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Abstract

We study some basic problems of uid dynamics of two incompressible
miscible liquids modeled as a simple mixture in which the volume of the
mixture does not change on mixing. In general, the expansion � = divu
in these problems does not vanish. The velocity in such a mixture can be
decomposed into a solenoidal and an expansion part. The expansion velocity
is induced by di�usion which is proportional to the gradient of the volume
fraction in a simple mixture. The expansion can be large at certain times and
places. We have carried out an analysis of transient or dynamic interfacial
tension for the problem of smoothing of an initial discontinuity of composition
across a plane and spherical surface. The dynamic tension at the spherical
interface decays as t�1=2; it has two terms, one term arises from the Korteweg
stress and it gives rise to a stress opposing the internal pressure as in the case
of equilibrium tension if the Korteweg coe�cient has the appropriate sign.
The other term arises from the expansion velocity and is proportional to the
rate of change of viscosity with volume fraction. This term has the wrong
sign for interfacial tension in the case of glycerin and water solutions but has
the right sign when the light uid is more viscous. In the context of the new
theory, we derive a new and elementary solution which describes di�usion of
binary species along a pipe. An analysis of this solution to small disturbances
leads to a nonseparable problem which is solved by a �nite element method.
The numerical study indicates stability under all circumstances.

zAt a time 30 years ago when I was trying to prove theorems Fritz showed me by

example how applied math ought to apply. He had an enormous impact on my development

as an empirical scientist. I admire him greatly and treasure our years of friendship.
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1 Introduction

In this paper we study some basic problems of uid dynamics of two incom-

pressible miscible liquids modeled as a simple mixture in which the density

of the mixture is connected to the densities of the two constituents by a lin-

ear relation in the volume fraction. Since the density of such a mixture of

incompressible liquids is changed by di�usion, the expansion � = divu does

not vanish in general. The velocity in such a mixture can be decomposed

into a solenoidal and an expansion part. The expansion velocity is induced

by di�usion which is proportional to the gradient of the volume fraction in

a simple mixture.

In all the previous studies of incompressible mixing liquids known to

us (miscible displacements, binary convection, Taylor dispersion, reaction

and di�usion, transport of di�using dyes, Marangoni convection, di�usion

controlled solidi�cation, etc), it is universally and incorrectly assumed that

divu = 0. One aim of our study is to �nd the situations in which divu = 0

is a good approximation. In fact divu = 0 is exact when the di�erence

of density of the two constituents is zero and when there is no di�usion.

It is a good approximation in some situations when the density di�erence

is small, as in a Boussinesq approximation and when the di�usion is slow.

However, even in the Boussinesq or slow di�usion approximation there are

problems in which divu is large at certain times and places. We �nd that

the expansion velocity is always important where the gradients of the volume

fraction are su�ciently great, most especially at early times in the mixing

layer arising from the smoothing of a initial plane or spherical discontinuity of

composition. Another case and place where divu = 0 is a bad approximation

are in driven problems of mixing layer where gradients of composition (or

volume fraction) can be maintained in a competition between convection
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and di�usion.

Dynamical e�ects can arise in thin mixing layers where the gradients of

composition are large. This possibility was already recognized in discussions

given by Korteweg [1901] in which he proposes a constitutive equation which

includes the stresses induced by gradients of composition which could give

rise to e�ects which mimic surface tension in regions where the gradients are

large. The small but interesting history of thought about ersatz interfacial

tension in di�using liquids is given in a paper by Joseph [1990]. The presence

of sharp interface in slow di�usion in rising bubbles of water in glycerin

is reported there. The shape of such interfaces resemble familiar shapes

which can be seen in immiscible liquids. A similar parallel description of

drops of miscible and immiscible liquids occurs in the evolution of the falling

drops into a vortex ring (Baumann, Joseph, Mohr, Renardy [1991]). Of

particular interest is a membrane which spans the ring and must rupture

before a free ring is formed. Such a membrane on a 9/10 glycerin-water

ring falling in a 3/2 glycerin-water solution appears in panel e of Fig 1 in

the paper by Arecchi, Buah-Bassuah, Francini, Perez-Garcia and Quercioli

[1989]. It is hard to explain this membrane without acknowledging some

type of interfacial tension. A typical formulation for �nding the motion and

shapes of miscible drops like the one used by Kojima, Hinch and Acrivos

[1984] which uses divu = 0 in each uid and classical interface conditions

misses out on slow di�usion on the one hand and gradient stresses on the

other.

More recently it has been suggested by Barkey and Laporte [1990] that

morphological instabilities observed in electrochemical deposition could have

their origins in the �elds and interfacial dynamics that drive growth with

di�usion controlled structure observed on a scale of microns, corresponding
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to the mass-transfer boundary layer thickness. In another recent study Garik,

Hetrick, Orr, Barkey and Ben-Jacob [1991]

: : : reported on the stability of the interface between to miscible
uids of closely matching viscosities when one is driven into the
other. For the case where the uids di�er only in solute con-
centration, we �nd that spontaneous cellular convective mixing
can develop. We suggest that this interfacial patterning is a
surface tension e�ect distinct from viscous �ngering; the lat-
ter can occur simultaneously : : : On the basis of the above
experimental results, we hypothesize that the global morphol-
ogy of depositional growth, i.e., the number of branches, the
stability of the branch tips, and the way it �lls space (its \di-
mension") is determined by the hydrodynamic stability of the
interface between the depleted uid near the growth and the
bulk uid provided the gradient is su�ciently sharp to provide
an e�ective liquid-liquid interface. Since leading edges grow
fastest, hydrodynamic modulation of the liquid-liquid interface
�a la Hele-Shaw would determine branch position, just as cel-
lular mixing will. In electrodeposition the existence of a sharp
gradient sustained by the growing deposit is experimentally
supported.

We have carried out an analysis of transient or dynamic interfacial tension

for the problem of smoothing of an initial discontinuity of composition across

a plane and spherical surface. The idea is to evaluate the jump in the normal

stress across the mixing layer which in this problem reduces to a jump in

the mean normal stress (the pressure). We �nd no such jump across a plane

layer but there is a jump proportional to the curvature across the spherical

surface. The dynamic tension at the spherical interface is proportional toq
D=t where D = O(10�6cm2=sec) and t is the time. There are two terms

in the expression (7.10) for the interfacial tension; one term arises from the

Korteweg stress and it gives rise to a stress opposing the internal pressure

as in the case of equilibrium pressure if the Korteweg coe�cient has the

appropriate sign. A second term arises from the expansion velocity and is

proportional to the rate of change of viscosity with volume fraction. This

term has the wrong sign for interfacial tension in the case of glycerin and
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water solutions but has the right sign when the light uid is more viscous.

