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Abstract

We study the stability of strati�ed gas-liquid 
ow

in a horizontal rectangular channel using viscous

potential 
ow. The analysis leads to an explicit

dispersion relation in which the e�ects of surface

tension and viscosity on the normal stress are

not neglected but the e�ect of shear stresses are

neglected. Formulas for the growth rates, wave

speeds and neutral stability curve are given in

general and applied to experiments in air-water


ows. The e�ects of surface tension are always

important and actually determine the stability

limits for the cases in which the volume frac-

tion of gas is not too small. The stability crite-

rion for viscous potential 
ow is expressed by a

critical value of the relative velocity. The maxi-

mum critical value is when the viscosity ratio is

equal to the density ratio; surprisingly the neu-

tral curve for this viscous 
uid is the same as the

neutral curve for inviscid 
uids. The maximum

critical value of the velocity overall viscous 
uids

is given by inviscid 
uids. For air at 20ÆC and

liquids with density � = 1g=cc the liquid viscos-

ity for the critical conditions is 15 cp; the critical

velocity for liquids with viscosities larger than 15

cp are only slightly smaller but the critical veloc-

ity for liquids smaller than 15 cp, like water, can

be much lower. The viscosity of the liquid has

a strong a�ect on the growth rate. The viscous

potential 
ow theory �ts the experimental data

for air and water well for liquid and water when

the gas fraction is greater than about 70%.

1 Introduction

It is well known that the Navier-Stokes equations

are satis�ed by potential 
ow; the viscous term

is identically zero when the vorticity is zero but

the viscous stresses are not zero (Joseph and Liao

[JL] 1994). It is not possible to satisfy the no-slip

condition at a solid boundary or the continuity of

the tangential component of velocity and shear

stress at a 
uid-
uid boundary when the veloc-

ity is given by a potential. The viscous stresses

enter into the viscous potential 
ow analysis of

free surface problems through the normal stress

balance (2.20) at the interface. Viscous potential


ow analysis gives good approximations to fully

viscous 
ows in cases where the shears from the

gas 
ow are negligible; the Rayleigh-Plesset bub-

ble is a potential 
ow which satis�es the Navier-

Stokes equations and all the interface conditions.

Joseph, Belanger and Beavers [JBB] 1999 con-

structed a viscous potential 
ow analysis of the

Rayleigh-Taylor instability which can scarcely be

distinguished from the exact fully viscous analy-

sis.

The success of viscous potential 
ow in the

analysis of Rayleigh-Taylor instability has mo-

tivated the analysis of Kelvin-Helmholz theory

given here and in the recent short paper by

Joseph, Lundgren and Funada [JLF] 2000. The

JLF paper treats the Kelvin-Helmhohlz instabil-

ity problem of two adjacent streams with di�er-

ent speed in 
uids with di�erent viscosities when

surface tension is neglected. It is well known that

the instability that arises when surface tension

and viscosity are neglected is catastrophic; short

waves with wave lengths � = 2�=k amplify with-

out control like ekt. The instability grows expo-

nentially as the wavenumber k ! 1 no matter

how small time t. This kind of catastrophic in-

stability is called Hadamard instability (Joseph

and Saut [JS] 1990). In the case of inviscid 
uids
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this instability is regularized by surface tension

which stabilizes the short waves; surface tension

is very important.

The question addressed in the paper by

Joseph, Lundgren and Funada 2000 is whether

viscosity, without surface tension, would regu-

larize the Hadamard instability. The answer de-

pends on what 'regularize' is. Unlike surface ten-

sion, viscosity will not cause the small waves to

decay; they still grow but their growth is limited

and the growth rate re�(k) does not go to in�nity

with k as in Hadamard instability. An explicit

formula for the growth rates for short waves was

given; the positive growth rate is given by

re�+ =
�a�

2
l + �l�

2
a

2 (�l + �a)
3
(Ua � Ul)

2
k !1

where [�; �; U ] = [density; viscosity; velocity].

The present paper gives a detailed report of

the viscous potential 
ow analysis of KH insta-

bility in a rectangular duct together with a com-

parison of theory and experiment in the case of

air-water 
ow. As we have already mentioned

potential 
ow requires that we neglect the no-

slip condition at solid surfaces. In the rectan-

gular channel the top and bottom walls are per-

pendicular to gravity; the bottom wall is under

the liquid and parallel to the undisturbed uni-

form stream; the top wall contacts gas only. The

side walls are totally inactive; there is no motion

perpendicular to the side walls unless it is cre-

ated initially and since the two 
uids slip at the

walls all the conditions required in the analysis

of three dimensions can be satis�ed by 
ow in

two dimensions which is analyzed here.

The viscosity in viscous potential 
ow enters

into the normal stress balance rather than tan-

gential stress balance. Air over liquid induces

small viscous stresses that may be con�ned to

boundary layer and may be less and less impor-

tant as the viscosity of the liquid increases. At a


at, free surface z = 0 with velocity components

(u;w) corresponding to (x; z) the shear stress is

given by

�

�
@u

@z
+
@w

@x

�

and the normal stress is

2�
@w

@z
:

The normal stress is an extensional rather

than a shear stress and it is activated by waves on

the liquid; the waves are induced more by pres-

sure than by shear. For this reason, we could

argue that the neglect of shear could be justi�ed

in wave motions in which the viscous resistance

to wave motion is not negligible; this is the situa-

tion which may be well approximated by viscous

potential 
ow.

2 Formulation of the problem

A channel of rectangular cross section with

height H and width W and of length L is set

horizontally, in which a gas layer is over a liq-

uid layer: the two-layer Newtonian incompress-

ible 
uids are immiscible. The undisturbed in-

terface is taken at z = 0 with the z-axis of Carte-

sian coordinates x = (x; y; z) = (x1; x2; x3),

where 0 � x � L, 0 � y � W , and �hl �
z � ha (H = hl + ha); acceleration due to

gravity g = (0; 0;�g). We denote velocity by

v = (u; v; w) = (v1; v2; v3), pressure p, density �,

viscosity �, viscous stress tensor � or �ij (in the

conventional tensor notation), strain tensor e or

eij, interface elevation h, surface tension 
.

In the undisturbed state, the gas (air) with

a uniform 
ow (Ua; 0; 0) is in 0 < z < ha,

and the liquid with a uniform 
ow (Ul; 0; 0) is

in �hl < z < 0; the pressure has an equilib-

rium distribution due to the gravity. We con-

sider Kelvin-Helmholz instability of small distur-

bances against the undisturbed state.

The perscription of a discontinuity in velocity

across z = 0 is not compatible with the no-slip

condition of Navier-Stokes viscous 
uid mechan-

ics. The discontinuous prescription of data in

the study of Kelvin-Helmholz instability is a vis-

cous potential 
ow solution of the Navier-Stokes

in which no-slip conditions at walls and no slip

and continuity of shear stress across the gas liq-

uid interface are neglected. Usually the analysis

2



of Kelvin-Helmholz instability is done using po-

tential 
ow for an inviscid 
uid but this proce-

dure leaves out certain e�ects of viscosity which

can be included with complete rigor. This kind

of analysis using viscous potential 
ow is car-

ried out here. An exact study of, say air over

water requires the inclusion of all of the e�ects

of viscosity, and even the prescription of a ba-

sic 
ow is much more complicated. Problems of

superposed viscous 
uids have been considered,

for example, in the monograph on two-
uid me-

chanics by Joseph and Renardy [JR] 1991.

