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Abstract

Certain heavy oils which foam under severe depressurization give rise
to increased recovery factor and an increased rate of production under so-
lution gas drive. These oils not only stabilize foam, but also stabilize dis-
persion of gas bubbles at lower volume ratios. The way this phenomenon
is related to the chemistry of the oil and its viscosity is presently not under-
stood. We present here a mathematical model of reservoir flow of foamy oil
which depends only on the velocity through Darcy’s law, the pressure and
the dispersed gas fraction. The theory governs only in situations in which the
bubbles do not coalesce to produce the percolation of free gas. In this theory
the bubbles move with the oil as they evolve. The main empirical content
of the theory enters through the derivation of solubility isotherms which can
be obtained from PVT data; modeling of nucleation, coalescence, bubble
drag laws and transfer functions are avoided. The local pressure difference
and dispersed gas fraction are in equilibrium on the solubility isotherm. In
a pressure drawdown the time taken for the system to return to equilibrium
is described by a rate law characterized by an empirical relaxation time (rate
constant). The resulting systems of equations can be reduced to a coupled
pair of nonlinear PDE’s for the dispersed gas fraction and pressure differ-
ence, which can further be reduced in the equilibrium case to a second order
evolution equation for the pressure difference. This system of equations can
also be derived from usual theory of two-phase flow in a porous media based
on relative permeability under the assumption that the bubbles and oil move
in lock step. We propose a reformulation of the conventional theory in which
the concept relative permeability of the porous media is replaced with the
more familiar concept of an effective phase viscosity. The equations of our
relaxation theory are solved numerically, and the mixture viscosity function
and relaxation time are selected to match the sandpack experiments of Maini
and Sarma [1994].

1 Introduction

In this paper a model is presented that is motivated by the need to explain anoma-
lous features associated with production from reservoirs of so-called foamy oils.
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These oils are described by some of their properties of response to pressure de-
clines; it is noted that they nucleate dispersed gas bubbles and display obvious
foaminess in well head samples produced by solution gas drive in which oil and
gas are produced by the drawdown of pressure (Huerta et al. [1996], Mirabal et al.
[1996]).

When compared with the response of conventional oils, the response of foamy
oils to drawdown of pressure is more favorable; primary recovery factor (percent-
age of the oil in the reservoir which can be recovered), the rate of production, the
volume ratio of oil to gas which is recovered and the length of time that a given
pressure gradient or rate of production can be maintained are all increased substan-
tially; the reasons for the favorable response of foamy oils in solution gas drive
are not well understood and tentative explanations which have been put forward
are controversial (see Maini [1996], Pooladi-Darvish and Firoozabadi [1997] and
Sheng et al. [1999a] for recent reviews).

Foamy oils carry considerable amounts of dissolved gases in the condensed
state. The relevant thermodynamic property for this is “gas solubility”; a func-
tion of temperature and pressure at equilibrium which gives the volume ratio of
dispersed gas from the crude oil by outgassing. Tables of solubility of methane,
carbon dioxide and other gases in various Canadian crude oils have been given by
Svrcek & Mehrotra [1982], Peng et al. [1991] and others. The oils considered to
be foamy evidently cavitate small dispersed bubbles which, under some conditions,
are believed to move with the crude oil in which they are dispersed. Experiments
done by Pooladi-Darvish & Firoozabadi [1997] have shown that bubbles which
arise from depressurization of silicone oil and heavy crude of equivalent viscosity
are very different; the bubbles in the silicone oil are larger and much more mobile
than the ones in crude oil. Viscosity alone might not be enough to demobilize dis-
persed gas; it is desirable to look at other properties like surface tension and surface
active agents. Possibly there are surface active agents which are present naturally
in foamy crudes which allow them to stabilize foam, but the precise agents, their
composition and the mechanics by which they are released apparently have not
been studied.

A “foamy oil” is a heavy oil which foams under rapid depressurization. Maini
[1996] notes that “: : : The term “foamy oil” is often used to describe certain
oils produced by solution gas drive which display obvious foaminess in wellhead
samples. The primary production of heavy oil from several reservoirs in western
Canada is in the form of an oil continuous foam. This foam resembles a choco-
late mousse in appearance and often persists in open vessels for several hours : : : ”
Foaming at a well head is a kind of foam formation analogous to the head on beer.
To get such a head the pressure decline must be sufficiently severe to allow the
bubbles which rise from outgassing of condensed gas in the bulk to accumulate at
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the free surface faster than they collapse. Perhaps there are surfactants in foamy oil
which stabilize the films between the bubbles preventing collapse, promoting the
buildup of the head. Foam stability measurements in the laboratory have shown
that the foaminess of crude heavy oils is comparable to aqueous foams used for
steam flooding applications (Sheng et al. [1996]). The outgassing of condensed
gas will not lead to foam at the well head if the rate of depressurization is too low.

To create foam in a reservoir or in a sandpack it is necessary to depressurize
rapidly enough to produce close packed solution gas bubbles which can undergo
a topological phase change to stable films and plateau borders. This kind of “in
situ” foaming of sandpacks has been achieved in the experiments of Maini and
Sarma [1994]. Gas and liquid move in lock step in these foams and lead to very
high primary recovery factors. At the actual reservoir, gas fractions can be as
low as 5 to 10% in oils which cannot foam but are well-dispersed and protected
against coalescence, possibly by the same natural surfactants that might stabilize
the foams.

In solution gas drive of foamy oil the depressurization of the sample leads to
cavitation of small dispersed bubbles. The volume ratio of dispersed gas increases
the volume of our composite fluid and it acts as a pump, gas coming out of solution
pumps the fluid outward. This pumping action is well described by the continuity
equation (4.4) which implies that in a closed volume � with boundary S containing
dispersed bubbles of volume fraction �

Z
�

1

1� �

D�

Dt

d� =

I
S

u:n dS (1.1)

where n is the outward normal on S and u is the velocity of our composite fluid.
The relative velocity of dispersed gas is important; if the bubbles coalesce and

move relative to the oil more gas and less oil will be produced. Good recovery
is sometimes described by a critical gas saturation value; this is the volume frac-
tion of gas at which the gas becomes connected and starts to move faster than the
oil. Maini [1996] identifies this critical saturation as a percolation limit, whilst
Firoozabadi, Ottensen, Mikkelsen and December [1992] and Pooladi-Darvish and
Firoozabadi [1997] identify this even by visual observation of bubbles in a viewing
window. The values given by Firoozabadi et al. are about 5 times smaller than
those given by Maini and his coworkers.