2 Mass balance and di�usion

Recently Joseph [1990] has reconsidered the equations of uid dynamics of

two incompressible miscible liquids with gradient stresses. The density of

incompressible uids can vary with concentration � and temperature, but

not with pressure. The velocity �eld u of such incompressible uids is not in

general solenoidal, divu 6= 0. A conservation form of the left-hand side of the

di�usion equation which di�ers from the usual substantial derivative of � by

the term �divu, is implied by requiring that the mass per unit total volume

of one of the liquids in a material is conserved in the absence of di�usion.

Suppose that  is the density of one liquid per unit total material volume V ,

 = m=V where m is the mass of . Then

d

dt

Z
V (t)

dV = �
Z
@V

q � ndS; (2.1)

says that the mass of  in V can change only by di�usion across the boundary

of V . In the usual way we �nd that

d

dt
+  divu = �divq (2.2)

where q is the ux of . Of course, the substantial time derivative of the

density �()

d�

dt
= �0()

d

dt
(2.3)

is not zero when
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d

dt
=
@

@t
+ (u � r) 6= 0; (2.4)

that is, in the usual case. Hence, the continuity equation gives

divu = �1

�

d�

dt
6= 0: (2.5)

In general  = �� where � = m=V is the density of the uid  and

� = V =V is the volume fraction. Under isothermal conditions � is a

constant and we may work with �(�) and � satis�es (2.2).

Suppose � is the density of the other liquid per total unit volume. Then

� = � +  and

d�

dt
+ � divu = �divq�: (2.6)

The continuity equation may be written as

d�

dt
+
d

dt
+ (� + ) divu = 0: (2.7)

Hence, using (2.2) and (2.6) in (2.7), we �nd that

div(q� + q) = 0: (2.8)

The sum of the uxes of the mass of each constituent across the boundary

of any material volume V must vanish

Z
@V

(q� + q) � ndS = 0: (2.9)

to conserve the total mass.

If the volume V of a mixture of two liquids does not change on mixing,

then V = V + V� and the density can be expressed in terms of the volume

fraction � = V=V of one of the constituents by the form
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�(�) = ��+ ��(1� �) (2.10)

where � and �� are the densities of  and �, handbook values. Mixtures

satisfying (2.10) will be called simple mixtures. Equation (2.10) is correct

to within 1% for glycerin and water mixtures (see Joseph [1990]). The volume

fraction is the natural variable connecting density and di�usion in simple

mixtures. Since  = �� and � = ��(1� �) and conserved in the absence of

di�usion, it is natural to express the constitutive equation for the uxes q

and q� as a nonlinear Ficks' law for each constituent in terms of the volume

fraction of one of them

q = �D(�)r(��); q� = �D�(�)r [��(1� �)] (2.11)

with di�erent di�usion functions and assume that � and �� are constants,

as in the isothermal case, then

Z
@V

n � (q� + q)dS =
Z
@v

(D��� �D�)n � r�dS = 0

in each and every material volume V , so that the ratio of di�usion functions

D�

D

=
�
��

(2.12)

is a constant.

Since the density of a simple mixture of incompressible liquids changes

by virtue of di�usion of the volume fraction, the velocity �eld cannot be

solenoidal (cf. (2.5)). However, Galdi, Joseph, Preziosi and Rionero [1991]

have shown that if (2.10) holds, then (2.2) and (2.5) imply that

divw = 0; (2.13)
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where

w = u� (� � ��)

���
q : (2.14)

From (2.8), we also get

div bw = 0;

where

bw = u� (� � ��)

���
q�:

In this case we may introduce a streamfunction.

Landau and Lifshitz [1959] have considered di�usion without explicitly

taking up the case of incompressible liquids. They write what might at �rst

glance be thought to be the usual di�usion equation (their (57.3))

�
dc

dt
= �divi (2.15)

where

c = m=m = =� (2.16)

is the mass fraction, m is the total mass and i is said to be the di�usion ux

density, which we shall specify presently, according to our understanding.

Substituting (2.16) into (2.15) using (2.5) we get

�
d=�

dt
=
d

dt
+  divu: (2.17)

This shows that (2.15) is perfectly consistent with mass conservation argu-

ment (2.1) provided that

divi = divq (2.18)

is the divergence of the ux of , say the ux of solute.

Landau and Lifshitz develop a coupled thermodynamic theory for i and

the heat ux under the condition that the concentration gradients are small
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(which is not the main case of interest here). When temperature and pressure

gradients vanish, they �nd that

i = �� grad�̂ = ��
 
@�̂

@c

!
p;T

gradc = ��D gradc (2.19)

where �̂ is the chemical potential and D is the di�usion coe�cient. For

simple mixtures c = =� = ��=�(�) and

� gradc =
���
�(�)

grad� (2.20)

After combining (2.17) and (2.18) with (2.15), with constant � and �� , we

�nd that
@�

@t
+ div(�u) = div [D(�)r�] (2.21)

where

D(�) =
��D(�)

��+ ��(1� �)
: (2.22)

Chemical engineers learn how to deal with di�usion from Bird, Stewart

and Lightfoot [1958] who use a mixture theory and based on a number aver-

aged velocity ui of species i, a mass averaged velocity u =
NX
i=1

�iui=� where

�i = Nimi=V is the density of the species i, mi is the the mass of one of

them, Ni is the number of them in V and � =
NX
i=1

�i. Di�usion equations are

de�ned from mass conservation consideration by introducing the relative ux

ji
def
=
�i(ui � u);

NX
i=1

ji = 0: (2.23)

Then, the mass balance equations

@�

@t
+ div�u = 0; (2.24)

@�

@t
+ div�iui = 0; (2.25)
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may be combined into di�usion equations

@�i
@t

+ div�iu = �divji (2.26)

Mixture theories assume interpenetrating continua where molecules of

di�erent species, say glycerin and water, occupy the same point but move

with di�erent velocities. Short range forces which glue liquids of di�erent

type together and force cooperative motions are ignored

Bird, et al. do not explicitly consider simple mixture of incompressible

liquids where the volume fraction is the nature variable of composition. How-

ever, John Brady has shown us how this kind of theory can be extracted from

the mixture theory of Bird, et al. The volume fraction � of the ith species is

given by

�i = �Vi=Mi;
NX
i=1

�i = 1 (2.27)

where Mi is the mass per mole and Vi is the volume of the ith species in one

mole. In binary mixtures N = 2, �1 = �, �2 = 1� � and

� = �1 + �2 =
M1

V1
�+

M2

V2
(1� �) (2.28)

which is always true whether or not there is a volume change of mixing. When

there is no volume change V1 and V2 are constants and we may compare (2.10)

and (2.28) to show that (; �; � ; ��) = (�1; �2;M1=V1;M2=V2). Moreover,

when V1 is constant, we may write

�

 
@�

@t
+ div�u

!
= �divj1: (2.29)

The relative ux can be identi�ed with q when q is expressed as in (2.11).The

relation div(q + q�) = 0 which holds in general is satis�ed identically for

simple mixture satisfying (2.11) and (2.12) because in this case q + q� =

j1 + j2 = 0. Bird, et al. model di�usion, their ji, in the same manner as
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Landau and Lifshitz, j1 replaces i in (2.19), so that all authors will arrive at

the same results when the consequences of incompressibility are modeled by

simple mixtures (2.10).