Geometry at the interface

The equation of the interface is given by z�h = 0

(where h � h(x; y; t) is the interface elevation),

for which the normal vector N is expressed as

N = r (z � h) =

�
�@h

@x
; �@h

@y
; 1

�
; (2:1)

thus the unit normal vector n is expressed as

n =
1p

N �N

�
�@h

@x
; �@h

@y
; 1

�

=

�
�@h

@x ; �
@h
@y ; 1

�
r
1 +

�
@h
@x

�2
+
�
@h
@y

�2 : (2:2)

A unit tangential vector s along the interface

may be de�ned as

s =

�
1; 0;

@h

@x

�
1

`
; (2:3)

with ` de�ned by

` =

s
1 +

�
@h

@x

�2

: (2:4)

The tangential vector satis�es s � n = 0. Then

the unit binormal vector b may be de�ned as

b = n� s =

������
e1 e2 e3

n1 n2 n3

s1 s2 s3

������
=

�
�1

`
@h
@x

@h
@y ; `;

1
`
@h
@y

�
r
1 +

�
@h
@x

�2
+
�
@h
@y

�2 : (2:5)

These relations can be used to express conditions

at the interface.

2.1 Basic equations for Newtonian 
u-

ids

We begin by writing the full set of equations for

incompressible Newtonian 
uids, and then spe-

cialize to describe viscous potential 
ow.

Equations for the air in 0 < z < ha are given

by

�a

�
@va

@t
+ Ua

@va

@x

�
= �rpa +r � � (a) + �ag;

(2:6)

r � va = 0; (2:7)

�pa = constant� �agz; (2:8)

�
(a) = 2�ae

(a) ! �
(a)
ij = 2�ae

(a)
ij ; (2:9a)

�
(a) ! �

(a)
ij = �

(a)
ji ; (2:9b)

e
(a) ! eij =

1

2

�
@vi

@xj
+
@vj

@xi

�
: (2:9c)

The viscous term in (2.6) is to be ignored in vis-

cous potential 
ow analysis.

Equations for the water in �hl < z < 0 are

given by

�l

�
@vl

@t
+ Ul

@vl

@x

�
= �rpl +r � � (l) + �lg;

(2:10)

r � vl = 0; (2:11)

�pl = constant� �lgz; (2:12)

�
(l) = 2�le

(l) ! �
(l)
ij = 2�le

(l)
ij ; (2:13a)

�
(l) ! �

(l)
ij = �

(l)
ji ; (2:13b)

e
(l) ! eij =

1

2

�
@vi

@xj
+
@vj

@xi

�
: (2:13c)

The viscous term in (2.10) is to be ignored in

viscous potential 
ow analysis.

Boundary conditions at the interface (at z =

0 + h � 0, where h � h(x; y; t) is the interface

elevation) are given by

@h

@t
+Ul

@h

@x
= wl;

@h

@t
+Ua

@h

@x
= wa; (2:14a;b)
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jv � njdif = 0 ! �Ul
@h

@x
+ wl = �Ua

@h

@x
+wa;

(2:15)

jv � sjdif = 0 ! Ul + ul = Ua + ua; (2:16)

jv � bjdif = 0 ! vl = va; (2:17)

jsi�ijnj jdif = 0 ! �
(l)
13 = �

(a)
13 ; (2:18)

jbi�ijnj jdif = 0 ! �
(l)
23 = �

(a)
23 ; (2:19)

jni (�pÆij + �ij)nj jdif = 
r � n

! �pa + �
(a)
33 + �agh�

�
�pl + �

(l)
33 + �lgh

�
= �
�h; (2:20)

with the horizontal Laplacian �:

� =
@
2

@x2
+

@
2

@y2
: (2:21)

Equations (2.17) and (2.19) are not needed when

we consider two-dimensional disturbances, and

(2.16) and (2.18) are not needed for potential


ow analysis.

The conditions on the walls are given by

wa = 0 at z = ha; (2:22a)

va = 0 at y = 0;W; (2:22b; c)

wl = 0 at z = �hl; (2:23a)

vl = 0 at y = 0;W; (2:23b; c)

Equations (2.22b,c) and (2.33b,c) cannot be

satis�ed by potential 
ow and are dropped in

the analysis below.

2.2 Viscous potential 
ow analysis

(2D)

We already noted that if the 
uids are allowed to

slip at the walls, then the two-dimensional solu-

tion will satisfy the three-dimensional equations

and we may reduce the analysis to 
ow between

parallel plates. We found that three-dimensional

are more stable than two-dimensional distur-

bances. We now consider 2-dimensional distur-

bances such as v = (u; 0; w), for which the veloc-

ity potential � � �(x; z; t) gives v = r�, based
on the viscous potential theory.

The potential is subject to the equation of con-

tinuity:

r � v = 0 ! @u

@x
+
@w

@z
= 0 ! @

2
�

@x2
+
@
2
�

@z2
= 0

! ��+
@
2
�

@z2
= 0 with �� =

@
2
�

@x2
; (2:24)

thus the potentials for the respective 
uids are

given by

@
2
�a

@x2
+
@
2
�a

@z2
= 0 in 0 < z < ha; (2:25)

@
2
�l

@x2
+
@
2
�l

@z2
= 0 in � hl < z < 0: (2:26)

The potential �a that satis�es the condition

(2.22a) for the air and the potential �l that satis-

�es the condition (2.23a) for the water are given,

respectively, by

�a = Aa cosh [k (z � ha)] exp (�t+ {kx) + c:c:;

(2:27a)

�l = Al cosh [k (z + hl)] exp (�t+ {kx) + c:c:;

(2:27b)

and the interface elevation is given by

h = A0 exp (�t+ {kx) + c:c:; (2:27c)

where Aa, Al and A0 denote the complex am-

plitude, and c:c: stands for the complex conju-

gate of the preceding expression; � is the com-

plex growth rate and k denotes the wavenum-

ber; { =
p
�1. From the kinematic conditions

(2.14a,b), we have the following equations for the

complex amplitudes:

(� + {kUa)A0 = �kAa sinh (kha) ; (2:28a)

(� + {kUl)A0 = kAl sinh (khl) : (2:28b)

The other boundary condition is the normal

stress balance (with the normal viscous stress)

at the interface, (2.20):

�pa+�
(a)
33 +�agh�

�
�pl + �

(l)
33 + �lgh

�
= �
�h;

(2:29)

in which the pressure pa included may be written,

from the equation of motion without the viscous

term, as
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�a

�
@ua

@t
+ Ua

@ua

@x

�
= �@pa

@x
;

and with the aid of the equation of continuity,

we have the expression of pa

�a

�
@
2
wa

@t@z
+ Ua

@
2
wa

@x@z

�
=

@
2
pa

@x2
; (2:30a)

the pressure pl may be written as

�l

�
@
2
wl

@t@z
+ Ul

@
2
wl

@x@z

�
=

@
2
pl

@x2
: (2:30b)

Thus the normal stress balance is now written as

��a
�
@
2
wa

@t@z
+ Ua

@
2
wa

@x@z

�
+ 2�a�

@wa

@z
+ �ag�h

+ �l

�
@
2
wl

@t@z
+ Ul

@
2
wl

@x@z

�
� 2�l�

@wl

@z
� �lg�h

= �
�2
h; (2:31)

which is then written as

�
��ak2 (� + {kUa)� 2�ak

4
�
Aa cosh (kha)