When the gas percolates, the good news about recovery is over; it is no wonder
that all authors find that the critical saturation values are about the same as the
primary recovery factors (which is the fraction of oil recovered by solution gas to
oil in the reservoir) even when they disagree about definitions.

A few models of foamy oil flow have been put forward; each emphasize some
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special feature. One of the most recent models by Sheng et al. [1996], Sheng
et al. [1999a] are multiphase theories based on conservation laws with transfer
from solution gas to dispersed gas and from dispersed gas to free gas. Their theory
does not seem to follow the curve of experimental values. They say that “: : :
Published models include the psuedo-bubble point model (Kraus et al. [1993]), the
modified fractional flow model (Lebel [1994]) and the reduced oil viscosity model
(Claridge & Prats [1995]). Maini [1996] gave a detailed review and discussion of
some of these models. These models have been used to history match heavy oil
production, but their common weakness is that the dynamic processes which are
important features of foamy oil flow were not included properly. Although it may
be possible to get an acceptable history match using these models, the predictive
ability is likely to be limited: : : ”

A more successful approach to modeling was recently advanced by Sheng et
al. [1999b]. This model also requires the modeling of nucleation, bubble growth
and disengagement of gas bubbles from the oil. The model ultimately leaves unde-
termined two adjustable parameters which fit the theory to experimental data better
than previous models.

The present theory could be called a continuum mixture theory which is appro-
priate for foamy oil flow with dispersed gas of low mobility relative to the liquid
and leads to three coupled nonlinear partial differential equations for u, p and the
gas fraction �, five scalar equations in five unknowns. Our model has a few fea-
tures in common with the excellent early work of Leibenson [1941] on the motion
of gas saturated fluid in a porous media.

The model proposed here does not require information about nucleation, bub-
ble growth, compressibility or forces which produce relative velocity. We put up a
one-phase or mixture theory in which the dispersed gas is described by a gas frac-
tion field in a single fluid in which the viscosity, density and mobility in Darcy’s
law all depend on the gas fraction. This fluid satisfies the usual Darcy law, and
the continuity equation together with a kinetic (constitutive) equation required by
the condensation and outgassing of methane (or other gases) in heavy crude. The
theory depends only on parameters which can be measured in a PVT cell and sand-
pack. The virtue of the model is simplicity, but it can work only for relatively
immobile dispersed gas bubbles in which divergence-free velocities are excluded
(see the discussion following (4.4)). Certainly such a theory could not be expected
to give rise to a percolation threshold or even to a critical gas fraction. We shall
show that it can describe many features of solution gas drive of foamy oils in the
regimes when the bubbles in the mixture are dispersed and even when they are
trapped in foam.

It is our idea that the increased recovery and production are generated by the
pumping of nucleating and growing gas bubbles embodied in (1.1). However re-
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covery factors and production rates are not the same and we might test some ideas:
if two foamy oils have the same viscosity, the one with higher solubility will have
higher primary recovery and production rate; if two foamy oils have the same solu-
bility, the one with lower viscosity will have a higher rate of production but a lower
primary recovery. If the oil foams in situ, oil and gas move in lock step and the
primary recovery factor increases while due to the increased viscosity of foam the
rate of production could decrease.

2 Equation of state for dispersed gas

Solubility isotherms are an equation of state for foamy oil in which all of the gas
not in solution is dispersed in small bubbles. Free connected gas is not allowed.
When the pressure is dropped, the mass of dissolved gas released goes entirely into
dispersed gas bubbles. We have obtained solubility isotherms from measurement
in PVT cells and applied the results to characterize the outgassing and absorbing
of gasses in foamy oil in porous media. We have adopted the view that foamy oil
will have the same equation of state in a porous media as a PVT cell; the thermo-
dynamics of the fluid are independent of the wall of the containing solid provided
that these walls are not so closely spaced as to effect the thermodynamic properties
of the bulk fluid.

In the experiments of Svrcek & Mehrotra [1982] the pressure is dropped from
p and T to pref and Tref where in the experiments p ref is atmospheric and Tref =

373:2ÆK. It is assumed that all the gas in the live oil at p; T comes out. Defining
now:

Vg(p; T ) is the volume of dispersed gas,
Vl(p; T ) is the volume of live oil,
V

�(p; T ) is the volume of dispersed gas which vaporizes from the
condensed gas when p; T are dropped to p ref; Tref.

In this model we avoid all constitutive equations regarding nucleation rates and
bubble growth. In our model we have only a mixture of liquid and dispersed gas,
and the dispersed gas enters only through the volume fraction

� =
Vg

Vl + Vg

: (2.1)

Equation (2.1) may be solved for

Vg =
�Vl

1� �

: (2.2)
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Above: Volumetric solubility of CO2 in 

Right: Volumetric solubility of methane in bitumen.

Figure 2.1: Solubility curves: V̂ vs. p (Svrcek and Mehrotra [1982]).

Svrcek and Mehrotra [1982] give volumetric solubility curves (CO 2 and meth-
ane in figure 2.1). In these figures

V̂ = V
�

=Vl(p; T ) (2.3)

is the ratio between the volume of gas that can be evolved out of bitumen when the
pressure is dropped to less than one atmosphere at a temperature of 100 ÆC and the
original volume of bitumen. We can assume that this tells you how much dispersed
gas can come out of solution of condensed gas which is at a saturation value at
any pressure and temperature. We are going to assume that this V̂ determines the
dispersed gas fraction � following an argument put forward in what is to follow.

In the present approach we have no way to predict the size distribution of gas
bubbles. This means that we are free to choose the size and distribution to measure
V̂ and the most convenient choice is when all the released gas is collected at the
top of a PVT such as in the experiment of Svrcek & Mehrotra. Figure 2.2 describes
such a depressurization experiment.
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Their data show that

p� pref = ̂(T )V̂ (2.4)

where ̂ = dp=dV̂ is the slope of the solubility isotherms shown in figure 2.1. This
slope is approximately constant. Here we have chosen p ref as a small pressure at
which a negligible amount of gas is dissolved in the oil. For practical purposes this
could be standard (atmospheric) pressure.

We first suppose that all the gas which comes out of solution is dispersed and
does not percolate or foam. In the experiments in figure 2.1, we must suppose that
the nucleation, growth and compressibility of gas bubbles are working, but these
microstructural features are not monitored in these experiments which give only
the solubility V̂ . This is also what we do in the mathematical model.

To convert (2.4) into a relation between p and � at equilibrium we note that the
total mass M of gas in the live oil is invariant, independent of p and T and

M =Mg(p; T ) +Mc(p; T ) (2.5)

where

Mg(p; T ) is the mass of dispersed gas.
Mc(p; T ) is the mass of condensed gas.

