## MP-PIC Modeling of the Slot Problem

## Governing Equations:

## Fluid:

## Continuity:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{f} \theta_{f}\right)+\nabla \cdot\left(\rho_{f} \theta_{f} \mathbf{u}_{f}\right)=0 \tag{1}
\end{equation*}
$$

Momentum:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\rho_{f} \theta_{f} \mathbf{u}_{f}\right)+\nabla \cdot\left(\rho_{f} \theta_{f} \mathbf{u}_{f} \mathbf{u}_{f}\right)=-\nabla p+\nabla \cdot\left[\theta_{f} \mu_{f} \nabla \mathbf{u}_{f}\right]  \tag{2}\\
& +\nabla \cdot\left[\theta_{f} \mu_{f}\left(\nabla \mathbf{u}_{f}\right)^{T}\right]-\nabla\left\{\frac{2}{3} \theta_{f} \mu_{f} \nabla \cdot \mathbf{u}_{f}\right\}-\mathbf{F}+\rho_{f} \theta_{f} \mathbf{g} \tag{3}
\end{align*}
$$

where:
$\rho_{f} \longrightarrow$ density of the fluid phase
$\theta_{f} \longrightarrow$ volume fraction of the fluid phase
$\mathbf{u}_{f} \longrightarrow$ velocity of the fluid phase
$p \longrightarrow$ pressure
$\mu_{f} \longrightarrow$ viscosity of the fluid phase
$\mathrm{g} \longrightarrow$ acceleration due to gravity
$\mathbf{F} \longrightarrow$ rate of momentum exchange per unit volume between the fluid and particle phases

## Equation of Motion of the Particles

$$
\begin{equation*}
\frac{d \mathbf{u}_{p}}{d t}=D_{p}\left(\mathbf{u}_{f}-\mathbf{u}_{p}\right)-\frac{1}{\rho_{p}} \nabla p+\mathbf{g}-\frac{1}{\theta_{p} \rho_{p}} \nabla \tau \tag{4}
\end{equation*}
$$

where:
$\mathbf{u}_{p} \longrightarrow$ velocity of the particle
$\mathbf{u}_{f} \longrightarrow$ velocity of the fluid at particle location
$\rho_{p} \longrightarrow$ density of the particle
$\theta_{p} \longrightarrow$ volume fraction of the particle phase
$\tau \longrightarrow$ interparticle stress
$D_{p} \longrightarrow$ drag coefficient
$D_{p}$ is given by:

$$
\begin{gather*}
D_{p}=C_{d} \frac{3}{8} \frac{\rho_{f}}{\rho_{p}} \frac{\left|\mathbf{u}_{f}-\mathbf{u}_{p}\right|}{r}  \tag{5}\\
\text { where } \quad C_{d}=\frac{24}{R e}\left(\theta_{f}^{-2.65}+\frac{1}{6} R e^{2 / 3} \theta_{f}^{-1.78}\right) \tag{6}
\end{gather*}
$$

$R e$ is the Reynolds number defined as

$$
\begin{equation*}
R e=\frac{2 \rho_{f}\left|\mathbf{u}_{f}-\mathbf{u}_{p}\right| r}{\mu_{f}} \tag{7}
\end{equation*}
$$

where:
$r \quad \longrightarrow$ radius of the particle

Interparticle stress $\tau$ is given by

$$
\begin{equation*}
\tau=\frac{P_{s} \theta_{p}^{\beta}}{\theta_{c p}-\theta_{p}} \tag{8}
\end{equation*}
$$

where
$P_{s} \longrightarrow$ is a constant with units of pressure
$\beta \longrightarrow$ constant
$\theta_{c p} \longrightarrow$ is the particle volume fraction at close packing.

In this approach particles are grouped into computational parcels each containing $N_{p}$ particles with identical density, radius and velocity at a given location, $\boldsymbol{x}_{p}$.

Particle properties are then mapped to the Eulerian grid for the numerical solution using a bilinear interpolation function.