We have investigated the consequences for mass balance and di�usion of

the assumption that the volumes of incompressible constituent do not change

on mixing. This is expressed by (2.10) which shows that the density of such a

mixture may change by dilution and that the volume fraction is the material

variable connecting mass and di�usion. It follows from our theory that the

velocity u is not solenoidal but that a linear combination w (or bw) of the
velocity and a species ux are solenoidal. These e�ects could also be obtained

from equations contained in the theories presented by Landau and Lifshitz

[1959] and by Bird, et al. [1958], but they seem not to have been explored.

Many pairs of liquids will give rise to small volume changes upon mix-

ing. These liquids are only approximate simple mixtures. It is probable

that nearly all the interesting cases which are not already well described by

the theory of perfect incompressible mixtures could be treated as a to-be-

developed perturbation of the perfect case.

In areas of applications, problems of mixing liquids (miscible displace-

ments, binary convection, Taylor dispersion, reaction and di�usion, transport

of di�using \passive" scalars like dyes, Marangoni convection, solidi�cation

problems, etc), it is universally and incorrectly assumed that divu = 0.

Presumably the practitioners of these arts know what they are doing and

recognize that they are making an approximation, like the Boussinesq ap-

proximation. In fact, though there are surely many situations in which the

assumption that divu = 0 is a good one, there are others in which

divu =
� � ��
���

divq =
�� � �
��

div [D(�)r�] (2.30)

is large when r� is large, as is true when mixing liquids are placed into
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sudden contact. It is clear already from (2.30) that if gradients are moderate

divu will be small if the prefactor or the di�usion coe�cient D(�) is small.

For glycerin �� = 1:26g=cm3 and water � = 1g=cm3, the prefactor 0.26/1.26

is not negligible, but the di�usion coe�cient D = O(10�6cm2=sec) is. It

follows then that the assumption that divu = 0 is a slow di�usion rather

that Boussinesq approximation.

3 Momentum balance and Korteweg stresses

To extract the consequences of the balance of momentum it is desirable to

frame the theory in term of a material particle. A natural method for this

is to apply balance laws to a material volume which in the continuous limit

is a particle of uid mass. The same perception is behind the use of a mass

averaged velocity in mixture theories. In both cases we defer to the statement

that the laws of dynamics are framed relative to the velocity u of a volume

of �xed mass. Hence it is the u in w which will enter into the balance of

momentum.

The possibility that stresses are induced by gradients of concentration

and density in di�using incompressible miscible liquids, as in the theory

of Korteweg [1901], can be considered. Such stresses could be important

in regions of high gradients giving rise to e�ects which can mimic surface

tension. We have already seen, in (2.30), that it is just the same region of

high gradients where the volume changes due to dilution cause the strongest

departures from the classical approximation divu = 0. We are going to study

the superposition of non-classical e�ects of volume changes divu 6= 0 due to

di�usion and Korteweg stresses.

In the isothermal case, � varies with � alone, as in (2.10) and in the

notation of Joseph [1990] the Korteweg's expression for the stress due to the
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combined e�ects of gradients of � and �(�) are

T
(2)
ij = �̂

@�

@xi

@�

@xj
+ ̂

@2�

@xi@xj
; (3.1)

where
�̂ = (� � ��)

2 �1 + �2 + 2� (� � ��) ;

̂ = 
1
(� � ��)

2 + 
2
:

The governing equations are

(� � ��)
d�

dt
+ � divu = 0; (3.2)

d�

dt
+ � divu = r(Dr�) (3.3)

and

�
du

dt
= �r� + divTD + �g; (3.4)

where TD is the stress deviator de�ned by

TD
ij = 2�Dij � 2

3
�ij� divu+ �ij;

�ij = �̂
@�

@xi

@�

@xj
+ ̂

@2�

@xi@xj
� 1

3
�ij
n
�̂jr�j2 + ̂r2�

o
(3.5)

and � is the mean normal stress.

The continuity equation (3.2) may be replaced with

divw = 0 and w = u� �Dr� (3.6)

where

� =
(�� = �)

��
: (3.7)

We should be thinking of glycerin � and water , then � > 0.

Then, using (3.6), we may eliminate divu from (3.5)

TD
ij = 2�Dij � 2

3
�ij��div (Dr�) + �ij (3.8)
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and rewrite (3.4) as

�
du

dt
= �r [� +Q(�)] + div

n
2�D [u] + �̂r�
r�

o
+ �g; (3.9)

where

Q(�) =
1

3
�̂jr�j2 + 2

3
��div (Dr�)� 2

3
̂r2�: (3.10)

In writing (3.9) we have assumed that ̂ is constant. It will be convenient

now to also assume that �̂ is a constant.

We now adopt (3.3), (3.6) and (3.9) as our system of equations governing

the evolution of simple mixtures of incompressible liquids. These are �ve

equations for the components of u , � and �. In this preliminary study we

shall restrict our attention to some one-dimensional problems for which there

is a strong decoupling of equations, but some basic issues can be addressed.