Since the mass of condensed gas does not change when it is vaporized and assum-
ing that this vapor is a perfect gas, we have

Mc = prefV
�

=RTref (2.6)

where R is the gas constant. From the same gas law

Mg = pVg=RT: (2.7)

Hence, from (2.5), (2.6) and (2.7) we have

M =
pVg

RT

+
prefV

�

RTref
(2.8)

and, using (2.3) and (2.4)

M =
pVg

RT

+
pref

RTref

�
p� pref

̂

�
Vl: (2.9)
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We next introduce the bubble point pressure ~p as the pressure at which there is
no dispersed gas, all the gas is condensed in the live oil so that V g = 0; ~V def=V̂

when Vg = 0 and from (2.4)

~p� pref = ̂(T ) ~V (2.10)

where

~
V (~p; T ) = V

�(~p; T )=Vl(~p; T ) (2.11)

as in the cartoon of figure 2.3.
Since M is invariant, we may evaluate (2.8) at the bubble point

M =
pref
RTref

Vl(~p; T ) ~V (~p; T ): (2.12)

Using (2.10) to eliminate ~
V in (2.12) and equating (2.12) and (2.9) we get

Tref
T

p

pref
Vg +

�
p� pref

̂

�
Vl(p; T ) =

�
~p� pref

̂

�
Vl(~p; T ) (2.13)

In most depressurization experiments the change of liquid volume due to out-
gassing and compressibility is small and V l(p; T ) � Vl(~p; T ). In this case the
terms proportional to p ref in (2.13) subtract out and after replacing Vg with �Vl=(1�
�) we get

�

�

1� �

=
~p� p

p

(2.14)

where

� =
Tref

T

̂

pref
(2.15)

is completely determined by the solubility isotherm in figure 2.1. Since the vari-
ation of T is small on an absolute scale, the values T=T ref for the isotherms in
figure 2.1 are just slightly larger than one.

The variable V̂ is called gas-oil ratio and ~
V is the gas-oil ratio at saturation

pressure. From (2.10):

̂(T ) =
~p� pref

~
V

: (2.16)

Substituting this value of ̂ in (2.15)

� =
Tref
T

~p� pref

pref
~
V

: (2.17)
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In most practical situations ~p� p ref so that from (2.17)

� =
Tref
T

~p

pref
~
V

(2.18)

.
It is also customary in the oil industry to characterize live oil by its saturation

pressure ~p and its gas-oil ratio ~
V at saturation pressure. By virtue of (2.18) one can

calculate the solubility parameter �. Note that in most experiments p ref is chosen
as atmospheric pressure and Tref as 60ÆF = 15:6ÆC.

Values for � for two Canadian heavy oils, Lloydminster and Lindbergh (Maini
& Sarma, 1994) and for a Venezuelan heavy oil, Cerro Negro, are given in table
2.1. Graphs of the isotherm (2.14) for various values of � are shown in figure 2.5.

Oil � T(ÆK)
Lloydminster 3.40 293
Lindbergh 3.17 293
Cerro Negro 3.53 327

Table 2.1: Solubility coefficients for some heavy oils.

It can be noted that the solubility value for heavy crude oils from very different
regions are very close, which indicated that they contain similar amounts of dis-
solved gases at the same pressures. The oil industry calls oil with dissolved gas
”live oil.”

When � and p satisfying (2.14) vary from point to point

rp =
��p

2

~p(1� �)2
r�: (2.19)

According to Darcy’s law, u = ��rp where � is the mobility of the foamy mix-
ture in the porous media; hence the fluid flows up the bubble gradient toward re-
gions in which there are more bubbles where the pressure is smaller.

Departures from the equilibrium solubility relation (2.14) are indicated as su-
persaturation or subsaturation. Defining the function

f(p; �)def=~p� p� �p�=(1� �) (2.20)

supersaturation (f > 0) corresponds to having more gas dissolved than there
should be under thermodynamic equilibrium; subsaturation (f < 0) corresponds to
having less gas dissolved than there should be under equilibrium. Supersaturation
occurs when the pressure in the reservoir is drawn down, but the oil cannot evolve
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gas fast enough to keep up with the depressurization. Subsaturation, on the other
hand, occurs when there is not enough gas available to dissolve in order to sat-
isfy thermodynamic equilibrium at prevailing reservoir pressure and temperature.
The function f in our theory is thus an indicator for departure from equilibrium
solubility.
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(c)(b)(a)

 Vl

 Vg

Figure 2.2: Depressurization experiment in PVT cell at constant temperature; the
oil is indicated in dark gray, the gas in light gray. (a) Dissolved gas at pressure p
and temperature T . (b) Just after the pressurization, pressure p ref and temperature
Tref. (c) Finally all the gas percolates out and V̂ = V

�
=Vl can be measured.
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p
V

V
~
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Figure 2.3: Solubility isotherm used in this model.
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Figure 2.4: The density of bitumen and condensed gas mixtures. The density is
nearly constant over very wide ranges of pressure. We can imagine that the mixture
density is independent of pressure. Since gas solubility is a strong function of
pressure; the density is also more or less independent of the fraction of dissolved
gas at constant temperature (Svrcek & Mehrotra [1982]).

12



0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

=1.5
=3.17
=3.4
=6.0

f

Pressure (MPa)

Figure 2.5: Graphs of the solubility isotherm (2.14) for various values of �. The
limits of validity of the dispersed gas model can be roughly set at a close packing
value, say �c = 0:68. When � > �c some bubbles must touch and form foam film
or to coalesce. This implies that results for drawdown greater than those for which
� = 0:68 must take into account foaming and fingering of free gas.

The equilibrium isotherm f = 0 allows for dispersed gas fraction � from zero
to one; from all liquid to superdry foam. Our theory makes no distinction between
bubbly mixtures, wet or dry foams.

Consider a drawdown to atmospheric pressure p a = 106dynes/cm2 from a
saturation pressure ~p = 4:83 � 107dynes/cm2 as in the experiment of Maini &
Sarma [1994]. Using � = 3.4 for Lloydminster (from table 2.1) and evaluating the
gas fraction of � = �a at atmospheric pressure we find

�a = 0:93 (2.21)

This is too much gas to exist as a bubbly dispersion; either the bubbly mixture
passed into foam near to some critical value, say

� = �c = 0:680 (2.22)

or close packing or else some of the bubbles coalesced as free gas which fingers out
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of the sandpack. Probably foam and free gas both evolve at the outlet of a closed
sandpack after a sudden drawdown to atmospheric from high saturation.

