. The exponent m vs. the Reynolds number R.
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k  = 184.6R
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Figure 9. The slope k vs. the Reynolds number R.

We found that a(R) and m(R) can be fitted with linear function reasonably and power law can

give satisfactory fitting for k(R).

577.12650.0 �� Ra ,  �
2
=0.977; (4.14)

382.00016.0 �� Rm ,  �
2
=0.984; (4.15)

563.0
6.184

�

� Rk ,  �
2
=0.949; (4.16)

With equations (4.14), (4.15) and (4.16), we can obtain general correlations which apply to

the flow with a Reynolds number in the range of 10 – 40.

�
�

�

�
�

�

�

�

�

�

��

(4.18)                                                                 m.equilibriu through solutionssteady  of 

branch stable on the

(4.17)                                                          m;equilibriu fromaway  solutionssteady  of 

branch stableon the 

                            )(6.184)(

    )(12.577)(0.650)(

yFRyλ

yFRyλ
R

0.563

0.382)(0.0016

The correlations give us analytical expressions for the lift force. To compare to the analytical

lift force expressions in the literature, we use the dimensional forms of �(y) and F(y) in (4.17) and

(4.18). After arrangement, the equations are in the following form:
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4
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se

Ω
s
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s

U
f

ρRL
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se

Ω
s

(Ω
s

Uην
R

L RRR

Equations (4.19) and (4.20), while apply to two-dimensional motion of a particle in a

Poiseuille flow, may be compared to well-known lift expressions for a particle in a linear shear

flow with shear rate �� . The comparisons are at best tentative because the linear shear neglects the

effects of shear gradients and because the lift expressions in linear shear flows are for indefinitely

small Reynolds number perturbing Stokes flow on an unbounded domain. Bretherton (1962)

found the lift per unit length on a cylinder (2D sphere) at small values of �� /
2

aR ��  is given by:

634.0))4/ln(679.0(

16.21
2
��

�

R

U
L

s
�

(4.21)

Saffman’s (1965) gave expression for the lift on a sphere in a linear shear flow

sorder termlower 46.6
25.05.05.0
�� aUL sf ��� � (4.22)

where a is the radius of the sphere. The lower order terms are:

� �� ������ �
2

1

8

223
��� sfs  aU

. (4.23)

For a neutrally buoyant particle at equilibrium, L = 0 and from (4.21) and (4.22), Us = 0. The

Bretherton and Saffman formulae thus predict that the slip velocity is zero for a neutrally buoyant

particle at equilibrium in an unbounded linear shear flow. Patankar et al. (2001a) stated that the

zero slip velocity is always one solution for a neutrally buoyant particle freely moving in an

unbounded linear shear flow, but it may not be the only solution and it can be unstable under

certain conditions not yet understood. Feng, Hu and Joseph (1994) showed that a neutrally

buoyant particle migrates to the centerline in a Couette flow where Us = 0. Ho and Leal (1974)

found a neutrally buoyant sphere equilibrates at the centerline in a Couette flow. The difference is

that Feng et al. (1994) studied 2D particles in flows at finite Reynolds numbers; while Ho and

Leal (1974) studied 3D spheres in flows at indefinitely small Reynolds numbers. From our

simulations for 2D Poiseuille flows, Us � 0 at the equilibrium position of a neutrally buoyant

particle (see figure 4); whereas �s = �se at equilibrium gives rise to zero lift.
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We find that our expression for the lift on the stable branch of steady solutions through

equilibrium (4.20) is similar to the higher order term in Saffman’s expression for the lift. If we

make following changes in equation (4.20): 
�

��
2

d
R

wf
�

�  � 

�

��
2

d
R

f
�

� , the power of R (-

0.563) � (-0.5), and use d = 2a, equation (4.20) becomes:

aUL sessf )(3.92 5.05.05.0
����

�

��� � (4.24)

Comparing equation (4.24) and the leading term in (4.22), we note that both expressions are

linear in Us; both have a similar dependence on �f, �, and a after noting that (4.24) is for the lift

force per unit length; but the dependence on �� and �p is greatly different.

Another formula for the lift on a particle in an inviscid fluid in which uniform motion is

perturbed by a weak shear was derived by Auton (1987) and a more recent satisfying derivation

of the same result was given by Drew and Passman (1999). They find that

)(
3

2 3
Uuω ��� ��aL . (4.25)

In plane flow ��
z

eω � , )()( Uu ���
x

eUu , we have:

y
e)(

3

4 3
UuaL f ���� �� (4.26)

where ����� f2 .