To keep our discussion of basic issues concrete we will use estimates of

material parameters for Glycerin-Water systems. One reference for this is the

article by Segur [1953]. In Figure 1 we have reproduced Segur's experimental

data [1953] for the viscosity �. This can be excellently correlated by the

expression

� = �
G
exp

�
��+ ��2 + �3

�
; (3.11)

where the coe�cients �, � and  depend on temperature T in the way shown

in the �gure, �G is the viscosity of pure glycerin and �G = 14:99 poise at

20�C. The density of glycerin (G) and water (W ) mixtures is given to within

1% by (2.10) with (� ; ��) = (�
W
; �
G
) � (1; 1:26)g=cm3 at 20�C. Unfor-

tunately we do not have the global dependence of the di�usion coe�cient

D(�). Small gradient theories of di�usion are inadequate for mixing lay-

ers in which � takes on all allowed values from zero to one. A representa-

tive value D(�) over di�erent concentration, taken from Segur (p. 328) is

D = 5�10�6cm2=sec. We will use this representative value in our estimates.
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Figure 1: (After Segur [1953]) Viscosity of glycerol solutions at temperature
0� 100�C. The expression � = �

G
exp(��+ ��2+ �3) �ts the experimental

data.
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4 One dimensional mixing layer problems

We shall suppose that u = u(x; t)ex, where x increases upward against grav-

ity. In this case

0 = divw =
@

@x

"
u� �D

@�

@x

#
:

Hence

u = A(t) + ue(x; t) (4.1)

where

ue
def
=
�D

@�

@x
(4.2)

is the expansion velocity which arises from mixing. In theories in which

divu = 0 is assumed, ue = 0 and, of course, ue = 0 when the uids are

density matched. Using (4.1) and (4.2) we �nd that

@�

@t
+

"
A(t) + �D

@�

@x

#
@�

@x
= (1� ��)

@

@x

 
D

@�

@x

!
;

or
@�

@t
+ A(t)

@�

@x
=

@

@x

"
(1� ��)D

@�

@x

#
: (4.3)

The momentum equation in one dimension is given by

�(�)

"
@u

@t
+ u

@u

@x

#
= �@�

@x
+

@

@x

8<:43�@u@x +
2

3
�̂

 
@�

@x

!2

+
2

3
̂
@2�

@x2

9=;+ �g � ex
(4.4)

where u is given in terms of A(t) and � by (4.1). We need � to satisfy (4.4)

when, say, u(x; t) and �(x; t) are prescribed at the boundary.

The problem of di�usion is decoupled from (4.4) when A(t) = 0. And

A(t) = 0 if there is a value x such that for all t, u and the di�usion ux

@�=@x = 0. This is the case at an impermeable wall across which the velocity

and the ux of water must vanish. It is also true for mixing problems on
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unbounded domains for which u and @�=@x vanish at x = �1. These

problems are canonical for the development of mixing layers from initially

discontinuous data which are considered below. When A(t) = 0,

u = ue = �D
@�

@x
(4.5)

and (4.3) reduces to

@�

@t
=

@

@x

"
(1� ��)D

@�

@x

#
:

If we switch to use the classical di�usion coe�cient D(�) given by (2.22),

the above di�usion equation then becomes

@�

@t
=

@

@x

"
D(�)

@�

@x

#
: (4.6)

In the simplest case, we assume that D is independent of �, (4.6) is the

classical di�usion equation. With appropriate boundary conditions (4.6) can

be solved easily. Then u is given by (4.5), without any considerations from

dynamics and the momentum equation (4.4) determine �(x; t) directly. Var-

ious issues which arise in the dynamical theory of simple mixtures can be

framed in terms of the one-dimensional problems considered below.

5 Dynamic and instantaneous interfacial ten-

sion

H. Freundlich in his [1926] treatise on colloid and capillary chemistry in

discussing the methods of measuring interfacial tension between immiscible

liquids and the theory of the phenomenon, notes that

: : : there is little new to be said : : :We have only to remember
here we are in the end always dealing with solutions. For the
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one liquid will always be soluble in the other to some degree,
however small. Hence the dynamic tension of liquids, when
�rst brought into contact, is to be distinguished from the static
tension, when the two liquids are mutually saturated. Not
only do liquids which are not miscible in all proportions have
a mutual surface tension; even two completely miscible liquids,
before they have united to form one phase, exhibit a dynamic
interfacial tension. For we get by careful overlaying of any two
liquids a de�nite meniscus, a jet of one liquid may be generated
in another, and so on. The tension decreases rapidly during
the process of solution, and becomes zero as soon as the two
liquids have mixed completely.

Freundlich [1926] cites the measurements of the dynamic tension by Quinke

[1902] of ethyl alcohol in contact with aqueous salt solutions (sulfates of zinc,

copper, etc.). These two liquids are miscible in all proportions. Quinke used

the method of drop weight to make his measurements. In these liquids the

drop, as it emerges, does not pass into streaks, but keeps at �rst its shape.

He found values between 0.8 and 3 dyne=cm.

Smith, Van den Ven and Mason [1981] have reported a maximum value

of 1 dyne=cm for the force corresponding to a \transient interfacial tension"

between a 2000 cs and a 1 cs silicone oil. According to the authors, these

are two mutually soluble liquids whose interdi�usion is su�ciently slow to

enable this measurement to be made. They note that

In principle there exists between any two separated uid phases
which have a chemical potential di�erence, an instantaneous
interfacial tension which may or may not persist with time.
We are unaware of reports in the literature of measurements
of interfacial tension between two miscible liquids.

It is clear that in the case of two liquids miscible in all proportions we are

not dealing with an equilibrium situation; there is no equilibrium tension.

Rather, we are looking at stress e�ects due to di�erences in density and

composition and possibly even temperature which inuence the positions

occupied by interdi�using uids. One could imagine that when the gradients
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of composition are large, as in the boundary layer between two regions of

di�erent composition suddenly put into contact, that these stresses give rise

to an e�ect which might be called \transient interfacial tension."

Smith, Van den Ven and Mason [1981] present an expression for the chem-

ical potential based on expressions for the free energy in a nonuniform system

given by van der Waals [1893] and Cahn and Hillard [1954] writing

S� /
x0Z

�x0

 
@�

@x

!2

dx (5.1)

where S� is the interfacial tension, � is the local composition (the mole

fraction of component 1) and x0 is the \interfacial region." The composition

is assumed to satisfy a di�usion equation �t = D�xx with di�usion constant

D. If at t = 0+, � = �+ for x > 0 and �� for x < 0 and thereafter � is

continuous at x = 0, then

�(x; t) = [�+ � ��] f(�); f(�) = erfc(�); � = x=2
p
Dt

and S� is proportional to

[�+ � ��]
2

x0Z
�x0

1

�
exp(�2�2)

 
@�

@x

!2

dx =
[�+ � ��]

2

2�
p
Dt

�0Z
��0

exp(�2�2)d�

At small times the breadth of the di�usion layer scales with
p
Dt. Then the

gradient theory leads to a square root singularity for the dynamic tension.