We also note that the physics of supersaturation is complicated by the fact
that bubbles cannot nucleate continuously and that the mechanism by which they
nucleate is still not well understood. A bubble which might form in crude oil by
the vaporization of dissolved gas at supersaturated conditions can be expected to
satisfy Laplace’s law

pvapor � p = 2=R (2.23)

where  is surface tension (say 30 dynes/cm) and R is the bubble radius. Un-
der mildly supersaturated conditions p is slightly smaller than the vapor pressure
pvapor; hence, R satisfying (2.23) cannot be very small. In deriving (2.14) we have
assumed the continuity of pressure across the bubble surface, ignoring the small
pressure drop implied by (2.23).

It is argued that the vaporization of dissolved gas under supercritical condi-
tions requires the simultaneous presence of undissolved gas hidden in crevices of
impurities which are wet by gas preferentially. The curvature of the gas-oil in-
terface in such a crevice is opposite to a bubble and it is controlled by capillarity
rather than interfacial tension. The supersaturated dissolved gas vaporizes at the
undissolved gas hidden in the crevice and the volume of the gas grows there until a
bubble breaks away restoring the nucleation site to its original condition. The train
of gas bubbles which emanate usually from a single site on a glass of beer as the
gas comes out of the solution is a convenient example of outgassing at a nucleation
site. The pore walls in a porous media are nucleation sites for outgassing of foamy
oil. The possibility that asphaltenes in the oil are nucleation sites for dissolved gas
is a current but unresolved question.

3 Live oil and dead oil

Oil without dissolved gas is called dead oil. Oil saturated with dissolved gas is
called live oil. The dissolved gas can be considered condensed and live oil is a
mixture of miscible liquids, dead crude oil and condensed gas. The mixture of
miscible liquids is like glycerin and water with the caveat that the oil and dissolved
gas do not mix in all proportions; the fraction of dissolved gas at saturation is
a function of temperature and pressure. The weight fraction of dissolved gases
corresponding to figure 2.1 ranges from 0.3 to 6%. (See the tables in Svrcek &
Mehrotra [1982]).

The viscosity of live oil can be orders of magnitude smaller than the viscosity
of dead oil; the viscosity of live oil is a strongly decreasing function of the amount
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of dissolved gas in solution just as the viscosity of glycerol strongly decreases with
the water fraction. In a pressure decline the viscosity of the live oil will increase
because less gas is dissolved and because the presence of dispersed gas should
increase the viscosity of the composite fluid.

We may seek to answer the question “what is the density of the dissolved gas
in solution.” We are not able to measure the density of the liquid gas in oil, but
the density � of the mixture is available in data presented by Svrcek and Mehrotra
and reproduced in figure 2.4. Let us note that this data shows that the density of
the CO 2 in bitumen is a weak function of the pressure; hence figure 2.4 shows
that the density of the not saturated bitumen is independent of the volume ratio 	

of soluble gas in bitumen. Dissolved methane has a density only slightly different
than bitumen (see figure 2.1). A theory of miscible mixtures which applies to live
oil can be found in Chapter X of Joseph & Renardy [1992].

4 Model description

In this model we avoid all constitutive equations regarding nucleation rates and
bubble growth. In our model we have only foamy oil and dispersed gas and the
dispersed gas enters only through its volume ratio �. The model combines Darcy’s
law, with a � dependent mobility, a mass conservation law for ideal mixtures to-
gether with a constitutive equation governing the evolution of departures from equi-
librium solubility. For flow not in equilibrium gradients and time derivatives are
crucial. The time derivatives which are used here have a material derivative

D

Dt

= �

@

@t

+ u � r (4.1)

where � is the porosity. The continuity equation is given by

d�

d�

D�

Dt

+ �(�)div u = 0 (4.2)

where

�(�) = �g�+ �l(1� �) � �l(1� �) (4.3)

because �g � �l where �l is the density of live oil which depends only weakly on
the volume ratio of dissolved gas. Combining (4.3) and (4.2) we find that

D log(1� �)

Dt

+ divu = 0 (4.4)
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Equation (4.4) restricts the theory to dispersions of low mobility relative to the
suspending liquid. In any motion u(x; t) of the composite which is divergence free
div u = 0, the dispersed gas fraction satisfies

D�

Dt

= 0:

This implies that the volume ratio does not change on material particles of the
composite fluid on divergence free motions.

Bubbles rising under gravity would lead to divergence free motions as would
any motion of the bubbly mixture in which dispersed bubbles do not nucleate,
diffuse or compress. Motions with non-zero divergence satisfy (1.1); the flux out
of any closed volume, over which the div u does not sum to zero, must be non zero.
This is the simplified way that our theory accounts for nucleation and diffusion.

Turning next to Darcy’s law, we let x increase in the direction of gravity. Then

u = ��frp� �gexg � ��frp� �lg(1� �)exg (4.5)

where

�(�) = k=�(�) (4.6)

is the mobility, �(�) is the viscosity of live oil with dispersed gas of volume ratio �
and k(�) is the permeability. The viscosity �(�) increases with � for two reasons:
dispersed gas bubbles and the reduction of solvent viscosity due to outgassing of
light components.

4.1 Relative permeability

Equations (4.2), (4.5) and (4.6) are implied by the usual theory for two phase flow
through porous media based on relative permeabilities under the assumption that
the average liquid and gas velocities are equal. The demonstration of this fact
leads also to a formula (4.21) for ratio of the relative permeabilities under the same
assumption.

The composite volume average velocity is given by

u = Ul +Ug (4.7)

where

Ul = (1� �)ul;Ug = �ug (4.8)
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are superficial velocities (volume flow rate over total area) and U l is the average
oil velocity and Ug is the average gas velocity. The mixture density �(�) is given
by (4.3) and the composite mass average velocity is given by

um =
[�l(1� �)ul + �g�ug]

�(�)
(4.9)

The equations expressing the conservation of mass of each of the two phases are

�

@�l

@t

(1� �) +r � �l(1� �)ul = 0; (4.10)

�

@�g�

@t

+r � �g�ug = 0 (4.11)

When ul = ug , the average gas and liquid velocities are equal and from (4.7),
(4.8) and (4.9)

um = u = ul = ug (4.12)

After adding (4.10) and (4.11), using (4.12) we get equation (4.2).
We now introduce relative permeability and show that we may replace the

concept of relative permeability with an equivalent concept of effective viscos-
ity, which is a more familiar concept in the general theory of mixtures. Neglecting
gravity and capillarity we have

(1� �)ul = Ul = �
k krl

�l

rp = �
k

�l(�)
rp (4.13)

�ug = Ug = �
k krg

�g

rp = �
k

�g(�)
rp (4.14)

where k is the permeability which we will identify as the k in (4.6), krl and krg are
relative permeabilities, �l and �g are molecular viscosities and

�ldef=
�l

krl

�gdef=
�g

krg

(4.15)

are effective viscosities.
The introduction of effective viscosities is nothing more than a definition; how-

ever, the definition implies that the differential flow resistance can be associated
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with two fluid phases and not with the porous media. Noting now that u in (4.5) is
the composite velocity, we may write (4.5) and (4.6) neglecting gravity as

u = �
k

�(�)
rp (4.16)

and using (4.7) together with (4.13) and (4.14), we get

1

�(�)
=

1

�l(�)
+

1

�g(�)
(4.17)

Equation (4.17) and (4.15) relate the effective viscosity of the gas-liquid mixture
to the relative permeabilities.