+
�
�lk

2 (� + {kUl) + 2�lk
4
�
Al cosh (khl)

��agk2A0 + �lgk
2
A0 = �
k4A0;

so that we have the equation of �, using (2.27)

and (2.28) and assuming A0 6= 0:

h
�a (� + {kUa)

2 + 2�ak
2 (� + {kUa)

i
coth (kha)

+
h
�l (� + {kUl)

2 + 2�lk
2 (� + {kUl)

i
coth (khl)

+ (�l � �a) gk + 
k
3 = 0:

2.3 Dispersion relation

Thus the dispersion relation is given as

[�a coth (kha) + �l coth (khl)]�
2

+2�
�
{k [�aUa coth (kha) + �lUl coth (khl)] + k

2 [�a coth (kha) + �l coth (khl)]
	

�k2
�
�aU

2
a coth (kha) + �lU

2
l coth (khl)

�
+ 2{k3 [�aUa coth (kha) + �lUl coth (khl)]

+ (�l � �a) gk + 
k
3 = 0: (2:32)

If the top and bottom are far away hl !1; ha !1, then (2.32) reduces to the problem considered

by [JLF]:

� = � {k (�aUa + �lUl) + k
2 (�a + �l)

(�a + �l)

�
"
�a�lk

2 (Ua � Ul)
2

(�a + �l)
2

� (�l � �a) gk + 
k
3

(�a + �l)
+
k
4 (�a + �l)

2

(�a + �l)
2

+2{k3
(�a�l � �l�a) (Ua � Ul)

(�a + �l)
2

�1=2
;

which is reduced, for a particular case that �a�l = �l�a, to

�R = �k
2 (�a + �l)

(�a + �l)
�
"
�a�lk

2 (Ua � Ul)
2

(�a + �l)
2

� (�l � �a) gk + 
k
3

(�a + �l)
+
k
4 (�a + �l)

2

(�a + �l)
2

#1=2
;

�I = �k (�aUa + �lUl)

(�a + �l)
:
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Here, it is easy to �nd that the equation �R = 0 gives a relation being irrespective of viscosity. In

other words, the relation holds even for inviscid 
uids; this is much suggestive for the problem to be

considered herein.

To facilitate further analysis we may write (2.32) as

A�
2 + 2B� + C = 0; (2:33)

where the coeÆcients A, B and C are de�ned as

A = �l coth (khl) + �a coth (kha) ; (2:34a)

B = {k [�lUl coth (khl) + �aUa coth (kha)] + k
2 [�l coth (khl) + �a coth (kha)] = BR + {BI ; (2:34b)

C = (�l � �a) gk � k
2
�
�lU

2
l coth (khl) + �aU

2
a coth (kha)

�
+ 
k

3

+2{k3 [�lUl coth (khl) + �aUa coth (kha)] = CR + {CI : (2:34c)

The solution � may be expressed as

� = �B

A
�
r
B2

A2
� C

A
! �R + {�I = �

BR + {BI

A
�

s�
BR + {BI

A

�2

� CR + {CI

A
; (2:35)

� = �B

A
�
p
D

A
! �R + {�I = �BR + {BI

A
�
p
D

A

where D is given by

D = DR + {DI = (BR + {BI)
2 �A (CR + {CI) ;

DR = �l�a (Ua � Ul)
2
k
2 coth (khl) coth (kha) + k

4 [�l coth (khl) + �a coth (kha)]
2

� [�l coth (khl) + �a coth (kha)]
�
(�l � �a) gk + 
k

3
�
;

DI = 2k3 (�a�l � �l�a) (Ua � Ul) coth (khl) coth (kha) :

When �a�l = �l�a for which DI = 0, and if DR � 0, we have

�R =
�BR �

p
DR

A
; �I = �BI

A
:

This is a typical case where the real and imaginary parts of � can be expressed most clearly.

2.4 Growth rates and wave speeds

In terms of � = �R + {�I , (2.33) is also written as

A (�R + {�I)
2 + 2 (BR + {BI) (�R + {�I) + (CR + {CI) = 0;

for which the real and imaginary parts are given as

A
�
�
2
R � �

2
I

�
+ 2 (BR�R �BI�I) + CR = 0; (2:36a)

2A�R�I + 2BR�I + 2BI�R + CI = 0 ! �I = � 2BI�R +CI

2 (A�R +BR)
= �

BI�R +
CI

2
A�R +BR

: (2:36b)

6



Eliminating �I from the above, we have a quartic equation for �R:

A

"
�
2
R (A�R +BR)

2 �
�
BI�R +

CI

2

�2
#
+ 2BR�R (A�R +BR)

2

+2BI

�
BI�R +

CI

2

�
(A�R +BR) + CR (A�R +BR)

2 = 0;

which is then written as

a4�
4
R + a3�

3
R + a2�

2
R + a1�R + a0 = 0; (2:37)

where the coeÆcients are given as

a4 = A
3
; (2:38a)

a3 = 2A2
BR + 2A2

BR = 4A2
BR; (2:38b)

a2 = AB
2
R �AB

2
I + 4AB2

R + 2AB2
I +A

2
CR = 5AB2

R +AB
2
I +A

2
CR; (2:38c)

a1 = �ABICI + 2B3
R +ABICI + 2BRB

2
I + 2ABRCR = 2B3

R + 2BRB
2
I + 2ABRCR; (2:38d)

a0 = �1

4
AC

2
I +BRBICI +B

2
RCR: (2:38e)

The quartic equation (2.37) can be solved analytically. Neutral states for which �R = 0 are described

in terms of the solution to the equation a0 = 0. The peak value (the maximum growth rate) �m and

the corresponding wavenumber km are obtained by solving (2.37). It is usually true, but unproven,

that �m = 2�=km will be the length of unstable waves observed in experiments.

The complex values of � are frequently expressed in terms of a complex frequency ! with

�R + {�I = � = �{! = �{!R + !I :

Hence

�R = !I ; �I = �!R:
The wave speed for the mode with wavenumber k is

~CR = !R=k = ��I=k:

The set of wavenumbers for which unstable 
ows are stable is also of interest. The wavelengths cor-

responding to these wavenumbers will not appear in the spectrum. Cut-o� wavenumbers kC separate

the unstable and stable parts of the specturm.

2.5 Neutral curves

Neutral curves de�ne values of the parameters for which �R(k) = 0. These curves may be obtained

by putting a0 = 0

��l�
2
a coth (khl) coth

2 (kha) + �a�
2
l coth

2 (khl) coth (kha)

[�l coth (khl) + �a coth (kha)]
2

kV
2 + (�l � �a) g + 
k

2 = 0; (2:39)

where the relative velocity V is de�ned by V � Ua � Ul. This equation may be solved for V 2 where

V
2(k) =

[�l coth (khl) + �a coth (kha)]
2

�l�
2
a coth (khl) coth

2 (kha) + �a�
2
l coth

2 (khl) coth (kha)

1

k

�
(�l � �a) g + 
k

2
�
: (2:40)
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The lowest point on the neutral curve V 2(k) is

V
2
c =

min

k � 0
V

2(k) � V
2(kc)

where �c = 2�=kc is the wave length that makes V 2 minimum. The 
ow is unstable when

V
2 = (�V )2 > V

2
c :

This criteria is symmetric with respect to V and �V , depending only on the absolute value of the

relative velocity. This feature stems from Galilean invariance; the 
ow seen by the observer moving

with gas is the same as the one seen by an observer moving with the liquid.