(4.20) and (4.26) have the similar form. Suppose our correlations can be extended to higher

Reynolds number, then equation (4.20) reduces to the following form at R = 6358.6:

)(
3

4 2

sessfUaL ���� �� (4.27)

Note that (4.26) is for three-dimensional spheres, whereas our correlation is for two-dimensional

particles. Therefore, the same constant in (4.26) and (4.27) can only qualitatively demonstrate

that our correlation (4.20) at high Reynolds number can match Auton’s expression (4.26) which is

for inviscid fluid. The key difference between our correlation and Auton’s expression is that we

use �s - �se in (4.27), in contrast to f� in (4.26)

The correlations prove that the lift force L is determined by the relative motion between the

particle and its surrounding fluid. The relative motion can be characterized by the slip velocity Us
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and the angular slip velocity discrepancy �s - �se.  We emphasize that the relative angular motion

is characterized by �s - �se  rather than �s.  Note that �s is always positive at any position in the

channel, because normally the angular velocity of the particle does not exceed the angular

velocity of the fluid. Therefore, �s can not account for the negative lift force appearing on the

stable branch of steady solutions through equilibrium (see figure 4). By using �s - �se, we are

able to account for the negative lift force. Our correlations cover the whole range from the wall to

the centerline except the unstable regions. We believe that our correlations capture the essence of

the mechanism of the lift force.

4.2 Correlations with the multi-equilibrium positions of a heavier-than-fluid

particle as the references

Under certain conditions, two stable equilibrium positions exist for a heavier-than-fluid

particle, one on the stable branch of steady solutionss near the wall, and the other on the stable

branch of steady solutionss near the centerline. At the two equilibrium positions (the superscript

is for “heavy”):

H

e
yy

1
� , 

H

se

H

es
y

11
)( ��� , L 04/)()()( 2

11
���� ��� gdyLy fp

H

e

H

e ;

H

e
yy

2
� , 

H

se

H

es
y

22
)( ��� , L 04/)()()( 2

22
���� ��� gdyLy fp

H

e

H

e .

On the stable branch near the wall, across 
H

e
y

1
, 

H

ses
y

1
)( ���  and L(y) change sign; on the stable

branch near the centerline, across 
H

e
y

2
, 

H

ses
y

2
)( ���  and L(y) change sign. Hence, in this

section, we will refer the stable branch near the wall as the stable branch of steady solutions

through the first equilibrium position, and the stable branch near the centerline as the stable

branch of steady solutions through the second equilibrium position. Following is an example to

illustrate the change of sign of 
H

ses
y ��� )(  and L(y) in the case of multi-equilibrium positions.

In the two-dimensional Poiseuille flow with R = 20, a particle with �p=1.016�f has two stable

equilibrium positions. The net force:

L .33.12)(4/)()()( 2
����� yLgdyLy fp ���

On the stable branch of steady solutions through the first equilibrium position, 
H

e
y

1
=1.093cm,

H

se1
� =1.5765s

-1
. In the following table, we list the lift force L, the net force L, the angular slip
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velocity
s

� , the discrepancy 
H

ses 1
���  , F(y) and �(y) for seven points on the stable branch of

steady solutions through the first equilibrium position.

y(cm) L(dyn/cm) L(dyn/cm)
s

� (s
-1
) H

ses 1
��� (s

-1
) F(y) �(y)

0.55 70.14 57.81 4.77 3.2 11.963 73.609

0.6 55.01 42.68 3.73 2.15 5.717 54.345
0.75 34.54 22.21 2.33 0.753 0.987 28.282

0.9 22.41 10.08 1.8 0.225 0.164 12.837

1 16.46 4.13 1.65 0.073 0.034 5.262
1.15 10.62 -1.71 1.57 -0.00899 -0.002 -2.174

1.25 8.51 -3.82 1.57 -0.00364 -0.0002 -4.861

Table 2. The lift force L, the net force L, the angular slip velocity 
s

�  the discrepancy 
H

ses 1
��� ,

F(y) and �(y) for seven points on the stable branch of steady solutions through the first

equilibrium position (R = 20 and �p=1.016�f). It can be seen that across 
H

e
y

1
=1.093cm,

H

ses
y

1
)( ���  and L(y) change sign.