The consequences of our basic assumption that the dispersed gas moves with
the liquid u = ug = ul may be extracted from the above equations. We find that

1

�l(�)
=

1� �

�(�)
(4.18)

and

1

�g(�)
=

�

�(�)
: (4.19)

The effective gas and liquid viscosities are completely determined by the effec-
tive viscosity of the mixture when u = ug = ul. Moreover, the ratio of relative
permeabilities is

krl

krg

=
�l�g(�)

�g�l(�)
=

1� �

�

�l

�g

(4.20)

is determined by � and the ratio of molecular viscosities.

4.2 Constitutive equations relating the dispersed gas fraction to the
pressure

We are proposing models in which the basic variables are the pressure and dis-
persed gas fraction and are such that disturbed systems which are not forced will
relax to equilibrium with pressure and temperature on the solubility isotherm
f(p; �) = 0 given by (2.14). There are many possible ways to build models with
the above properties. The simplest conceptual model with the desired properties is
a first evolution model

�

Df

Dt

= �f
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which guarantees that a disturbed stationary system will relax exponentially. The
implied assumption that both factors in the equilibrium isotherm relax at exactly
the same rate is probably overly restrictive.

The constitutive equation

�1
D

Dt

�
�

1� �

�
+ �2

D

Dt

�
~p� p

p

�
=

~p� p

p

�

��

1� �

(4.21)

allows for separate rates of relaxation. Obviously this equation is very closely tied
to the equilibrium isotherm. To evaluate the possibility that a simple model based
on (4.21), involving only the pressure and dispersed gas fraction, can describe
solution gas drive of foamy oil, we must integrate the equations and apply the
results to experiments and field operations. In this work, we apply our model to
the experiments of Maini & Sarma [1994]. The model requires that we identify
a viscosity function �(�) of the dispersed gas fraction and two relaxation times
�1 and �2. In our first attempt at evaluation we put �1 = 0; in this case (4.21)
reduces to a Maxwell-like constitutive equation with pressure relaxation leading a
hyperbolic system of PDE’s that support wave propagation of pressure and bubble
fronts. This system could not be made to simultaneously match experiments on
steady flow, the rate of production of oil in the same steady flow, and the cumulative
production in a blowdown experiment. We get a better match when �2 = 0 with
�1 6= 0 and we are able to select a viscosity function �(�) = (1 � �)�11 and
�1 to match all the sandpack experiments, but the match of model to drawdown
experiments (figures 9.2 and 9.3) are less good. We speculate that the mismatch
is due to percolation of free gas from the sandpack due to the massive pressure
decline in blowdown that must, at best, lead to the copious formation of relatively
dry foam.

Obviously we may get a better agreement with the model by fitting two relax-
ation parameters (�1 and �2) rather than one; in this case we might expect to model
short time phenomenon associated with nucleation. We prefer to proceed in the
future by keeping fitting to a minimum and to look carefully at field data, not only
the experiment of Maini & Sarma.

In this work we confine our attention to the cases in which all the gas that
comes out of a solution is dispersed in gas bubbles. In a pressure drawdown the
gas bubbles nucleate and grow until the gas fraction � is in equilibrium with the
pressure, f(p; �) = 0. We shall describe relaxation to equilibrium with a first order
rate equation of the form (4.21) with �2 = 0; �1 = � written as

�p

(1� �)2
D�

Dt

= f(p; �) (4.22)

D=Dt is the usual expression (4.1) for the substantial derivative in a porous media.
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It is easy to verify that (4.21) and (4.22) give rise to relaxation. If the pressure is
dropped from saturation, at which p = ~p and � to p1, the initial response is given
by

�

D(�=1� �)

Dt

=
~p� pi

pi

> 0 (4.23)

to that the dispersed gas will begin to increase toward the value of � on the isotherm
f(pi; �) = 0.

After eliminating u in (4.4) and (4.21) using (4.5), we find that

�

�
�

@

@t

� �rp � r+ ��lg(1� �)
@

@x

�
�

1� �

=
~p� p

p

� �

�

1� �

(4.24)

1

1� �

�
�

@�

@t

� �rp � r�

�

= �div(�rp)� 2��lg
@�

@x

+ �
0

�lg(1� �)
@�

@x

(4.25)

A mathematical theory for the system (4.24), (4.25) is not yet available. We
note that except for div�rp the system is of first order, so that we might look at
the problem as initial value problem for a second order PDE in p for which end
conditions on the pressure and initial conditions on the pressure and gas fraction
are appropriate. We will solve these equations for sandpack problems in the sequel.

The system 4.21 and 4.5 may be regarded as describing the flow of a relaxing
compressible fluid through a porous media. To see this, we replace � with � =

�l(1� �); using 4.3. Then 4.21, 4.4 and 4.5 may be written as

�

�
�

@

@t

+ u � r

�
�l � �

�

= ~p� p� �p

�l � �

�

;

�

@�

@t

+ u � r�+ � divu = 0;

u = ��rp+ �g�ex:

9>>>>>>>=
>>>>>>>;

(4.26)

5 Constant state solutions

5.1 Constant state solutions, drainage and stability

The constant state solution are uniform solutions p 0, � 0;u0 of (4.24), p0 and �0
satisfying

f(p0; �0) = ~p� p0 � �p0�0=(1� �0) = 0 (5.1)
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Figure 5.1: Sandpack enclosed in a pressure vessel set at pressure p0. The supply
of oil with dispersed gas fraction �0 keeps the small head at very small height. The
oil and gas bubbles drain at a measured velocity u0; then �(�0) =

u0

�lg(1��)
.

and

u0 = exu0; u0 = �(�0)�lg(1� �0) (5.2)

The constant state solution is a drainage flow; this flow may be used to determine
the mobility �(�).