Their experiments indicate that F = S� cos� decays exponentially and does

not follow the t�1=2 decay that would be required if � were constant, where �

is the contact angle. It is noteworthy that though the rate of decay of F with

time varies between 0.6 to 1.4, the extrapolated value of F to zero time does

not vary and leads reproducibly to a force of 1 dyne=cm. They conclude that

\... present experiments do indeed con�rm that an instantaneous interfacial

tension exists between mutually miscible liquids."
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H. Ted Davis [1988] has written an interesting paper, \A theory of tension

at a miscible displacement front," in which he supplies a constant of propor-

tionality for the expression (5.1), which he develops independently starting

from the Irving-Kirkwood pressure tensor and some simplifying assumptions.

He then uses some estimate of constants in his theory to construct a table

of values of S� ( in his notation), given in his table 3.1, varying from about

6:3 � 10�2dyne=cm for t = 1s and D = 10�9cm2=s to 10�5dyne=cm for

t = 4000s and D = 10�5cm2=s. He notes that \From the entries in this table

it follows that the tension of a di�usive mixing zone between miscible uids,

while small, is nevertheless not zero."

The theory used by Smith, et al. [1981] and by Davis [1988] evidently

requires that one assume wrongly that the density of a mixture of incom-

pressible uids is constant. Davis restricts his analysis to a two-component

regular solution in which the densities of the components 1 and 2 are n1 = ~�n

and n2 = (1� ~�)n. ~� is the mole fraction of component 1 and n is the total

density, which he says is constant in a regular solution. We shall reinter-

pret the Davis work for simple mixtures by replacing the mole fraction ~�

with the mass fraction �̂ = m=m of an incompressible liquid (say, wa-

ter) in a mixture (say, water and glycerin) of total m = m + m� where

m� is the mass fraction of glycerin. Then (n; n1; n2) should be replaced by

(m=V;m=V; m�=V�) = (�; � ; ��), where V is the total material volume and

� and �� are the ordinary (constant) densities (of water and glycerin) listed

in the handbooks. Moreover, if our regular solution keeps its volume after

mixing, then

n = �~�+�(1� ~�) =
m

V

M

m
+
m

V

�
1� m

m

�
= +� = ��+��(1��) = �(�)

and the regular solution of Davis is a simple mixture. Obviously, a mixture

of incompressible liquids does not have a constant density even though the
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density of each of its constituents is constant at a �xed temperature.

Davis [1988] expresses well the notion that gradients of composition can

lead to anisotropic forces which mimic the e�ects of interfacial tension:

When two miscible uids are placed in contact they will im-
mediately begin o mix di�usively (and convectively if their
densities are such as to drive convection) across the concentra-
tion front formed at the zone of contact. Although no interface
will form at the concentration front, the composition inhomo-
geneities can give rise to pressure anisotropies and therefore
to tension at the mixing zone between the contacted uids.
Di�usive mixing will continuously broaden the mixing zone
and reduce the pressure anisotropy and the associated tension.
The purpose of this short paper is to examine with the aid
of a molecular theory of inhomogeneous uid the magnitude
and rate of reduction of the tension by di�usive mixing of the
zone of contact of miscible uids. The results found here sug-
gest that instabilities in miscible frontal displacement may be
similar to those in ultralow tension immiscible frontal displace-
ment, with the added caveat that in the miscible process the
tension decreases continuously in time.

The type of calculation of dynamic tension given above, as well as the

calculation to be carried out in section 6 given rise to a pressure di�erence

across a spreading plane layer. This is not a good analogy to interfacial

tension which gives rise to a pressure di�erence proportional to curvature

and vanishes across plane layers. The calculation of forces over a spherical

layer advanced in section 7 does contain curvature terms, but the analogy is

not far reaching, even in the spherically symmetric case.

6 Jump of the normal stress across a plane

mixing layer

We shall now examine the problem considered in section 5 without assuming

that density is constant and using the one dimensional problem de�ned by

(4.4), (4.5) and (4.6). This is the canonical initial value problem for mixing
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layers, the smoothing-out of a discontinuity in � at a plane. At t = 0, water

lies above glycerin

� = 1 for x > 0; � = 0 for x < 0 (6.1)

where � is the water fraction. We are on an in�nite domain and

� = 1 for x!1; � = 0 for x! �1 (6.2)

for all t > 0. In this situation (4.5) holds and the velocity is proportional to

the volume fraction gradient which is in�nite at t = 0+.

For simplicity we take the di�usion coe�cient D to be independent of

� and for glycerin-water mixture D is of order 10�6cm2=sec. Then classical

di�usion equation (4.6) has a similarity solution

� =
1p
�

�Z
�1

e��
2

d� (6.3)

with

� =
x

2
q
(Dt)

: (6.4)

Using (6.3) we may express (4.5) as

u = ue = �
2(1���)

q
D
t
�0
�

x
2
p
Dt

�
= �

2
p
�(1���)

q
D
t
exp

�
�
�

x
2
p
Dt

�2�
: (6.5)

The di�usion layer can be de�ned from the place�xo where  = ��1=2 =
�0:495 to the place xo where  = 0:495, or by �m < � < m with m about

2. The thickness of the di�usion layer is

�x = x0 � (�x0) = 4m
q
(Dt) (6.6)
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and it tends to 1 with t.

Equation (6.5) shows that the expansion velocity which enters into dy-

namics can be considerable at early times inside the di�usion layer. The

gradient of � is the machine which drives the velocity. The velocity decays

as
q
D=t.

It is of interest to calculate the jump of the stress across the mixing layer.

To �nd the jump in the stress we integrate (4.4) over the di�usion layer.

Outside of this layer the derivatives of � vanish and

x0Z
�x0

�(�)

 
@u

@t
+ u

@u

@x

!
dx = � [[�]]� g

x0Z
�x0

�(�)dx (6.7)

where

[[�]] = �(x0; t)� �(�x0; t):

Equation (6.7) shows that the Korteweg stresses do not enter into the

stress jump across the plane mixing layer. This is unlike the calculations

of section 5, but like true interfacial tension in which curvature supports a

jump in stress. Using the continuity equation it can be easily seen that the

contribution due to inertia is always zero

x0Z
�x0

�(�)

 
@u

@t
+ u

@u

@x

!
dx =

x0Z
�x0

@�u

@t
dx = D��

x0Z
�x0

@

@t

 
@�

@x

!
dx = 0; (6.8)

which is also true for general di�usion coe�cient D(�). Therefore

[[�]] = �g
x0Z

�x0
�(�)dx: (6.9)

The jump in normal stress is simply the static pressure di�erence across the

mixing layer.
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7 Spreading of a spherical di�usion front and

Korteweg stresses

The problem of the spreading of a spherical front with gravity neglected is

good for bringing out how Korteweg stresses may enter the normal stress

balance when the curvature is not zero. In fact this kind of calculation

was carried out for an equilibrium phase change cavitation bubble in the

absence of di�usion or motion by Korteweg [1901]. A critical discussion of

the Kortewegs equilibrium calculation can be found in Joseph [1990].

