
1 Appendix: A different constitutive equation

For constitutive law we assume

�
d�

dt
+ � = c� p ; (1)

which is a statement that the volume fraction relaxes toward the equilibrium value,
with time constant� . In addition we have Darcys law,

��rp = u ; (2)

and conservation of mass (in the approximation that gas density is much less than
liquid density),

d log(1� �)

dt
+r:u = 0 : (3)

The material derivatived=dt is defined by

d

dt
= �

@

@t
+ u:r : (4)

Combining (4) and (2), and expanding the material derivative, we obtain

�
@�

@t
� �rp:r�+ (1� �)r:�rp = 0 (5)

as before. Combining (1) and (2), and expanding the material derivative, we obtain

�
@�

@t
� ��rp:r�+ � = c� p : (6)

Equations (5) and (6) are the basic governing equations in this form of the theory.
Clearly, when� = 0, we recovery exactly the same equilibrium theory as was
derived above. It is also clear that this version of the theory supports steady uniform
states as solution, again exactly as found above. The governing equations for small
perturbations around these steady states are however different, as we shall now
show. As before, introduce small perturbation quantities, setting

� = c1 + ' (7)

p = c2 + � (8)

where equilibrium demandsc1+c2 = 0. Substituting these quantities into (5) and
(6), neglecting quantities of second order in perturbations and treating the mobility
as a constant, we obtain

�
@'

@t
+ (1� c1)�r

2� = 0 (9)

�
@'

@t
+ ' = �� : (10)
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If we now take the time derivative of (10), and use (9) to replace@'=@t by the
Laplacian of�, we find

�
�� �(1� c1)�r

2

� @�

@t
= (1� c1)�r

2� : (11)

The perturbation volume fraction,', satisfies an identical equation. Initial condi-
tions for', '(x; 0), may be prescribed freely, but once these are given, the initial
conditions for� are determined. To see this, we eliminate@'=@t between (9) and
(10), and sett = 0, to obtain

(1� c1)��r
2�(x; 0) � ��(x; 0) = �'(x; 0) : (12)

Given the initial values of', consistency demands that�(x; 0) satisfies (12). The
authors are grateful to Professor G. Barenblatt for bringing this point to their at-
tention. Boundary conditions on the perturbation pressure and volume fraction are
the same here as for the model presented above.

The evolution equation for the perturbation pressure, (11), is very different in
character from the telegraph equation found for the pressure relaxation form of the
constitutive law. It is lower order in time, and, from Laplace transform solutions
(obtained with�(x; 0) = '(x; 0) = 0), appears not to exhibit wave propaga-
tion; rather, the solutions are diffusive in character although similarity solutions in
x=t1=2 do not exist (except as an asymptotic state at larget). The rate of advance
of the pressure perturbation front is found from these Laplace transform solutions
to be faster in early time than would be the case for classical diffusion.

An equation identical in form to (11) governs the pressure within the secondary
porosity in the dual porosity theory of slightly compressible flow in naturally frac-
tured porous media [?, WarrenRoot] Equations (6) and (9) of that paper are (re-
expressed in notation echoing that used here)

�r2p2 �A1

@p1
@t

= A2

@p2
@t

; (13)

A1

@p1
@t

= T (p2 � p1) : (14)

Routine rearrangments then yield
��

A2 + T (1 +
A2

A1

)
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� �r2

�
@p2
@t

=
T

A1

�r2p2 (15)

which is identical in form to (11). The pressure within the primary porosity satisfies
a different equation. Again, we are grateful to Professor G. Barenblatt for bringing
this to our notice.
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