If the perturbations p0; �0;u0 of p0; �0;u0 are small, then

�1

�
�

@�
0

@t

+ u0
@�

0

@x

�
+�2p

0 +�3�
0 = 0 (5.3)

�4

�
�

@�
0

@t

+ u0
@�

0

@x

�
= divu0 (5.4)

u
0 = ��0rp

0 +�5�
0

ex (5.5)
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�1 =
�p0

(1� �)2
;

�2 = 1 +
��0

1� �0
;

�3 =
�p0

(1� �0)2
;

�4 =
1

(1� �0)
;

�5 = �lg

�
�0

2
� �

0(1� �0)

�

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(5.6)

In the equilibrium case � = �1 = 0, this system may be reduced to a diffusion
equation for the pressure p0

�

@p
0

@t

+

�
u0 �

�5

�4

�
@p

0

@x

=
�0�3

�4�2
r

2
p
0 (5.7)

The linearized stability of the constant state solution (5.2) is governed by (5.3),
(5.4) and (5.5). After inserting normal modes

�
p
0

�
0

�
=

�
p̂

�̂

�
e
i(!t+kx) (5.8)

into the governing equations we find that

Im! � !i =
�3

�2

�
�

�
�1

�2
+

�4

�0k
2

�
> 0

giving stability with decaying disturbances

e
i!t = e

!it
e
i!rt

:

This stability applies also to three dimensions, which enters only on the right side
(5.5) in the term �0r

2
p. The constant state is always stable.

6 Sandpack experiments

Sandpack experiments are used as laboratory surrogates for the flow of oil and
gas in porous reservoirs. In figure 6.1 a cartoon of a typical sandpack experiment
copied from a paper by Sheng et al. [1996] is displayed. The pack may be loaded
with sand from reservoirs.
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Figure 6.1: Cartoon of a sandpack experiment. Live oil can be injected at the inlet
and a pressure depletion rate controller is at the outlet. Different experiments are
described by prescribed conditions at the inlet and outlet.

Sandpacks provide an excellent way to get precise data under controlled condi-
tions simulating flow in reservoirs; they are convenient for mathematical modeling
because they lend themselves to one dimensional treatments. It is useful to look at
these one-dimensional models for horizontal sandpacks in which gravity may be
neglected and for vertical flow in which gravity may be important. In both these
cases we have our governing equation (4.25) with r = e x@=@x. Terms propor-
tional to gravity are put to zero in horizontal sandpacks.

Different experiments can be carried out in a sandpack corresponding to differ-
ent conditions listed below.

Maini & Sarma [1994] reported results of experiments in a horizontal sandpack
like that shown in figure 6.1 where pressure at inlet and outlet are controlled. A
table of properties of the sandpack is given in Table 6.2. ”Prior to the start of the
flow experiments, each oil sample was cleaned of its suspended materials. The
oil was then recombined with methane gas in the recombination equipment at a
pressure of 4.83MPa.” They did steady flow experiments using Lloydminster and
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Parameter Value
Length (m) 2.0
Cross-sectional area (m2) 16:1� 10�4

Sand size (� m) 74–105
Porosity (fraction) 0.33
Pore volume (mL) 1062
Permeability (�m2) 3.35
Confining pressure used (MPa) 14.0

Table 6.2: Properties of the porous medium.

Core Average
Oil Density (g/cc) Viscosity (Poise) � at maximum �

drawdown
Lloydminster 0.968 30.07 0.138 3.40
Lindbergh 0.978 39.70 0.148 3.17

Table 6.3: Properties of ”live oil” at saturation.

Lindbergh crude oil in which the inlet pressure was at saturation

p = ~p = 4:83MPa = 4:83� 107dynes/cm2

varying the ”drawdown” pressure at the outlet.
Table 6.3 gives the properties of the two ”live” oils at saturation.
The pressure distribution along the core sample which was measured in steady

flow by Maini and Sarma [1994] is shown in figure 6.2 and 6.3. Six pressure
transducers were placed at intervals along the pack. Each transducer measures the
pressure drop between two taps equally spaced along the pack; the pressure drop
across two taps is called a ”differential pressure.” The plots given in figures 6.2
and 6.3 are of straight line segments between pressure taps. Maini & Sarma [1994]
also did ”blowdown” experiments in which the inlet was closed and pressure at the
outlet suddenly dropped to 0.1 MPa (see figure 9.1).
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Figure 6.2: (Maini & Sarma, 1994). Pressure distributions in steady flows of Lind-
bergh oils at various pressure drawdowns.
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Figure 6.3: (Maini & Sarma, 1994). Pressure distributions in steady flow of Lloyd-
minster oils at various pressure drawdowns.
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7 Dimensionless equations, rate constant and viscosity func-
tion

We are going to choose model parameters to get a best fit to the experiments of
Maini and Sarma [1994]. To get the maximum generality from our study and to
identify the fitting parameters it is useful to express the governing equations (4.24)
and (4.25) in dimensionless form. We introduce dimensionless variables

X = x=L;

T = t=�;

P = p=~p;

�(�) = �(�)=�0 = �(0)=�(�)

9>>>>>>=
>>>>>>;

(7.1)

and find that if

� = �L
2
=�(0)~p (7.2)

then

@�

@T

=
@

@X

�
(1� �)�(�)

@P

@X

�
(7.3)

and

J

(1� �)2

�
@�

@T

� �(�)
@P

@X

@�

@X

�
=

1� P

P

�

��

1� �

(7.4)

where L is the pack length and

J = � ~p�(0)=L2 (7.5)

is the dimensionless relaxation parameter. The outlet is at X = 0 and the inlet at
X = 1. The system (7.3) and (7.4) is completely determined by a rate constant J
and a permeability function �(�) or equivalent viscosity function �(�).

We are dealing with dispersions of small gas bubbles that are spherical when
not crowded. It is usual to fit the viscosity function of equivalent dispersions of
solid spheres with

�(�)

�(0)
=

�
1�

�

A

�
�m

(7.6)
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where A is a maximum packing fraction, � � A, and m > 0 is selected from data;
m � 2 works well.