3 K-H Instability of Inviscid Fluid

For inviscid 
uids, we have BR = 0 and CI = 0; thus a3 = a1 = a0 = 0 and (2.37) reduces to

a4�
4
R + a2�

2
R = 0; (3:1)

Thus, we have

a4�
2
R + a2 = 0 ! A

3
�
2
R +AB

2
I +A

2
CR = 0; (3:2)

and

�I = �
BI�R +

CI

2
A�R +BR

= �BI

A
= �k [�lUl coth (khl) + �aUa coth (kha)]

�l coth (khl) + �a coth (kha)
: (3:3)

It should be noted here that the neutral curve was given by the equation a0 = 0 in the viscous potential

analysis ((2.39) and (2.40)), whereas the neutral curve in this K-H instability is given by the equation

a2 = 0.

From (3.2) with a2 < 0, the growth rate �R is expressed as

�R = �
r
�B

2
I

A2
� CR

A

= �
p
�l�ak

2 coth (khl) coth (kha)V 2 � [�l coth (khl) + �a coth (kha)] [(�l � �a) gk + 
k3]

�l coth (khl) + �a coth (kha)
: (3:4)

At the neutral state �R = 0 for which a2 = 0, we have

�l�ak coth (khl) coth (kha)

�l coth (khl) + �a coth (kha)
V
2 �

�
(�l � �a) g + 
k

2
�
= 0: (3:5)

Instability arises if

V
2
>

�
tanh (khl)

�l
+
tanh (kha)

�a

�
1

k

�
(�l � �a) g + 
k

2
�
� V

2
i (k): (3:6)

In the stable case for which a2 > 0, the wave velocity ~CR is given by

�k ~CR = �I = �BI

A
�
r
B

2
I

A2
+
CR

A
: (3:7)
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4 Dimensionless form of the dispersion equation

The dimensionless variables are designated with a roof and are listed below

k̂ = kH;

ĥa =
ha

H
� �;

ĥl =
hl

H
= 1� ĥa;

�̂ =
�a

�l
;

�̂ =
�a

�l
;


̂ =



�lgH
2
;

Ûa =
Ua

Q
;

Ûl =
Ul

Q
;

V̂ = Ûa � Ûl

�̂ =
�H

Q
;

� =
�l

�lHQ
;

where

Q =

�
(1� �̂)gH

�̂

�1=2
:

The dimensionless form of (2.32) is given byh
coth(k̂ĥl) + �̂ coth(k̂ĥa)

i
�̂
2

+ 2�̂
n
ik̂

h
Ûl coth(k̂ĥl) + �̂Ûa coth(k̂ĥa)

i
+ �k̂

2
h
coth(k̂ĥl) + �̂ coth(k̂ĥa)

io
� k̂

2
h
Û
2
l coth(k̂ĥl) + �̂Û

2
a coth(k̂ĥa)

i
+ 2ik̂3�

h
Ûl coth(k̂ĥl) + �̂Ûa coth(k̂ĥa)

i

+ k̂

"
1 +


̂k̂
2

(1� �̂)

#
= 0: (4.1)

The expression (2.40) for the neutral curve �̂R(k̂) = 0 is written in dimensionless variables as

V̂
2 =

h
tanh(k̂ĥa) + �̂ tanh(k̂ĥl)

i2
tanh(k̂ĥa) + (�̂2=�̂) tanh(k̂ĥl)

1

k̂

"
1 +


̂k̂
2

(1� �̂)

#
: (4.2)

Notice that the growth rate parameter � = �l=(�lQ), which depends linearly on the kinematic viscosity

�l = �l=�l of the liquid does not appear in (4.2).

The neutral curves for an inviscid 
uid (3.5) can be obtained by putting �̂ = �̂ or �l=�l = �a=�a.

This gives

V̂
2 =

h
tanh(k̂ĥa) + �̂ tanh(k̂ĥl)

i2
h
tanh(k̂ĥa) + �̂ tanh(k̂ĥl)

i 1

k̂

"
1 +


̂k̂
2

1� �̂

#

=
h
tanh(k̂ĥa) + �̂ tanh(k̂ĥl)

i 1
k̂

"
1 +


̂k̂
2

1� �̂

#
(4.3)
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which is the dimensionless form of (3.6). Though this reduction is immediate it is surprising.

Evaluating (4.2) for �̂ = 0, we get

V̂
2 = tanh(k̂ĥa)

1

k̂

"
1 +


̂k̂
2

1� �̂

#
: (4.4)

Evaluating (4.2) for �̂ =1 we get

V̂
2 = �̂ tanh(k̂hl)

1

k̂

"
1 +


̂k̂
2

1� �̂

#
: (4.5)

It is easy to verify that V̂ 2 is maximum at �̂ = �̂, for inviscid 
uids. Viscosity in viscous potential


ow is destablizing; however, large viscosities are less destabilizing than small viscosities.

Since �̂ = 0:0012, it is very small, the variation in the stability is large as �̂ varies between �̂ and

1, and is very small as �̂ varies between �̂ and zero. The value �̂ = 0:018 > �̂ = 0:0012, and is in the

interval in which V̂
2 is rapidly varying (see �gure 4).

In the literature on gas liquid 
ows a long wave approximation is often made to obtain stability

limits. For long waves k̂ ! 0 and tanh(k̂ĥ)! k̂ĥ and (4.2) reduces to

V̂
2 =

(ĥa + �̂ĥl)
2h

ĥa + (�̂2=�̂)ĥl

i
"
1 +


̂k̂
2

1� �̂

#
: (4.6)

The e�ect of surface tension disappears in this limit but the e�ects of viscosity are important. To get

the long wave limit in the inviscid case put �̂ = �̂.

The regularization of short waves by surface tension is an important physical e�ect. For short waves,

k̂ !1, tanh(k̂ĥ)! 1 and

V̂
2 =

(�̂+ 1)2

1 + �̂2=�̂

1

k̂

"
1 +


̂k̂
2

(1� �̂)

#
: (4.7)

To get the short wave limit in the inviscid case put �̂ = �̂.

The e�ects of surface tension may be computed from (4.6) and (4.7). The stability limit for long

waves k̂ ! 0 is independent of 
̂. For short waves (4.6) has a minimum at k̂ =
p
(1� �̂)=
̂ with a

value there given by

V̂
2 =

2(�̂+ 1)2

1 + �̂2=�̂

s
1� �̂


̂
: (4.8)

Equation (4.8) shows that short waves are stablized by increasing 
̂. For small 
̂ instability is for long

waves.

5 The e�ect of liquid viscosity and surface tension

on growth rates and neutral curves

For air and water at 20ÆC

�a = 0:0012 g=cm3
; �l = 1g=cm3

; �̂ = �a=�l = 0:0012;
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�a = 0:00018 poise; �l = 0:01 poise; �̂ = �a=�l = 0:018:

The surface tension of air and pure water is 
 = 72:8dynes=cm. Usually the water is slightly contam-

inated and 
 = 60dynes=cm is more probable for the water-air tension in experiments. For all kinds

of organic liquids a number like 
 = 30dynes=cm is close to the mark.