On the stable branch of steady solutions through the second equilibrium position, 
H

e
y

2
=2.377cm,

H

se2
� =1.1837s

-1
. In the following table, we list the lift force L, the net force L, the slip velocity

s
� , the discrepancy 

H

ses 2
��� , F(y) and �(y)for eight points on the stable branch of steady

solutions through the second equilibrium position.

y(cm) L(dyn/cm) L(dyn/cm)
s

� (s
-1
) H

ses 2
��� (s

-1
) F(y) �(y)

2 14.470 2.142 1.431 0.247 0.091 2.728
2.25 13.020 0.692 1.266 0.083 0.043 0.882

2.5 11.490 -0.838 1.113 -0.071 -0.039 -1.066

3 8.640 -3.688 0.855 -0.329 -0.176 -4.695
3.5 6.043 -6.285 0.619 -0.564 -0.298 -8.002

4 3.047 -9.281 0.402 -0.782 -0.413 -11.816

4.5 0.188 -12.139 0.221 -0.963 -0.447 -15.456

5 -1.521 -13.849 0.105 -1.079 -0.386 -17.633

Table 3. The lift force L, the net force L, the angular slip velocity 
s

� , the discrepancy

H

ses 2
���  , F(y) and �(y) for eight points on the stable branch of steady solutions through the

second equilibrium position (R = 20 and �p=1.016�f). It can be seen that across 
H

e
y

2
=2.377cm,

H

ses
y

2
)( ���  and L(y) change sign.
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From table 2 and 3, it can be seen that for a heavier-than-fluid particle with two stable

equilibrium positions, the discrepancy
H

ses
y ��� )(  changes sign across either of the two

positions and correlates very well with the net force L(y).

Correlations will now be derived on the two stable branches. On the stable branch of steady

solutions through the first equilibrium position, the equilibrium position 
H

e
y

1
 is taken as the

reference position and H

se1
�  is used to compute the discrepancy. The dimensionless parameters

are in the following form:

 
� �

2

2 4/)()(4
)(

��

����
�

dgyLd
y

fpf ��

�  and 
� �

2

3

1

2 )()(
)(

�

� dyyU
yF

H

sessf ���
� .

We present the correlations for two cases, �p=1.016�f and R =20; �p=1.045�f and R =40. For the

case with �p=1.016�f and R=20, 
H

e
y

1
 = 1.093cm, 

H

se1
� =1.5765s

-1
; for the case with �p=1.045�f

and R=40, 
H

e
y

1
 = 0.9476cm, 

H

se1
� =4.332s

-1
.When y < 

H

e
y

1
 on the stable branch of steady

solutions through the first equilibrium position, 
H

ses
y

1
)( ���  and L(y) are positive, so are �(y)

and F(y). We find that the correlation between the positive �(y) and F(y) is still a power law. In

figure 10, �(y) vs. F(y) for y < 
H

e
y

1
 on the stable branch of steady solutions through the first

equilibrium position is plotted. It can be seen that power laws fit the data well. When y > 
H

e
y

1
 on

the stable branch through the first equilibrium position, 
H

ses
y

1
)( ���  and L(y) are negative, so

are �(y) and F(y). We have not found a way to correlate the negative �(y) and F(y).

�(y) = 25.928F(y)
0.4417

�
2
 = 0.9929

�(y) = 52.878F(y)
0.3557

�
2
 = 0.9964

1
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Figure 10. The positive �(y) vs. F(y) for y < 
H

e
y

1
 on the stable branch of steady solutions through

the first equilibrium position. Two cases are plotted, �p=1.016�f and R =20 (see table 2);

�p=1.045�f and R =40. For the case with �p=1.016�f and R =20, 
H

e
y

1
 = 1.093cm, 

H

se1
�  =

1.5765s
-1
; for the case with �p=1.045�f and R =40, 

H

e
y

1
 = 0.9476cm, 

H

se1
� =4.332s

-1
. When y <

H

e
y

1
, �(y) and F(y) are positive and can be fitted with power laws.

The correlations between the positive �(y) and F(y) for y < 
H

e
y

1
 on the stable branch of steady

solutions through the first equilibrium position are listed as following:

442.0)(93.25)( yFy �� , �
2
 = 0.993, for �p=1.016�f and R =20; (4.28)

356.0)(88.52)( yFy �� , �
2
 = 0.996, for �p=1.045�f and R =40. (4.29)

On the stable branch of steady solutions through the second equilibrium position, the

equilibrium position 
H

e
y

2
 is taken as the reference position and H

se2
�  is used to compute the

discrepancy. The dimensionless parameters are in the following form:

 
� �

2

2 4/)()(4
)(

��

����
�

dgyLd
y

fpf ��

�  and 
� �

2

3

2

2 )()(
)(

�

� dyyU
yF

H

sessf ���
� .