It is altogether different for gas bubbles at large � where stabilized bubbles
would change phase, first to wet and then to dry foams. To be consistent with the
solubility expression (2.14) we should seek a viscosity that increases continually
with � from dilute dispersions with � � 0 to dry foam with � � 1; hence A = 1

and m is to be determined. The viscosity function

�(�) =
�(0)

(1� �)m
;m > 0

says that dry foam has an infinite resistance to flow. Of course, the foam would
break under pressure for dispersed fraction � near one; the gas bubbles would col-
lapse with free gas channels percolating through the pack. We have a one parameter
family of viscosity functions depending on the exponentm. After fitting our model
to the experimental data of Maini and Sarma [1994] we found that m = 11, which
at small � gives

�(�) = �(0)(1 + 11�+ � � � ): (7.7)

The value 11 is greater than the Einstein value m = 2:5 for dilute dispersions of
solid spheres possibly because of the additional increases in the viscosity of the
liquid phase caused by the vaporization of dissolved gases; in other words, the
viscosity of mixture increases because there is less dissolved and more dispersed
gas.

It follows now that the system (7.3) and (7.4) is well characterized when the
parameter J and m

�(�) = (1� �)m (7.8)

are known. We have tried to fit the model predictions to the experiments with a
nearly best, but imperfect fit, when

m = 11; J = 5: (7.9)

In the next section we describe the experiments and compare the data with the
model prediction. Using the data given in section 6 we found that

J = 1:345� 10�6
�: (7.10)

Our data fitting gives J = 5 or � = 3:71� 106 sec.
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8 Steady flow in a horizontal sandpack

Foamy oil is driven from a reservoir at saturation P = 1 at X = 0 to another
reservoir at the outlet pressure pL; PL = pL=~p < 1. Since @�=@T = 0 for steady
flow, equation (7.3) implies that

��(�)(1� �)
dP

dX

= C = constant (8.1)

Equation (8.1) says that the oil velocity

��

dP

dX

(1� �) (8.2)

is a constant in steady flow, independent of X . Combining (8.1) and (7.4) we get

JC

(1� �)3
@�

@X

=
1� P

P

�

��

1� �

(8.3)

Equations (8.1) and (8.3) are to be solved subject to the conditions that

P = 1

P = PL

at X = 0

at X = 1

9>>>=
>>>;

(8.4)

when J = 0

P =
1� �

(� � 1)�+ 1
;

dP

dX

=
�� d�=dX

[(� � 1)�+ 1]2
(8.5)

and

� = 0

� = �L =
1� PL

1 + (� � 1)PL

at X = 0

at X = 1

9>>>>=
>>>>;

(8.6)

Elimination of dP=dX in (8.1) then gives rise to the following quadrature
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CX =

Z
�

0

��(�)(1� �)d�

[1 + (� � 1)�]2
(8.7)

The constant C is then determined by the outlet pressure given by (8.6). The inte-
gral in (8.7) can be done when �(�) is given by (7.8).

In general, when J = 0, the first order system (8.1) and (8.3) may be solved nu-
merically. The steady distributions of pressures along the sandpack are compared
with data from experiments in figures 8.1-8.3.
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Figure 8.1: Comparison of theoretical and experimental pressure distributions at
drawdown pressure pl = 3MPa.
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Figure 8.2: Comparison of theoretical and experimental pressure distributions at
drawdown pressure pl = 1MPa.
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Maini and Sarma [1994] also reported the rate of oil production in steady state
as a function of the drawdown pressure. The oil production is the mass flow rate,
the volume flow rate of oil times the oil density � � 0:97 g/cc. The superficial mix-
ture velocity u is given by Darcy’s law (4.16), Au, where A is the cross-sectional
area, is the volume flow rate of the mixture of gas and oil, which is larger than the
volume flow rate u(1� �) of oil alone. Hence the mass flow rate of oil alone is

�l

Æ

Q = ��lA(1� �)�(�)
dP

dX

(8.8)

which according to (8.2) is a constant, independent of X . A comparison of the
measured and theoretical results for m = 11; J = 5; � = 3:4; A = 16:1�10�4

m
2

is given in figure 8.4.
The modest discrepancy between measured and theoretical values for large

drawdowns may be due to the formation of foam at large drawdown. This foaming
might be expected to reduce the rate of production because of flow resistance, and
to increase the primary recovery because foam effectively traps the gas; all the oil
must come out with trapped gas.

9 Blowdown experiment

We turn next to the blow down experiment of Maini and Sarma [1994] (their fig-
ure 9, our figure 9.1). They describe their experiment as follows (the emphasis
indicated is ours).

A different type of experiment was needed to estimate the total re-
covery potential of solution gas drive. This experiment started with
the sand pack at maximum ”live oil” saturation. The pack was al-
lowed to blow down to atmospheric pressure through the outlet end,
and the inlet end remained closed. Figure 9 shows the recovery and
pressure-drop behavior. More than 20% of the original oil was recov-
ered in this primary depletion experiment. The value is surprisingly
high for the viscous oil system and suggests that the critical gas satu-
ration was much higher than what would be measured by an external
gas drive experiment. Typically, the external drive experiments in such
systems show the critical gas saturation to be less than 5%. Therefore,
this experiment also suggests that a mechanism is present in heavy-oil
systems to increase the critical gas saturation. We suggest that this
mechanism is the formation of an oil-continuous foam.
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We have already remarked that the solubility isotherm with � = 3:4 or 3.17
leads to dispersed gas fractions of the order 0.93; foaming is inevitable.

The blowdown experiment is unsteady. The experiments shown in figure 9.1
show that the pack is still producing oil after 200 hours; the terminal steady and
uniform state has not been achieved.
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Figure 9.1: (Maini & Sarma, 1994). Change in the pressure drop across differ-
ent core segments and cumulative oil production with time during the blowdown
experiment with the Lloydminster system.

The initial value problem corresponding to the blowdown problem is to solve
(7.3) and (7.4) subject to the initial conditions

P = 1; � = 0 for 0 � X � 1whenT � 0 (9.1)

and boundary conditions

dP

dX

= 0 atX = 1 (9.2)

and
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P = PL[1�H(t)] atX = 0 (9.3)

where H(t) is unit step function pL = 0:1MPa, ~p = 4:83MPa, PL = pL=~p =

0:0205: The integration of these equations was carried by numerical methods.
The cumulative production may be obtained as the integral over time of the rate

of production

�oQ(t) = �o

Z
t

o

Æ

Q(t) dt (9.4)

where

Æ

Q = A �(1� �) dP=dX (9.5)

is evaluated at X = 0, the open end of the sandpack. A comparison of the model
predition with m = 11 and J = 5 and the experiment are shown in figure 9.2.
The values m = 11; J = 5 were selected for a best fit for the steady pressure
distributions given in figure 8.1 through 8.3, the rate of production in steady flow
given in figure 8.4 and the comparison of theory and experiment in drawdown given
in figure 9.2.
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Figure 9.2: Comparison of theory and drawdown of pressure in experiment for
Lloydminster oil.
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Figure 9.3: Model prediction of the evolution of the differential pressure in 6 seg-
ments for the blowdown experiment in figure 9.1. � = 3:4;m = 11; J = 5.