At t = 0 a spherical mass of radius r0 of one liquid is inserted into

an in�nite reservoir of a second liquid. The two liquids are miscible in all

proportions. We can imagine a sphere of glycerin in a reservoir of water.

The governing equations are (3.3), (3.6) and (3.9) written for spherically

symmetric solutions with one radial component of velocity u(r; t), which

vanishes at r = 0 and r =1. Under these conditions divw = 0 implies that

u(r; t) = ue(r; t) = �D
@�(r; t)

@r
: (7.1)

The di�usion equation (3.3) may then be written as

@�

@t
= D

@

@r

 
@�

@r

!
+
2D

r

@�

@r
(7.2)

where the water fraction �(r; t) = 1 when r > ro, t = 0 and �(r; t) = 0 when

r < r0, t=0. When the thickness of the mixing layer at r = r0 is small,

it is locally like a plane and the 2nd term on the right side of (7.2) may

be neglected. This reduces our problem to the one considered in section 6

centered on r = r0 and it has the same self similar solution with

� =
r � r0

2
p
Dt

; (7.3)

when 2�
p
Dt� r0.
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The momentum equation (3.9) may be written as

�(�)

"
@u

@t
+ u

@u

@r

#
= � @

@r
[� +Q(�)] + 2 @

@r

�
�@u
@r

�
+ 4�

r
@u
@r

�4� u
r2
+ @

@r

�
�̂
�
@�
@r

�2�
+ 2�̂

r

�
@�
@r

�2
(7.4)

where �(�) is given by (2.10) and �(�) by (3.11). After integrating over the

mixing layer from r1 = r0 � 2m
p
Dt to r2 = r0 + 2m

p
Dt, we �nd that

r2Z
r1

�
�(�)

�
@u
@t
+ u@u

@r

�
� 4�@u=r

@r
� 2�̂

r

�
@�
@r

�2�
dr =

�
���Q(�) + 2�@u

@r
+ �̂

�
@�
@r

�2�r2
r1

(7.5)

Outside the mixing layer (r1(t); r2(t)), � is essentially constant and u is es-

sentially zero. The contribution due to the inertia at the left-hand side of

(7.5) is again found to be zero as in the case of the plane layer. After writing

r2Z
r1

�
@u=r

@r
dr =

�
�
u

r

�r2
r1

�
r2Z
r1

�0(�)
u

r

@�

@r
dr (7.6)

and putting terms outside the mixing layer to zero we get

r2Z
r1

8<:4�0(�)ur @�@r � 2�̂

r

 
@�

@r

!2
9=; dr = �[�]r2r1 : (7.7)

Now we evaluate (7.7) at very early times, when the mixing layer is very

thin, r2 � r1 = 4m
p
Dt and r � r0. Using the same approximations with

r � r0 in the two terms of the integral of (7.7), we �nd that

2

r0

r2Z
r1

8<:2�0(�)u@�@r � �̂

 
@�

@r

!2
9=; dr = 2

r0

r2Z
r1

(
2
�0(�)�D
1� ��

� �̂

) 
@�

@r

!2

dr =
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1

r0

s
D

t

mZ
�m

(
2
�0(�)�
1� ��

� �̂

D

)
�02d�: (7.8)

Finally,

�(r2; t)� �(r1; t) =
2

r0

s
D

t

mZ
�m

(
�0(�)�
1� ��

� 0:5
�̂

D

)
�02d�: (7.9)

For glycerin and water solutions at 20�C we may evaluate (7.9) using values

for �0 and � near to (3.11) as

�(r1; t)� �(r2; t) =
2

r0

s
D

t

"
164:5

��̂
D
� 428:7

#
(7.10)

with D about 7:5� 10�6cm2=sec, but we do not have any knowledge about

the value of Korteweg stress coe�cient �̂. Equation (7.10) reminds one of

interfacial tension with a time dependent tension T (t) whose values are given

by comparing the right-hand side of (7.10) with 2T (t)=r0. There are two

terms in the expression for the dynamic interfacial tension; one term arises

from the Korteweg stress and it gives rise to a stress opposing the internal

pressure as in the case of equilibrium pressure if the Korteweg coe�cient �̂

has a negative sign. A second term arises from the expansion velocity and

is proportional to the rate of change of viscosity with volume fraction. This

term has the wrong sign for interfacial tension in the case of glycerin and

water solutions but has the right sign when the light uid is more viscous.

8 The e�ects of convection on di�usion

In section 5 and 6 we studied problems in which velocity and stresses are

induced by gradients of the volume fraction in simple mixtures. In these

problems the gradients of � are the engine which drives motion and the
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motion is important only at early times. In other cases the motion is driven

externally and the distribution of � is driven by a balance of di�usion and

convection. In this case, as in the other, the assumption that divu = 0

can lead to large errors. The e�ects of expansion due to mixing on the

distribution of velocity can be assumed by elementary analysis of steady

ow. In the steady case, equations (4.1) to (4.4) reduce to

u = A+ ue; (8.1)

ue =
�D

1� ��

d�

dx
; (8.2)

A
d�

dx
= D

d2�

dx2
; (8.3)

�(�)

2

du2

dx
= � d

dx
[� +Q(�)] +

d

dx

242�du
dx

+ �̂

 
d�

dx

!2
35+ �(�)g � ex: (8.4)

From (8.3) we �nd that

� = C1 + C2 exp(Ax=D) (8.5)

and from (8.2) and (8.1) we get

ue =
�C2

1��
A exp

�
Ax

D

�
(8.6)

and

u = A

"
1 +

�C2

1� ��
exp

�
Ax

D

�#
(8.7)

where C1, C2 and A are to be determined from the boundary conditions.