We find that the correlation between �(y) and F(y) is still a linear equation. We present the

correlations for two cases, �p=1.016�f and R =20; �p=1.045�f and R =40. For the case with

�p=1.016�f and R=20, 
H

e
y

2
 = 2.377cm, H

se2
� =1.1837s

-1
; for the case with �p=1.045�f and R=40,

H

e
y

2
 = 2.705cm, H

se2
� =2.737s

-1
. Figure 11 shows �(y) vs. F(y) on the stable branch of steady

solutions through the second equilibrium position and the linear fitting.
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�(y) = 30.536F(y)

�
2
 = 0.979

�(y) = 19.719F(y)

�
2
 = 0.9825
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Figure 11. �(y) vs. F(y) on the stable branch of steady solutions through the second equilibrium

position for two cases, �p=1.016�f  and R =20 (see table 3); �p=1.045�f  and R =40. For the case

with �p=1.016�f and R=20, 
H

e
y

2
 = 2.377cm, H

se2
�  = 1.1837s

-1
; for the case with �p=1.045�f  and

R=40, H

e
y

2
 = 2.705cm, H

se2
� =2.737s

-1
. Linear correlations give satisfactory fitting for the �(y)

vs. F(y) curves.

The linear correlations between �(y) and F(y) on the stable branch of steady solutions through

the second equilibrium position are listed as following:

)(54.30)( yFy �� , �
2
 = 0.979, for �p=1.016�f and R =20; (4.30)

)(72.19)( yFy �� , �
2
 = 0.983, for �p=1.045�f and R =40. (4.31)

The correlations derived with multi-equilibrium positions of a heavier-than-fluid particle as

reference positions can be compared to the correlations with the single equilibrium position as the

reference position.

stable branch near the

wall

stable branch near

the centerline

R=20, with the single equilibrium position of

a neutrally buoyant particle as the reference

position

411.0)(29.27)( yFy �� )(74.30)( yFy ��

R=20, with multi-equilibrium positions of a 442.0)(93.25)( yFy �� )(54.30)( yFy ��
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heavier-than-fluid particle as reference

positions

R=40, with the single equilibrium position of

a neutrally buoyant particle as the reference

position

448.0)(01.38)( yFy �� )(35.24)( yFy ��

R=40, with multi-equilibrium positions of a

heavier-than-fluid particle as reference

positions

356.0)(88.52)( yFy �� )(72.19)( yFy ��

Table 4. The comparison between the correlations derived with the single equilibrium position of

a neutrally buoyant particle as the reference position and the correlations with multi-equilibrium

positions of a heavier-than-fluid particle as reference positions.

From table 4, we can see that the form of the correlations is a power law on the stable branch

of steady solutions near the wall and a linear equation on the stable branch of steady solutions

near the centerline, which is independent of the choice of the reference position. However, the

coefficients in the correlations do depend on the reference positions. We have not found

quantitative relations between the coefficients of the correlations with different reference

positions.

5.Conclusions

The focus of the present paper is the lift force on a circular particle in a 2D Poiseuille flow. It

is known that certain region in a channel is unstable and a particle can not equilibrate in an

unstable region. For example, Ho and Leal (1974) pointed out the centerline is an unstable

equilibrium position in a 2D Poiseuille flow. By constrained simulation, we are able to determine

the stable and unstable regions by examining the L vs. y curve. The domain from the wall to the

centerline can be divided into four regions with the following order: wall – stable – unstable –

stable – unstable – centerline.

 The lift force L on a particle is determined by the relative motion between the particle and its

surrounding fluid. The relative motion can be characterized by the slip velocity Us and the

angular slip velocity discrepancy �s - �se. For neutrally buoyant and heavier-than-fluid particles,

following relation between �s -�se and L exist: �s -�se<0 when the particle is above the

equilibrium position; �s -�se>0 when the particle is below the equilibrium position. With a stable

equilibrium as the reference state, negative �s -�se leads to negative L, positive �s -�se leads to
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positive L; with an unstable equilibrium position as the reference state, negative �s -�se leads to

positive L, positive �s -�se leads negative L.

Correlations between L and the product of Us and �s - �se are obtained on the two stable

branches of steady solutions. Using dimensionless parameters GyR  and )( yUy RR
�

� , the

correlation is a power law on the stable branch of steady solutions near the wall and a linear

relation (which can be taken as a power law with the power of one) on the stable branch of steady

solutions near the centerline. Two forms of the correlations are presented, one with the single

equilibrium position of a neutrally buoyant particle as the reference, the other with the multi-

equilibrium positions of a heavier-than-fluid particle as the references. The power law

correlations reveal the self-similar property in the flow of dispersed matter which is not evident

from the equations of motion.
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