Neutral curves for �̂ = 0:018 (air/water) and �̂ = �̂ = 0:0012 (inviscid 
ow) and �̂ = 3:6 � 10�6

(�l = 50 poise) with 
 = 60dynes/cm are shown in �gures 1, 2 and 3. The liquid viscosities �l =

�l�a=�a corresponding to these three cases are �l = 0:01 poise, 0:15 poise and 50 poise. The neutral

curves for �̂ � �̂ are nearly identical. The neutral curves for �̂ = 0:018 (air/water) are to be compared

with experiments. We have indenti�ed the minimum values of (4.2) over k̂ � 0 in the air/water case,

and in tables 1, 2 and 3 the critical velocity Vc = V (kc), the critical wave number kc (and wave length

�c = 2�=kc) and associated wave speeds ~CRc = ~CR(kc) are listed. In the tables, Vs and ~CRs denote

the values taken at k = 10�3[1/cm], which may be representative of values in the limit of long wave,

k ! 0. The variation of the critical velocity with the viscosity ratio �̂ = �a=�l for a representative gas

fraction � = 0:5 is shown in �gure 4. The vertical line �̂ = �̂ identi�es the stability limit for inviscid


uids. Points to the left of this line have high liquid viscosities �l > 0:15 poise, and for points to the

right, �l < 0:15 poise.

In all cases the critical velocity is in
uenced by surface tension; the critical velocity is given by long

waves only when � is small (small air gaps). For larger values of � (say � > 0:2), the most dangerous

neutrally unstable wave is identi�ed by a sharp minimum determined by surface tension, which is

identi�ed in table 1 (c.f. equation (4.8)).
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Figure 1: Neutral curves for air and water (�̂ = 0:018, see table 1); � = ĥa is the gas fraction.
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Figure 2: Neutral curves for inviscid 
uids (�̂ = �̂ = 0:0012) for di�erent gas fractions � = ĥa. This

neutral curve arose for the special case �̂ = �̂ = 0:0012 = �a=�l with �a = 0:00018 poise; hence

�l = 0:15 poise. Surprisingly it is identical to the case �a = �l = 0 (see table 2).
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Figure 3: Neutral curves for liquid air and �l = 50 poise liquid (�̂ = 3:6 � 10�6) for di�erent gas

fractions � = ĥa (see table 3). The neutral curves for viscous liquid with �l > 0:15 poise are essentially

identical to the neutral curves for inviscid liquid.
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Table 1: �a =0.0012[g/cm3], �a =0.00018[g/cm/sec], �l =1.0[g/cm3], �l =0.01[g/cm/sec],

g =980.0[cm/sec2], 
 =60.0[dynes/cm], H =2.54[cm].

ĥa Vs[cm/sec] ~CRs[cm/sec] kc[1/cm] �c[cm] Vc[cm/sec] ~CRc[cm/sec]

0.01 76.0432 198.5692 0.6494 9.6756 72.9167 155.8590

0.1 285.5866 43.2185

0.2 478.4722 20.8209

0.3 643.4475 12.4952 0.6923 9.0762 651.2637 9.4315

3.8929 1.6140 572.5005 5.5099

0.4 788.7526 8.1499 4.0195 1.5632 573.9078 5.4843

0.5 919.4103 5.4813 4.0517 1.5507 574.0776 5.4813

0.6 1038.7081 3.6759 4.0517 1.5507 574.1212 5.4785

0.7 1148.9159 2.3731 4.0517 1.5507 574.3082 5.4590

0.8 1251.6682 1.3888 4.1170 1.5261 575.6849 5.3194

0.9 1348.1820 0.6188 4.3540 1.4431 585.3108 4.4148

0.99 1430.4848 0.0564 4.1501 1.5140 628.0101 0.5849

Table 2: �a =0.0012[g/cm3], �a =0.0[g/cm/sec], �l =1.0[g/cm3], �l =0.0[g/cm/sec],

g =980.0[cm/sec2], 
 =60.0[dynes/cm], H =2.54[cm].

ĥa Vs[cm/sec] ~CRs[cm/sec] kc[1/cm] �c[cm] Vc[cm/sec] ~CRc[cm/sec]

0.01 152.2491 16.1666 0.6289 9.9901 150.6110 9.7248

0.1 457.6265 4.8896

0.2 645.2579 3.0824 2.9902 2.1013 619.8183 0.8176

0.3 789.4894 2.2044 3.9242 1.6011 634.4431 0.7643

0.4 911.1691 1.6372 4.0195 1.5632 635.7381 0.7624

0.5 1018.4128 1.2206 4.0517 1.5507 635.8945 0.7622

0.6 1115.3923 0.8916 4.0517 1.5507 635.9132 0.7618

0.7 1204.5893 0.6192 4.0517 1.5507 635.9142 0.7590

0.8 1287.6220 0.3862 4.0517 1.5507 635.9038 0.7377

0.9 1365.6153 0.1821 4.0517 1.5507 635.8298 0.5897

0.99 1432.1824 0.0174 4.0517 1.5507 635.5740 0.0782
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Table 3: �a =0.0012[g/cm3], �a =0.00018[g/cm/sec], �l =1.0[g/cm3], �l =50.0[g/cm/sec],

g =980.0[cm/sec2], 
 =60.0[dynes/cm], H =2.54[cm].

ĥa Vs[cm/sec] ~CRs[cm/sec] kc[1/cm] �c[cm] Vc[cm/sec] ~CRc[cm/sec]

0.01 143.9903 0.1104

0.1 455.1899 0.0100

0.2 643.7241 0.0045 1.9889 3.1591 637.6000 0.0015

0.3 788.3930 0.0026 3.4807 1.8051 664.1580 0.0011

0.4 910.3551 0.0017 3.6227 1.7344 666.6147 0.0011

0.5 1017.8060 0.0011 3.6517 1.7206 666.9543 0.0011

0.6 1114.9491 0.0007 3.6517 1.7206 667.0070 0.0011

0.7 1204.2815 0.0005 3.6811 1.7069 667.0151 0.0011

0.8 1287.4300 0.0003 3.6811 1.7069 667.0162 0.0011

0.9 1365.5248 0.0001 3.6811 1.7069 667.0158 0.0008

0.99 1432.1738 1.1 �10�5 3.6811 1.7069 667.0143 0.0001
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Figure 4: Critical velocity V vs. �̂ for � = 0:5. The critical velocity is the minimum value on the

neutral curve. The vertical line is �̂ = �̂ = 0:0012 and the horizontal line at V = 635:9cm/sec is the

critical value for inviscid 
uids. The vertical dashed line at �̂ = 0:018 is for air and water.