The particle volume fraction, $\theta_{p}$, on the Eulerian grid for a given distribution of particles in the domain is given by

$$
\begin{equation*}
\theta_{p i j}=\frac{1}{V_{i j}} \sum_{p} N_{p} V_{p} S\left(\boldsymbol{x}_{p}\right)_{i j} \tag{9}
\end{equation*}
$$

where:
$\theta_{p i j} \longrightarrow$ particle volume fraction at Eulerian grid point $i j$
$V_{i j} \longrightarrow$ volume of the Eulerian cell
$V_{p} \longrightarrow$ particle volume
$S\left(\boldsymbol{x}_{p}\right)_{i j} \longrightarrow$ interpolation function

Similarly the fluid-particle momentum exchange is given by

$$
\begin{equation*}
\mathbf{F}_{i j}=\frac{1}{V_{i j}} \sum_{p} S_{i j}\left[\boldsymbol{x}_{p}\right]\left\{D_{p}\left(\mathbf{u}_{f}-\mathbf{u}_{p}\right)-\frac{1}{\rho_{p}} \nabla p\right\} N_{p} m_{p} \tag{10}
\end{equation*}
$$

where:
$m_{p} \longrightarrow$ mass of the particle

## Equation for particle position:

Particle position is updated using the following equation:

$$
\begin{equation*}
\frac{d \boldsymbol{x}_{p}}{d t}=\mathbf{u}_{p} \tag{11}
\end{equation*}
$$

For more details please see: Andrews, M.T. \& O'Rourke, P.J., 1996, "The multiphase particle-in-cell (MP-PIC) method for dense particle flow," Int. J. Multiphase Flow, vol 22, pp. 379-402.

We solved the system of equations using control-volume method with staggered grids for velocity and pressure.

## Results

2D:
In Figure 1 we have presented the result for a 2D simulation of the slot problem.

We have a channel of length, $x=5 \mathrm{~m}$
channel height, $y=0.25 \mathrm{~m}$
Gravity acts in negative $y$ direction
Fluid particle mixture enters the channel at $x=0$
Inlet velocity of the mixture $=0.062 \mathrm{~m} / \mathrm{s}$
Fluid density, $\rho_{f}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Particle density, $\rho_{p}=1400 \mathrm{~kg} / \mathrm{m}^{3}$
Particle radius, $r=0.03 \mathrm{~cm}$
Fluid viscosity, $\mu_{f}=0.025 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$
29 new parcels enter the computational domain at $x=0$ at each time-step.
$d t=0.14 \mathrm{~s}$.
Parcels are equally spaced along the channel height. Each parcel has 4063 particles.
Thus $N_{p}=4063$.
Concentration of the particles flowing in $=0.0491$

## 3D:

In Figures 2a-2c we have presented the results for a 3D simulation of the slot problem.

The channel is shown below.


Gravity acts in negative $y$ direction
Fluid particle mixture enters at $z=0$
Inlet velocity $=0.062 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \rho_{f}=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{p}=1400 \mathrm{~kg} / \mathrm{m}^{3} \\
& r=0.03 \mathrm{~cm} \\
& \mu_{f}=0.025 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}
\end{aligned}
$$

145 new parcels enter the computational domain at $z=0$ at each time step.
$d t=0.14 \mathrm{~s}$.
The parcels are positioned at equally spaced 29 locations along the height of the channel and equally spaced 5 locations along the width of the channel.
Each parcel has 3 particles.
Concentration of the particles flowing in $=0.029$. At the instant presented in Figures 2a-2c, time, $t=12.6 \mathrm{~s}$.
Total number of parcels $=13050$
Figure 2a shows the parcels inserted in the channel at $z=0$. Parcels are inserted at 29 locations along the height of the channel. As they move forward in the $z$ direction with the flow they fall due to gravity acting in the negative $y$ direction.

Figure 2 b shows the parcels in the $y-x$ planes which is perpendicular to the direction of flow. Parcels are inserted at 5 locations along the width of the channel. This is indicated by 5 vertical lines of higher parcel concentration. As the parcels fall in the negative $y$ direction they disperse from their original $x$-location in the channel.

Figure 2c shows the parcels in the z - $x$ planes.


Figure 2b: View in the y -x planes for the 3 dimensional simulation.
Gravity acts in negative y direction.
(Dimensions are not to scale)

x axis parallel to channel width $(=0.0063 \mathrm{~m})$

Figure 2c: View in the z -x planes for the 3 dimensional simulation.
Flow comes in at $\mathrm{z}=0$ plane.
(Dimensions are not to scale)

10

z -axis parallel to channel length (=5m)

