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� Homogeneous model:

The gas and oil can be described as a mixture in which the gas content is represented at every
point of the mixture by a volume fraction φ of gas.

I do not expect that the homogeneous model will work well if slugs are the flow type and
certainly it won't work if the gas is connected in streams as in stratified or annular flow. The
homogeneous model should work best in the case that all the gas (or most of it) is dispersed in
small bubbles that move with the oil, which may be the case for foamy oils, heavy oil like Zuata,
Cerro Negro and other heavy oils in the Orinoco belt, Canada, Albania, etc.

Emilio Guevara told me that in his experience with multiphase pumps it was always much
easier to monitor the flow of foamy oil because the gas was dispersed. I tried on my last visit in
early March 2001 to find out if the flow type was slugs or homogeneous in horizontal pipes and
wells in reservoirs of heavy oil. No one that I asked seemed really to know the answer to this
important question.

� Horizontal pipe and horizontal well.

There is no flow through the wall of the pipe; all the oil is introduced at the entrance of the
pipe. The well has liner with many slots that allow the oil to enter the well by overpressure in the
reservoir; probably this can be modeled by the continuity of velocity of the oil and gas normal to
the liner wall. It is probable that the continuity of velocity normal to the liner is modeled well by
the continuity of the normal component of velocity given by Darcy's law in the reservoir and
Navier-Stokes in the pipe.

� Flow loops can't duplicate field conditions

In horizontal wells and pipe live oil at saturation is driven into the pipe by a pressure created
by the drawdown pressure at the pump. The gas evolves by outgassing of dissolved gas as the
pressure drops by gradients in the direction of the pump.

In flow loops the gas is introduced by pumping in gas and oil and outgassing is not an
important factor. Of course if a lot of dissolved gas is released by outgassing it might collect into
slugs which could be modeled in a flow loop.
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� Mathematical model of homogeneous flow

(i) Pressure P vs dispersed gas fraction φ (all of the gas is dispersed into bobbles which more
or less move with the fluid).

Arjan Kamp and I derived the equation of state (called a solubility isotherm) for dispersed as
a function of pressure
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where  β(T) depends on temperature and P~  is the saturation or bubble point pressure. When
PP ~≥  there is no dispersed gas, φ = 0. We computed β = 3µ for Cerro Negro and values

different but near 3.4 for Lloydminster and Lindbergh heavy oil.

Obviously the most severe outgassing occurs at the pump where P = Pρ is the smallest. Using
(1) we may estimate
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where TPPP −=∆ ~ . If P~ = 1000 psi and Pp = 900 psi, the φ = 1/30.6. If P~  = 700 psi,
Pp = 400 psi, then φ = 1/2.6. These are the worst conditions; in the pipe or well φ is much smaller.
It certainly appears that in many cases not very much gas will come out except near the pump.
This supports the idea that the homogeneous model might hold mostly anywhere away from the
pump.

It will be convenient to work with the pressure drop

π = P - P~  ≤ 0.

Then (1)1 may be written as
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(ii) The viscosity µ (φ ) and density ρ(φ) of the mixture depend on φ . The viscosity is
assumed in the separable form

µ(φ) = µ(0) f (φ) = µ 0 f (φ) (2)

There are may empirical formulas for f (φ ) but we really don't know the correct f (φ ) in the
case of foamy oil. On the other hand, the mixture density can be considered to be accurately
described by

ρ (φ ) = ρ 0 (1-φ ) + ρ gφ  == ρ 0 (1-φ ) (3)
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(iii)   The substantial derivative in a fluid and in a porous media

φφφ ∇⋅+
∂
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tDt
D     in a porous media with porosity α (5)

(iv)  Darcy's Law

q is the seepage velocity of the mixture in the porous media and it satisfies Darcy's law
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where k is the permeability (v) continuity equation
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we get
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D     in the fluid (9)

( ) 0div1 =−+− qφφ
Dt
D porous media (10)

� The stress

This doesn't exist in the porous media
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In the Navier-Stokes equation we have a term corresponding to the viscosity part of the stress
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� Navier-Stokes equation for dispersed flow
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� Horizontal well and pipeline: Boundary conditions

H
q = -     ∇π k

µ

Pp is pump
pressure

Navier-Stokes in the
well or pipe

D = 2R in a round hole

x = L

P(H) is the bubble
point pressure at a

height H

~

Figure 1.

We are going to assume that there is one bubble point pressure P~ which doesn’t depend on
H.

(1.) Horizontal pipe.

u = 0 at r = R. The porous media determines the pressure at the end of the pipe at x = L. Pp is the
lowest pressure in the system. Flow is from reservoir to pipe entrance; then from pipe entrance to
pump.

(2.) Horizontal well.

The normal component of velocity is continuous across the liner from the porous media into the
well
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rr ∂
∂−=⋅=⋅ π
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eqeu  at r = R (14)

The tangential component on the pipe liner vanishes

0=⋅ xeu  at r = R (15)

(3.) Pressure at the inlet end x = L of a long pipe.

It can be shown that if the pipe is long the pressure PL at x = L is very nearly the reservoir
pressure

PPL
~≈ (16)
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(4.) Reynolds number in a long pipe.

Assume that the oil is homogeneous and in Poiseuille flow in a long pipe. The mean velocity is
given by

L
PRu ∆=

µ8

2

where µ is the viscosity

pPPP −=∆ ~  .

The Reynolds number is
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(5.) Conclusion.

The Reynolds number for heavy oil µ > 100 poise is very small. Neglect the inertia (left side) in
(13).

The Reynolds number
is very small

Re << 1 for heavy oil
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Figure 2. Horizontal pipe (length L, Radius R = r). The unknowns are φ and u; π may be eliminated.
φ  and u depend on x or r.

All the equations in the horizontal pipe hold in the horizontal well. In addition, we need

reservoir equations:
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Figure 3. Horizontal well. The porous media is very important. Flow is driven by the reservoir pressure
reference πp toward the pump through the liner.

The equations in figures 2 and 3 should be made dimensionless in order to identify the
controlling parameters. Quite frankly, I am not at all clear on how to do this. It is easy to make
the equations dimensionless, but choices of scales must be made and I do not yet know the
optimal choice.

You could try your hand at getting a good dimensionless formulation.

The porous media
does not enter this
problem

Continuity equation. We can
neglect ∂φ/∂t.

0div)1( =−−∇⋅+
∂
∂ uu φφφ

t

u = 0  at  r = R
�
�
�

�

�
�
�

�

�
�

�

	






�

�

∂
∂

+
∂
∂

∂
∂+

∂
∂−=

i

j

j

i

ji x
u

x
uf

xx
)(0 0 φµπ

Stokes flow

The equations in the well are the same as in the pipe
but the boundary conditions are different.

u • ex = 0
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