Growth rates for the same three cases as in �gures 1, 2, and 3, are shown in �gures 5a-c, 6a-c, and

7a-c. The growth rates depend strongly on the liquid viscosity unlike the neutral curves. The most

dangerous linear wave is the one whose growth rate �R is maximum at k = km,

�Rm = �R(km) =
max

k � 0
�R(k) (5.1)

with an associated wavelength �m = 2�=km and wave speed ~CRm = ~CR(km). The values of these

parameters for the most unstable waves are listed in the captions to �gures 5, 6 and 7.
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Figure 5a. �̂ = 0:018 (water, �l = 1 cp). V = 1500 cm/sec. The graphs are top to bottom

� = 0:2; 0:5; 0:8.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 29.9016 0.2101 1447.9245 3.0442

0.1 29.6635 0.2118 872.5395 2.0488

0.2 29.6635 0.2118 872.5387 2.0488

0.3 29.6635 0.2118 872.5387 2.0488

0.4 29.6635 0.2118 872.5387 2.0488

0.5 29.6635 0.2118 872.5387 2.0488

0.6 29.6635 0.2118 872.5387 2.0488

0.7 29.6635 0.2118 872.5387 2.0488

0.8 29.6635 0.2118 872.5387 2.0488

0.9 29.6635 0.2118 872.5385 2.0488

0.99 32.1325 0.1955 706.1702 1.4543
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Figure 5b. �̂ = 0:018, V = 900 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 15.3993 0.4080 615.3088 3.0461

0.1 10.0000 0.6283 167.7322 1.1827

0.2 10.2428 0.6134 164.2430 1.1745

0.3 10.2428 0.6134 164.2245 1.1744

0.4 10.2428 0.6134 164.2244 1.1744

0.5 10.2428 0.6134 164.2244 1.1744

0.6 10.2428 0.6134 164.2244 1.1744

0.7 10.2428 0.6134 164.2243 1.1744

0.8 10.2428 0.6134 164.2194 1.1744

0.9 10.3250 0.6085 163.3315 1.1642

0.99 11.3646 0.5529 84.6599 0.3670
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Figure 5c. �̂ = 0:018, V = 680 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 11.1844 0.5618 391.3929 3.0669

0.1 4.5680 1.3755 62.1098 1.0388

0.2 4.9088 1.2800 40.1792 0.8951

0.3 5.0683 1.2397 38.1441 0.8920

0.4 5.0683 1.2397 37.9928 0.8916

0.5 5.0683 1.2397 37.9811 0.8916

0.6 5.0683 1.2397 37.9791 0.8915

0.7 5.0683 1.2397 37.9636 0.8908

0.8 5.1090 1.2298 37.7670 0.8834

0.9 5.2330 1.2007 35.3134 0.7846

0.99 5.4030 1.1629 13.7411 0.1437
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Figure 6a. �̂ = �̂ = 0:0012 (�l = 15 cp, inviscid). V = 1500 cm/sec. The graphs are top to bottom

� = 0:2; 0:5; 0:8:

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 26.9498 0.2331 1339.8608 3.0219

0.1 27.1661 0.2313 767.9639 1.7978

0.2 27.1661 0.2313 767.9616 1.7978

0.3 27.1661 0.2313 767.9616 1.7978

0.4 27.1661 0.2313 767.9616 1.7978

0.5 27.1661 0.2313 767.9616 1.7978

0.6 27.1661 0.2313 767.9616 1.7978

0.7 27.1661 0.2313 767.9616 1.7978

0.8 27.1661 0.2313 767.9616 1.7978

0.9 27.1661 0.2313 767.9607 1.7978

0.99 30.1416 0.2085 584.7287 1.1590
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Figure 6b. �̂ = �̂ = 0:0012, V = 900 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 14.4452 0.4350 585.2220 3.0640

0.1 9.4557 0.6645 155.1119 1.0965

0.2 9.6853 0.6487 151.0123 1.0788

0.3 9.6853 0.6487 150.9832 1.0787

0.4 9.6853 0.6487 150.9830 1.0787

0.5 9.6853 0.6487 150.9830 1.0787

0.6 9.6853 0.6487 150.9830 1.0787

0.7 9.6853 0.6487 150.9829 1.0787

0.8 9.7630 0.6436 150.9749 1.0786

0.9 9.8414 0.6384 149.8546 1.0643

0.99 10.6605 0.5894 69.5887 0.2854
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Figure 6c. �̂ = �̂ = 0:0012, V = 680 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 10.5756 0.5941 375.3248 3.0963

0.1 4.3540 1.4431 59.4019 1.0152

0.2 4.7543 1.3216 37.0645 0.8281

0.3 4.9088 1.2800 34.8433 0.8159

0.4 4.9482 1.2698 34.6673 0.8151

0.5 4.9482 1.2698 34.6533 0.8150

0.6 4.9482 1.2698 34.6507 0.8150

0.7 4.9482 1.2698 34.6323 0.8142

0.8 4.9879 1.2597 34.4071 0.8048

0.9 5.1090 1.2298 31.8165 0.7020

0.99 5.1500 1.2200 10.4457 0.1061
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Figure 7a. �̂ = 3:6 � 10�6 (�l = 50 p). V = 1500 cm/sec. The graphs are top to bottom � =

0:2; 0:5; 0:8.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 1.8214 3.4496 295.1267 24.5529

0.1 0.9158 6.8608 60.0383 4.4949

0.2 0.8454 7.4318 34.4319 2.0489

0.3 0.9380 6.6982 24.0840 0.9710 max

0.3 3.0873 2.0352 21.9598 0.0860 min

0.3 3.8312 1.6400 21.9726 0.0579 max

0.4 4.4242 1.4202 21.8929 0.0447

0.5 4.4597 1.4089 21.8867 0.0440

0.6 4.4955 1.3977 21.8818 0.0434

0.7 4.6788 1.3429 21.8456 0.0404

0.8 5.3600 1.1722 21.6053 0.0317

0.9 7.7426 0.8115 20.2113 0.0168

0.99 20.5353 0.3060 6.8007 0.0029
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Figure 7b. �̂ = 3:6� 10�6, V = 900 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 1.3229 4.7495 145.8908 19.6444

0.1 0.6759 9.2965 24.7985 3.0174

0.2 0.5806 10.8216 10.4837 1.1994

0.3 0.8387 7.4915 4.2952 0.1928 max

0.3 0.9841 6.3845 4.2938 0.1348 min

0.3 3.7704 1.6664 4.9068 0.0107 max

0.4 4.0195 1.5632 4.8637 0.0097

0.5 4.0517 1.5507 4.8589 0.0096

0.6 4.0842 1.5384 4.8561 0.0095

0.7 4.1501 1.5140 4.8401 0.0092

0.8 4.4597 1.4089 4.7346 0.0082

0.9 5.5342 1.1353 4.0999 0.0054

0.99 7.9943 0.7860 0.7409 0.0007
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Figure 7c. �̂ = 3:6� 10�6, V = 680 cm/sec.

ĥa km[1/cm] �m[cm] �Rm[1/sec] ~CRm[cm/sec]

0.01 1.1184 5.6178 97.9687 17.0073

0.1 0.5579 11.2629 12.8802 2.2460

0.2 0.3893 16.1399 1.7726 0.5285

0.3 3.8929 1.6140 0.7278 0.0032

0.4 4.0195 1.5632 0.7047 0.0032

0.5 4.0517 1.5507 0.7019 0.0031

0.6 4.0517 1.5507 0.7013 0.0031

0.7 4.0517 1.5507 0.6987 0.0031

0.8 4.1170 1.5261 0.6797 0.0030

0.9 4.3193 1.4547 0.5523 0.0023

0.99 4.6046 1.3645 0.0769 0.0003

6 Comparison of theory and experiments in rectangular ducts

Kordyban and Ranov [KD] 1970 and Wallis

and Dobson [WD] 1973 are the only authors to

report the results of experiments in rectangular

ducts. Many other experiments have been car-

ried out in round pipes; the results of these ex-

periments are not perfectly matched to the anal-

ysis done here or elsewhere, and will be discussed

later.