The variation of e�ective pressure �(x) is determined by C1, C2 and A, after

putting (8.5) and (8.6) into (8.4). If, for example, we set Dirichlet conditions

by prescribing �(0) = �0 and �(L) = �L, then

�(0) = �0 + (�L � �0)
exp(Ax=D)� 1

exp(AL=D)� 1
: (8.8)
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The distribution of � between 0 and L depends on the balance between

di�usion and convection. We may de�ne a di�usion length

` = D=A; (8.9)

or an e�ective di�usion parameter

S =
D

LA
=

molecular di�usion

convective di�usion
=

di�usion velocity

convective velocity
: (8.10)

Then the distribution of concentration is

� = �0 + (�L � �0)
exp( x

SL
)� 1

exp
�
1
S

�
� 1

; (8.11)

and the expansion velocity in (8.2) can be evaluated

ue(x) =
A�(�L � �0) exp

�
x
SL

�
exp

�
1
S

�
� 1� �

h
�0(exp

�
1
S

�
� 1) + (�L � �0)(exp

�
x
SL

�
� 1)

i :
(8.12)

If S is very small, then � = �0 for most values of x, with a narrow mixing

layer of thickness of order of ` near x = L. And the expansion velocity ue,

neglected in analysis which assume divu = 0, will be important inside this

layer. We may estimate that

ue(0) � 0; ue(L) � A
�(�L � �0)

1� ��L
(8.13)

when S is small. The e�ects of the expansion velocity are con�ned to the

narrow mixing layer and the assumption that divu = 0 is valid outside the

mixing layer. Equation (8.13) also indicates that the expansion velocity

inside the mixing layer is of the same order as the constant convection velocity

A if the density ratio � is not too small. If S is not small, and this is a

realizable possibility in many situations, then the expansion velocity will not

be small and will not be con�ned to boundary layer. The velocity A can

be determined from considerations involving momentum in the Hele Shaw

example to be considered in the next section.
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9 Two- and three-dimensional problems

In this section we will formulate initial-boundary value problems for simple

incompressible binary mixtures which are miscible in all proportions. We will

leave away the Korteweg stresses and emphasize non-classical e�ects arising

from the observation that divu 6= 0 in general for such mixtures. We have

found that

u = w + ue; (9.1)

ue =
�D

1� ��
r� = rh(�); (9.2)

curlu = curlw; (9.3)

divu = divue = r2h: (9.4)

The governing equations expressing the balance of mass, di�usion of species

and momentum are

divw = div(u� ue) = 0; (9.5)

@�

@t
+r � �w = div(D grad�) (9.6)

�

 
@u

@t
+ u � ru

!
= �r

�
p+

2

3
� divu

�
+ div

h
�(ru+ruT )

i
(9.7)

where � = 1 � �� and � = �(�) depends on �; usually �(�) is a rapidly

varying function. We should think of � as the water fraction of the glycerin-

water mixture. The di�usion (9.6) show that the water fraction is advected

with the solenoidal velocity w. When written in terms of the mass average

velocity, (9.6) becomes

@�

@t
+ u � r�+ �divu = div

 
�D

1� ��
r�

!
(9.8)
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The weight di�erence � = (�
G
� �

W
)=�

G
between the two species of our

binary mixture, e.g., glycerin and water is a primary parameter which mea-

sures the extent of non-solenoidality. The expansion velocity is proportional

to � and is zero for two species with the same density.

Turning next to boundary conditions at a solid wall, we note that the dif-

fusive ux of any species across an impermeable, bounding surface vanishes.

If n is the outward normal at such a surface (from the uid to solid), we have

n � r� = 0 (9.9)

This implies that

ue � n = 0 (9.10)

at an impermeable boundary. There is no reason to suppress the slip velocity

of each of the two species of our binary, but for several reasons, it seems

appropriate to enforce a no-slip boundary condition for the mass-averaged

velocity u. If the velocity of a solid wall is prescribed as U, then at the wall

u = U: (9.11)

Of course, u vanishes at a stationary wall. The paper by Mo and Rosen-

burger [1991] on molecular-dynamic simulations of ow with binary di�usion

in a two-dimensional channel with atomically-rough walls establishes the no-

slip condition via the mutual cancellation of the nonvanishing, opposing slip

velocities of the components.

Suppose that the velocity of U of the solid wall is prescribed, n is the

normal and t is any tangent vector on the wall, n � t = 0. Then since

ue � n = n � r� = 0 and u = U on the wall, we get

w � n = U � n; (9.12)
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w � t = U � t� ue � t: (9.13)

We can think that � is determined by the di�usion equation and that n�r� =

0. Then ue � t can be thought as given and (9.12) and (9.13) look like

prescribed, non-classical conditions for w. Of course, in practice everything

is coupled, but the description just given is good for sorting it out.

10 Basic solution for di�usion in a pipe

The problem being taken up here is in a three-dimensional domain with walls,

but the solution is one dimensional. We don't think that the problem or its

solution has been given before. Consider a pipe of arbitrary but constant

cross section and length. The entrance to the pipe is at x = 0 and the exit

at x = L. The pressure is taken to be the same at x = 0 and x = L so

pressure does not drive ow, and �0 6= �L are prescribed water fractions at

the entrance and exit. We satisfy the condition that u = 0 on the wall by

taking u = ue+w = 0 everywhere. The di�usion equation (9.8) than reduces

to
d

dx

 
D

1� ��

d�

dx

!
= 0: (10.1)

The solution � = �(x) of (10.1), which satis�es the prescribed conditions

�(0) = �0; �(L) = �L (10.2)

is given by

�(x) =
1

�

n
1� (1� ��

0
)1�x=L(1� ��

L
)x=L

o
(10.3)

It is easy to verify from (10.3) and follows directly from (10.1) that

�D

1� ��

d�

dx
= ue = const: (10.4)
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where the expansion velocity is given by ue = exue. This velocity is balanced

by a volume-averaged velocity w = exwox where

wox = �ue: (10.5)

11 Stability of the basic solution for di�usion

in a pipe

Let us consider the stability of the basic solution

� = �(x); u = ue + woxex = 0; (11.1)

where wox = D ln 1���0
1���1 and �(x) is given by (10.3), ue by (9.2). Following

the standard procedure of linear stability analysis, we introduce small per-

turbations to above solution, linearize the equations, and use L and �wL
2=�w

as length and time scale to normalize the equations. We then introduce the

temporal mode e�t. The resulting dimensionless linearized equations govern-

ing the perturbations are

@wx

@x
+
@wy

@y
= 0 (11.2)
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u = wx +
��

1� ��

@�

@x
� wox

��

1� ��
(11.6)
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v = wy +
��

1� ��

@�

@y
(11.7)

where wx, wy are x; y components of w, respectively,  = p + 2
3
�0divu, and

� = �GD
�G

, �0 =
�W
�G
e�(x). Using equations (11.6) and (11.7) we can eliminate

w from the continuity and di�usion equations

@u

@x
+
@v

@y
� @

@x

 
�a(x)

@�

@x
� a(x)wox�

!
� �a(x)

@2�

@y2
= 0 (11.8)

�� = ���� d�

dx

 
u+ woxa(x)�� �a(x)

@�

@x

!
+ wox

@�

@x
(11.9)

where � is the two dimensional Laplacian, and a(x) = �=(1� ��(x)). Equa-
tion (11.4), (11.5), (11.8) and (11.9) are four equations for u; v; � and  .