The differential pressure in the 6 segments defined by pressure tabs is given in
figure 9.3. The theory greatly overpredicts the drop in pressure in drawdown.

The blowdown experiment produces large amounts of gas because the pressure
drop is very severe. The appearace of foam was observed, consistent with rapid
outgassing. Blowdown also favors the formation of connected gas, due to bubble
rupture, which percolates out of the sandpack without a trace reducing both the
pressure and the emulative production. These effects of free gas are not allowed in
our model and may account for the discrepancies between theory and experiment
exhibited in figures 9.2 and 9.3.

10 Discussion and Conclusion

The theory which we have developed could be called a continuum mixture theory
for foamy oils flow with dispersed gas of low mobility relative to the liquid which
leads to three coupled nonlinear partial differential equations for u; p and the gas
fraction �, five scalar equations in five unknowns.
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We derived an equation of state (called an equilibrium isotherm) for foamy oil.
This equation gives the volume fraction of dispersed gas at a given temperature and
pressure at equilibrium for the situation in which the gas that comes from releasing
disolved gas remains dispersed. This equation depends on only one material co-
efficient, a function of the temperature which can be obtained from measurement
in a PVT cell. Such measurements were made and yielded only modestly differ-
ent values of the coefficient for two Canadian and one Venezuelan crude oils. The
empirically based equation of state avoids constitutive hypotheses about nucleation
and bubble growth, which are implicit in the measured equilibrium values of the
volume fraction of dispersed gas. The derivation and application of equilibrium
isotherms is one of the principal contributions of this paper.

Another contribution is the development of a flow description for foamy oil
whose center pieces are a continuity equation for the bubbly mixture, Darcy’s law
and a relaxation equation for the equilibrium isotherm. The relaxation equation
depends on a to-be-determined rate constant which allows for delay in the growth
of the gas fraction � to a change of pressure expressing the idea that it takes time
for bubbles to nucleate and grow. It is possible that the pressure also relaxes, but
the modeling of pressure relaxation would introduce another rate constant and is
left for future work.

The mobility function �(�) which appears in Darcy’s law must also be mod-
eled. The mobility function for our model is the measured permeability of the
porous media over the to-be-determined effective viscosity of the mixture.

The modeling of the viscosity of the mixture as a function of the dispersed gas
is very difficult and we have no guidelines from the literature. Our model, which
depends only on the dispersed gas fraction, makes no formal distinction between
bubbly mixture and the foam that arises inevitably under the kind of severe de-
pressurization seen in the Maini-Sarma blowdown experiments. The range of the
dispersed gas fraction is from � = 0, in which the oil is saturated with dissolved
gases, to � = 1 which can be interpreted as a super-dry foam. The viscosity of
the foam ought to be much greater than the bubbly mixture but less great than con-
centrated dispersions of solids that can’t move at all when they are closely packed.
An additional complication in the modeling of the viscosity is that the viscosity
of the liquid increases rather sharply when gas is released; its like lowering the
fraction of water in a glycerin and water mixture. So the viscosity of the mixture
increases both because of the presence of more bubbles and because the continuous
liquid-phase viscosity also increases.

We related our flow description to the conventional description of two-phase
flow in porous media using the concept of relative permeability. We write down
all the usual equations with the caveat that the mobility function for each phase is
expressed in terms of an effective viscosity rather than a relative permeability; for
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the gas we have

�g(�) =
kkg

�g

=
k

�g(�)
(10.1)

where k is permeability, kg is relative permeability, �g is gas viscosity, and �g(�)
is effective gas viscosity. Of course, we have done nothing but change the names
of symbols, but our concept is closer to mixture theory in which we describe flow
properties of fluid phases in a porous media of fixed properties independent of the
fluid and flow. Moreover, our effective viscosities can be directly related to the
measured values of the mixture viscosity

�(�) =

�
1

�g(�)
+

1

�l(�)

�
�1

(10.2)

where �l(�) is the effective viscosity of the liquid phase.
Our mixture theory arises as a rigorous consequence of the conventional theory

under the assumption that the average velocities of dispersed gas and liquid are
identical and in this case we get explicit

�g(�) =
�(�)

�

(10.3)

�l(�) =
�(�)

(1� �)
(10.4)

relating effective viscosity of the phases to the effective viscosity of the mixture.
In addition we find that

krl

krg

=
1� �

�

�l

�g

(10.5)

relating the ratio of relative permeabilities to the ratio of molecular viscosities.
We applied our theory to the sandpack experiments of Maini & Sarma [1994],

backing out the rate constant and mixture viscosity function to fit data. The viscos-
ity function was selected in the frequently used form

�(�) = �(0)
.�

1�
�

�m

�
m

(10.6)
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where �m is the maximum packing fraction. �m is a perfectly clear concept for
solid spheres and might be considered for bubbly mixtures. But if our bubbly
mixtures foam we can get dispersed gas all the way to � = 1, hence �m = 1.
Our equilibrium isotherm also allows for a full range of dispersed gas fractions
0 � � � 1 up to dry foams. We then look for a single continuous expression
for �(�) in the form (10.6) with �m = 1. We think that dry foams are rigid
unless riding on a liquid layer, which is not easily formed in a porous media; hence
�(�)!1 as �! 1.

In the dilute limit

�(�)! �(0)(1 +m�): (10.7)

In foamy oil m should be larger than the Einstein value 2.5 because of the added
viscosity increase of the continuous oil phase due to the release of dissolved gas.

We backed out a viscosity function by fitting, finding m = 11 together with a
relaxation time corresponding to a dimensionless time J = 5. With these values we
achieved some good agreements between the sandpack model prediction and data
for steady flow but with larger discrepancies in blowdown experiments in which
dispersed gas probably percolated into free gas.

We think that this comparison of model and experiment establishes a direction
for model building using the average velocity of phases, the pressure and volume
fraction of dispersed gas as primitive variables. It is possible for the dispersed gas
to move relative to the oil without forming connected gas through coalescence and
percolation. To describe such a condition we would need to consider momentum
and mass balances of the two phases, but the description could be formed with same
set of primitive variables, replacing constitutive equations for nucleation, bubble
growth and possibly some coalescence, with relaxation of equilibrium isotherms
from PVT data.

Models, like the one proposed here, should be tested against more data par-
ticularly against data from producing fields. For production the conditions for the
breakdown of models that work when all the gas is dispersed due to the formation
of connected gas is even more important than the models themselves.
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