All experimenters are motivated to understand

the transition from strati�ed 
ow with a 
at

smooth interface to slug 
ow. They note that in

many cases the �rst transition, which is studied
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here, is from smooth strati�ed 
ow to small am-

plitude sinusoidal waves called capillary waves by

[WD]. The data given by these authors is framed

as a transition to slug 
ow, though the criteria

given are for the loss of stability of smooth strat-

i�ed 
ow. The theoretical predictions are for the

loss stability, which may or may not be to slug


ow.

Finally we call the reader's attention to the

fact that all the linear theories that neglect vis-

cosity overpredict the observed stability limit.

[WD] note that "..as a result of the present exper-

iments it is our view that the various small wave

theories are all inappropriate for describing 'slug-

ging.' Slugging is the result of the rapid develop-

ment of a large wave which rides over the under-

lying liquid and can eventually �ll the channel

to form a slug..." [WD] also note that "It was

found possible to produce slugs at air 
uxes less

than those predicted" by their empirical formula,

j
�
< 0:5�3=2. All this suggests that we may be

looking at something akin to subcritical bifurca-

tion with multiple solutions and hysteresis.

Turning next to linearized theory we note that

[WD] do an inviscid analysis stating that "...if

waves are 'long' (khL �; khG � 1) and surface

tension can be neglected, the predicted instabil-

ity condition is

(vG � vL)
2
> (�L � �G) g

�
hG

�G
+
hL

�L

�
: (6.1)

If �G � �L and �L � �G they may be simpli�ed

further to give

�G�
2
G > g(�L � �G)hG (6.2)

which is the same as

j
�

G > �
3=2 (6.3)

..." Here � = hG=H and

j
�

G =
�G�

p
�Gp

gH(�L � �G)
> �

3=2
:

Their criterion (6.1) is identical to our (4.6) for

the long wave inviscid case �̂ = �̂ and k̂ ! 0.

They compare their criterion (6.3) with transi-

tion observations that they call "slugging" and

note that empirically the stability limit is well

described by

j
�

G > 0:5�3=2
;

rather than (6.3).

In �gures 8 and 9 we plotted j
� vs. � giving

j
�

G = �
3=2 and 0:5�3=2. In �gure 8 we give the

results from our viscous potential 
ow theory for

the inviscid case in table 2 and the air water case

in table 1. In �gure 9 we show the experimental

results presented by [WD] and [KR]. Our the-

ory �ts the data better than [WD] j� = �
3=2 ; it

still overpredicts the data for small � but �ts the

large � data quite well; we have good agreement

when the water layer is small.

The predicted wave length and wave speed in

table 1 can be compared with experiments in

principle, but in practice this comparison is ob-

scured by the focus on the formation of slugs.

For example, [WD] remards that "at a certain

minimum air velocity, ripples appeared at the air

entry end, and slowly spread down the channel.

These waves were about 2-in. (0.05m) long and

were made up of long wave crests, with three

or four capillary waves riding on the troughs.

The long waves traveled faster than the capil-

lary waves." The speed of these long waves were

reported by [WD] to be less than 0.3 m/sec in

all cases. Theoretical results from table 1 show

that the wave length �c increases with the water

depth (as in the experiment) and the wave speed

varies from 0.1 m/sec to 0.04 m/sec. The pre-

dicted spacing of the waves on average is about

1.5 cm/sec. The predicted wave length and wave

speed from viscous potential 
ow are apparently

in good agreement with the waves [WD] call cap-

illary waves.

Observations similar to those of [WD] just

cited were made by Andritsos, Williams and

Hanratty [AWH] 1989 who note that for high

viscosity liquid (80 cp) a region of regular 2D

waves barely exists. \The �rst disturbances ob-

served with increasing gas velocity are small-

amplitude, small-wavelength, rather regular 2D

waves. With a slight increase in gas velocity,

these give way to a few large-amplitude waves

with steep fronts and smooth troughs, and with

spacing that can vary from a few centimeters to

a meter."
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Figure 8: j
� vs. � for marginal stability of air and water in a frame in which the water velocity is

zero. � = inviscid 
uid from table 2; + = air-water with 
 = 60 dynes/cm from table 1. Surface

tension 
 is important.
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Figure 9: j� vs. �. Comparison of theory and experiments. j� = �
3=2 is the long wave criterion for an

inviscid 
uid put forward by Wallis and Dobson 1973. j� = 0:5�3=2 was proposed by them as best �t

to the experiments f1:1 through f1:9 described in their paper. The shaded region is from experiments

by Kordyban and Ranov 1970. The heavy line � is our result for air-water from table 1.
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Figure 10: (After Andritsos and Hanratty 1987.) These lines represent the borders between smooth

strati�ed 
ow and disturbed 
ow observed in experiment. The water-air data is well below the cluster

of high viscosity data that is bunched together.

7 Critical viscosity and density

ratios

The most interesting aspect of our potential


ow analysis is the surprising importance of

the viscosity ratio �̂ = �a=�l and density ra-

tio �̂ = �a=�l; when �̂ = �̂ the equation (4.2)

for marginal stability is identical to the equation

for the neutral stability of an inviscid 
uid even

though �̂ = �̂ in no way implies that the 
u-

ids are inviscid. Moreover, the critical velocity

is a maximum at �̂ = �̂; hence the critical ve-

locity is smaller for all viscous 
uids such that

�̂ 6= �̂ and is smaller than the critical velocity for

inviscid 
uids. All this may be understood by

inspection of �gure 4, which shows that �̂ = �̂

is a distinguished value that can be said to di-

vide high viscosity liquids with �̂ < �̂ from low

viscosity liquids. As a practical matter the sta-

bility limit of high viscosity liquids can hardly be

distinguished from each other while the critical

velocity decreases sharply for low viscosity 
uids.

The condition �̂ = �̂ can be written as

�l = �a
�l

�a
: (7.1)

For air and water

�l = 0:15 poise: (7.2)

Hence �l > 0:15 poise is a high viscosity liquid

and �l < 0:15 poise is a low viscosity liquid pro-

vided that �l � 1gm/cm3.

Other authors have noted strange relations be-

tween viscous and inviscid 
uids. Barnea and

Taitel [BT] 1993 note that "the neutral stability

lines obtained from the viscous Kelvin-Helmholtz

analysis and the inviscid analysis are quite di�er-

ent for the case of low liquid viscosities, whereas

they are quite similar for high viscosity, contrary

to what one would expect." Their analysis starts

from a two-
uid model and it leads to di�erent

dispersion relations; they do not obtain the crit-

ical condition �̂ = �̂. Earlier, Andritsos et al

[AWH] noted a "surprising result that the invis-
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cid theory becomes more accurate as the liquid

viscosity increases."

Andritsos and Hanratty [AH] have presented


ow regime maps for pipe 
ows in 2.52 cm and

9.53 cm pipe for 
uids of di�erent viscosity rang-

ing from 1 cp to 80 cp. These �gures present


ow boundaries; the boundaries of interest to us

are those that separate "smooth" 
ow from dis-

turbed 
ow. Liquid holdups (essentially �) are

not speci�ed in these experiments. We extracted

the smooth 
ow boundaries from �gures in [AH]

and collected them in our �gure 10. It appears

from this �gure that the boundaries of smooth


ow for all the liquids with �l > 15 cp are close

together, but the boundary for water with �l = 1

cp is much lower. The velocities shown in these

�gures are super�cial velocities; the average ve-

locities which could be compared with critical

velocities in tables 1, 2 and 3 are larger than the

super�cial velocities and are signi�cantly larger

than those in the tables.