The boundary conditions we take for this system are v = p = � = 0 at

x = 0 and x = 1, u = v = @�
@x

= 0 at y = 0 and y = r, with r being the width

of the channel. Admittedly these conditions are rather arti�cial, but it is

very di�cult to specify simple, realistic boundary conditions for the physical

process we are trying to model here. We could imagine that the two ends

of the channel are porous plates which help maintain the concentration of

water, while the no-slip condition forces the tangential velocity v to vanish

on these plates.

The system of partial di�erential equations we just derived have variable

coe�cients depending on x. We can reduce it into a system of ordinary

di�erential equations if we leave away the boundaries in the y direction. We

shall �rst consider this case.

As we said before when � is zero, the problem degenerates to the classical

di�usion problem. The basic concentration distribution becomes a linear

function of x, and the stability problem is reduced to that of the usual one-
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dimensional di�usion equation, while the velocity �eld is not involved. The

eigenvalues are then given by

�0 = ��(n�)2; n = 1; 2; :::: (11.10)

When � is small but not zero, we can perturb this problem by expanding

the unknowns as well as the eigenvalues into series of �, for example,

� = �0 + �1� + �2�
2 +O(�3); (11.11)

with the zeroth order solution given by the conventional di�usion problem.

Carrying out this procedure to �rst order, we found that �1 is zero. However,

it is not possible to carry on this perturbation beyond �rst order analytically.

For general cases like glycerin and water, of which � is about 0.21, which is

not too small, we solved the system of di�erential equations numerically by

the �nite element method. More about the numerical method is said later.

Results of this case are shown in �gure 2, in which the di�erence between

the �rst eigenvalue and �0 is presented as functions of � for di�erent values

of �1 and �0. In this one-dimensional case, we found �� �0 is positive. This
means that non-solenoidality is a destabilizing factor, although the inuence

is rather small. We also note that for the cases we calculated � is nearly

proportional to � and the viscosity ratio m = �W
�G

is not a parameter.

In two dimensions, the problem is not separable in general. However, we

can get an explicit solution if we look at waves which are so short that the

variable coe�cients in the linearized equations are essentially constant over

the length of one wave. We may then freeze these coe�cients at each and

every point (x0; y0) and seek stability locally to disturbances of the form

e�t ei�(x�x0) ei�(y�y0) (11.12)

where �2 + �2 !1 for short waves. We �nd that

�u+ �v + �(�2 + �2)a�+ i�awox� = 0; (11.13)
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Figure 2: � � �0 as functions of �, in one-dimensional case, � = 0:01, �0 =
�0:098696.
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Figure 3: ���0 as functions of �, wall e�ect included. � = 0:01 and r = 0:1.
m = �W
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is the viscosity ratio. �0 is as in �gure 2.
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h
� + i�wox + �(�2 + �2)

i
�+ �0 (u+ awox�� i���) = 0; (11.14)

�0�u = �i� � 2�2�0u+ 2i��00u� ��0(�u+ �v); (11.15)

�0�v = �i� + [i�00 � ��0] (�u+ �v)� 2�2�0v: (11.16)

After eliminating  , we �nd that

h
�0� + �0(�

2 + �2) + i�00�
i
(�u� �v) = 0: (11.17)

Equation (11.17) determines two eigenvalues,

�1 = ��0
�0
(�2 + �2) + i

�00
�0
� (11.18)

and

�2 = ��(�2 + �2)� i�wox +
��2a2

�2 + �2
�02: (11.19)

The �rst term of �2 is negative, which arises from the conventional di�usion

equation. The last term of (11.19) is destabilizing. However, this term is

dominated by (�2 + �2) in the limit of large �2 + �2. Hence the e�ect of

non-solenoidality of the velocity �eld on the growth rate is minimal for very

short waves.

We next consider the wall e�ects by restricting the mixture to a rectan-

gular domain. We take a slim channel with a width of 0.1 length for our

calculation. In this case the conventional di�usion solution still exists be-

cause in which the velocity can be taken zero everywhere. The perturbation

of � works only when the two constituents have the same viscosity. In more

general cases, the system has to be solved numerically. We have developed

a general code to solve eigenvalue problems of systems of PDE's. The �nite

element method is used to approximate the equations. However, this leads

to very large matrices, which de�es the use of common direct eigenroutines.

We use a modi�ed Arnoldi iterative method developed by Saad [1989] to �nd
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Figure 4: � � �0 as functions of � as � is close to 1.0. Other parameters are
the same as in �gure 3.

the eigenvalue with the largest real (or imaginary) part. For more details of

the numerical method and the related eigenvalue problem for large matrices,

see Hu & Joseph [1989], Huang & Joseph [1994] and Saad [1980,1989]. Ap-

plying our numerical code to this 2-dimensional problem, we found when the

lighter component is less viscous, non-solenoidality of the velocity �eld has a

destabilizing e�ect, while if the lighter uid is more viscous, it is stabilizing,

as shown in �gure 3, in which a special case, �1 = 1:0, �0 = 0:0 is presented.

There is a cross symmetry between parameters m and �, i.e. a positive �

and a larger than one m are equivalent to a negative � and a less than one

m. This is due to the fact that the two uids are complement to each other,

if one is lighter, the other is heavier, and � can be de�ned the other way

around for the same physical process.

Figure 3 shows that the growth rate increases with � when m is less than
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one. However, when � gets close to one, the growth rate decreases, as shown

in �gure 4, so instability is not realized for this steady solution.

12 Conclusion and Discussion

A new solution describing the di�usion of species along a pipe driven by

prescribed concentration di�erence with no net mass ux across any phase

perpendicular to the walls of the pipe is derived. In this solution, w +

ue = 0, so that the volume-averaged velocity balances the expansion velocity

everywhere. An analysis of stability indicates that the e�ect of the non-

solenoidality of the velocity �eld on the stability is rather small for small

density di�erence, nevertheless, when wall e�ect is included, there exists a

cross symmetry between the viscosity ratio and the density di�erence, in that

the non-solenoidality can be either stabilizing or destabilizing, depending on

the physical properties of the two constituents in a fashion as described above.
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