8 Further comparisons with

previous results

As a practical matter interest in the pipelining of

gas-liquid 
ow is in round pipes. All experiments

other than those of [KR] amd [WD] reviewed in

section 6 have been done in round pipes. To our

knowledge there is no other theoretical study in

which the stability of strati�ed 
ow in a round

pipe is studied without approximations. Theo-

retical studies of stability of strati�ed 
ow have

been presented by Wallis [W] 1969; Wu, Pots,

Hollenberg and Meerho� [WPHM] 1987, Barnea

[B] 1991, Crowley, Wallis and Barry [CWB] 1992,

Kordyban and Ranov [KR] 1970, Wallis and

Dobson [WD] 1973, Taitel and Dukler [TD] 1976,

Mishima and Ishii [MI] 1980, Lin and Hanratty

[LH] 1986, Andritsos and Hanratty [AH] 1987,

Andritsos, Williams and Hanratty [AWH] 1989,

Barnea and Taitel [BT] 1993. Viscosity is ne-

glected by [KR], [WD], [TD] and [MI]. Surface

tension is neglected by [W], [KR], [WD], [TD],

[MI] and [LH]. [W], [LH], [WPHM], [B], [CWB]

and [BT] use one or another of the forms of

two 
uids equations. In these equations aver-

aged variables are introduced, the actual geom-

etry is represented only so far as its area and

round, elliptical or rectangular pipes with equal

areas are equivalent. The e�ects of viscosity in

these averaged models are introduced through

empirical wall and interfacial fraction correla-

tions. All these authors neglect the normal com-

ponent of viscous stress (extensional stresses are

neglected). The approach of [AH], [AWH] is dif-

ferent; all the main physical e�ects are repre-

sented in analysis of the plane 
ow which is later

applied to 
ow in round pipes. The disturbuance

equations for the liquid are solved exactly except

that the shear of basic liquid 
ow is neglected

using a plug 
ow assumption. The e�ects of the

gas on the liquid are represented through empir-

ical correlations and further approximations are

required for round pipes.

Experiments on the stability of strati�ed 
ow

have been reported by [KR], [WD], [TD], [LH],

[CWB] and [AH]. The experiments of [LH] and

[AH] do not have data giving the height of the

liquid and gas layers. Kordyban & Ranov [KR]

and Wallis & Dobson [WD] did experiments in

rectangular ducts, the geometry analyzed in this

paper, the other experiments were done in round

pipes. Authors [LH], [CWB] and [AH] are the

only experimenters to report results for 
uids

with di�erent viscosities.

There is diÆculty in comparing the results

of experiments in round pipes and rectangular

channels. The common practice for round pipes

is to express results in terms of h=D where D

is the pipe diameter and h is the height above

the bottom of the pipe; h=H is the liquid frac-

tion in rectangular pipes and � = 1�h=H is the

gas fraction, but h=D is not the liquid fraction in

round pipes and 1�h=D is not the gas fraction in

round pipes. [LH] presented experimental results

for thin liquid �lms in round pipes giving (their

�gure 4) h=Dvs:j�; we converted their results to

j � vs:1 � h=D and compared them in �gure 11

with the results given in �gure 9. The experimen-

tal results for round pipes are much lower than

those for rectangular pipes. All this points to the

necessity of taking care when comparing results

between round and retangular pipes and inter-
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preting results of analysis for one experiment to

the other.

9 Nonlinear e�ects

There is no theory which is faithful to all condi-

tions at play in experiments. None of the theories

agree with experiments. Attempts to represent

the e�ects of viscosity are only partial, as in our

theory of viscous potential 
ow, or they require

empirical data on wall and interfacial friction,

which are not known exactly and may be ad-

justed to �t the data. Some choices for empirical

inputs underpredict and others overpredict the

experimental data.

It is widely acknowledged that nonlinear ef-

fects at play in the transition from strati�ed to

slug 
ow are not well understood. The well-

known criteria of Taitel and Dukler 1976, based

on a heuristic adjustment of the linear invis-

cid long wave theory for nonlinear e�ects, is

possible the most accurate predictor of experi-

ments. Their criterion replaces j� = �
3=2 with

j� = �
5=2. We can obtain the same heuristic

adjustment for nonlinear e�ects on viscous po-

tential 
ow by multiplying the critical value of

velocity in table 1 by �. Plots of j� = �
3=2,

j� = �
5=2 and the heuristic adjustment of vis-

cous potential 
ow, together with the experimen-

tal values of [WD] and [KR] are shown in �gure

12. The good agreements in evidence there lacks

a convincing foundation.

10 Conclusion

We studied Kelvin-Helmholtz stability of super-

posed uniform streams in rectangular ducts using

viscous potential 
ow. Viscous potential 
ows

satisfy the Navier-Stokes equations. Because the

no-slip condition can not be satis�ed the e�ects

of shear stresses are neglected, but the e�ects of

extensional stresses at the interface on the nor-

mal stresses are fully represented. The solution

presented is complete and mathematically rigor-

ous. The e�ects of shear stresses are neglected at

the outset; after that no empirical inputs are in-

troduced. The main result of the analysis is the

emergence of a critical value of velocity, discussed

in the paper abstract and in section 7. The main

consequence of this result is that for air-liquid

systems the critical values of velocity for liquids

greater than 15 cp are essentially independent

of viscosity and the same as for an inviscid 
uid,

but for liquids with viscosities less than 15 cp the

stability limits are much lower. The criterion for

stability of strati�ed 
ow given by viscous poten-

tial 
ow is in good agreement with experiments

when the liquid layer is thin, but it overpredicts

the data when the liquid layer is thick. Though

viscous potential 
ow neglects important e�ects

of shear the qualitative prediction of the pecu-

liar e�ects of liquid viscosity has been obtained

by other authors using other methods of analysis.

A rather accurate predictor of experimental re-

sults is given by applying the nonlinear correc-

tion factor to account for the e�ect of �nite am-

plitude wave on the results of viscous potential


ow.
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List of Symbols

a coeÆcient of the quartic

equation; a4, a3, a2, a1, a0
Aa, Al, A0 complex amplitudes for air,

liquid and surface elevation

A, B, C complex coeÆcients of the

quadratic equation,

B = BR + {BI and

C = CR + {CI

~C complex wave speed,
~C = ~CR + { ~CI

D complex number, D = DR + {DI

e strain tensor

g acceleration due to gravity

h height of a layer; ha is the

height of air layer, and hl

is the height of liquid layer

H whole height of channel

{ { =
p
�1

j 
ux

k wavenumber

` the metric of interface deformation

p pressure

Q measure of velocity

t time

u, w velocity components of x and z

U uniform velocity of x component

V relative velocity de�ned by

V � Ua � Ul

x, z components of the Cartesian

coordinates

� void fraction, � = ha=H = ĥa


 surface tension

� horizontal Laplacian

� the growth rate parameter

� wave length

� viscosity

� density

� complex growth rate, � = �R + {�I

� viscous stress

� velocity potential

! complex frequency, ! = !R + {!I

Superscripts
(a) subscript for air

(l) subscript for water
Subscripts
a suÆx for air

c critical values of stability

C values at cut-o� wavenumber

I imaginary part

l suÆx for liquid

m values at maximum growth rate

R real part

s values taken at k = 10�3[1/cm]

w suÆx for water

^ dimensionless quantity

~ wave velocity
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