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   ABSTRACT

Pair interactions between neighboring particles and turning couples on
long bodies formed from touching bodies give rise to flow induced
microstructures. In Newtonian fluids, pair interactions in a fluidized
suspension lead to dispersions with particles arranged in lines across
the stream. In viscoelastic fluids, sedimenting particles aggregate
into chained bodies parallel to the stream when the flow is slow and
normal stresses dominate, and into across the stream arrays again when
the flow is supercritical and dominated by inertia. The microstructural
arrangements in Newtonian and viscoelastic fluids are maximally
different. Simple mathematical arguments are given here which identify
the forces and couples that give rise to all of the main observed
microstructures. A mechanism for intensifying normal stresses by shear
thinning is proposed.

   INTRODUCTION

     We are going to carry out an analysis of our recent experiments on
the sedimentation of particles in Newtonian and viscoelastic fluids.
The results to be described are generic and not results for one special
fluid.  Of course, the differences between fluids is important, but we
shall not focus on these differences which are well documented in our
original papers: [1,2,3,4,5]. A review of all these results can be
found in [6]. The main themes in our interpretations were not proposed
by prior authors; these themes rest on the competition between inertia
and normal stresses, on the importance of turning couples on long
bodies in determining the stable configurations of suspension of
spherical bodies, on the contrary behaviors of particles in vis-
coelastic and Newtonian liquids, on the all-important contrary effects
of compressive normal stresses [7] and inertia. We are presently doing
high performance direct simulations of the motion of particles in
Newtonian and viscoelastic liquids[8,9].

   TURNING       COUPLES       ON       LONG       BODIES   

     It is surprising at first sight that turning couples on long
bodies determine the stable configurations of suspensions of spherical
bodies. A long body is an ellipsoid or a cylinder; a broad body is a
flat plate.  When such bodies are dropped in Newtonian fluids, they
turn and put their long or broadside perpendicular to the stream.  This
is an effect of inertia which is usually explained by turning couples
at points of stagnation. The mechanism is the same one that causes an
aircraft at a high angle of attack to stall.



It is not possible to get long particles to turn broadside in a
Stokes flow; bodies with fore-aft symmetry do not experience torques.
The settling orientation is indeterminate in Stokes flow; however, no
matter how small the Reynolds number may be, the body will turn its
broadside to the stream; inertia will eventually have its way. When the
same long bodies fall slowly in a viscoelastic liquid, they do not put
their broadside perpendicular to the stream; they do the opposite,
aligning the long side parallel to the stream.  

     The difference in the orientation of long bodies falling in
Newtonian and viscoelastic fluids is very dramatic; basically the flow
orientations in the two fluids are orthogonal.  Of course, in very
dilute polymeric liquids, the effects of inertia and viscoelasticity
will compete and the competition will be resolved by a tilt angle away
along the stream.  For cylinders with sharp corners, normal stress
effects produce the “shape tilting” observed by Liu and Joseph [2] and
explained here. Another, much more dramatic change in the tilting of a
long cylinder or flat plate is associated with the way that inertia
comes to dominate high-speed flows of viscoelastic fluids.

   PARTICLE-PARTICLE       INT      ERACTIONS   

     The flow-induced anisotropy of a sedimenting or fluidized
suspension of spheres is determined by the pair interactions between
neighboring spheres. The principal interactions can be described as
drafting, kissing and tumbling in Newtonian liquids and as drafting,
kissing and chaining in viscoelastic liquids.  The drafting and kissing
scenarios are surely different, despite appearances.  Kissing spheres
align with the stream; they are then momentarily long bodies.

     The long bodies momentarily formed by kissing spheres are unstable
in Newtonian liquids to the same turning couples that turn long bodies
broadside-on.  Therefore, they tumble.  This is a local mechanism which
implies that globally, the only stable configuration is the one in
which the most probable orientation between any pair of neighboring
spheres is across the stream.  The consequence of this microstructural
property is a flow-induced anisotropy, which leads ubiquitously to
lines of spheres across the stream; these are always in evidence in
two-dimensional fluidized beds of finite size spheres. Though they are
less stable, planes of spheres in three-dimensional beds can also be
found by anyone who cares to look.

The drafting of spheres in a Newtonian liquid is governed by the
same mechanism by which one cyclist is aided by the low pressure in the
wake of another. The spheres certainly do not follow streamlines since
they are big and heavy.  If a part of one sphere enters in the wake of
another, there will be a pressure difference to impel the second sphere
all the way into the wake where it experiences a reduced pressure at
its front and not so reduced pressure at the rear.  This increased
pressure difference impels the trailing sphere into kissing contact
with the leading sphere.  The motion of the trailing sphere relative to
the leading one is in the same sense as in the undisturbed case, into
the rear pole of the leading sphere.



      Riddle, Navarez and Bird [10] presented an experimental
investigation in which the distance between the two identical spheres
falling along their line of centers in a viscoelastic fluid was a
function of time.  They found that for all five fluids used in the
experiments that the spheres attract if they are initially close and
separate if they are not close; there is a critical separation
distance. This looks like a competition between normal stresses and
inertia, which is decided by a critical distance which may vary with
latitude. Competition of normal stresses and inertia is more typical
than rare, and for flows slow enough to enter into the second order
region the critical distance scales with Ψ1 ρ , where Ψ1 is the
coefficient of the first normal stress difference and ρ is the
density. The property that chaining tensions are short range is also
put in evidence in Figure 1b, which shows that spheres can also detach
from the trailing end of a chain when the
distance between the last two spheres ex-
ceeds a critical value, as in the
experiments of Riddle et al. [10].

     If two touching spheres are
launched side-by-side in a Newtonian
fluid, they will be pushed apart until a
stable separation distance between
centers across the stream is
established;  then the spheres fall
together without further lateral migra-
tions (see Figure 2a).

     On the other hand, if the same two
spheres are launched from an initial
side-by-side configuration in which the
two spheres are separated by a smaller
than critical gap, as in Figure 2b, the
spheres will attract, turn and chain.
One might say that we get dispersion in
the Newtonian liquid and aggregation in
the viscoelastic liquid.

   SPHERE-WALL       INTERACTIONS

If a sphere is launched near a vertical
wall in a Newtonian liquid, it will be
forced away from the wall to an
equilibrium distance at which lateral
migrations stop (see figure 3a); in the
course of its migration it will acquire a
counter-clockwise rotation (see Figure 7)
which appears to stop when the sphere
stops migrating.  The rotation is
anomalous in that clockwise rotation would
be induced from shear at the wall. The
anomalous rotation seems to be generated
by blockage in which high stagnation
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Figure 1. The falling
chained spheres are
viewed in a frame in
which they are at rest.
Particles may link to
the chain from the
bottom or top. If δ δ> cr
the chained spheres
will fall away faster
than the trailing
sphere.
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Figure 2. Side-by-side
sphere-sphere
interactions



pressures force the fluid to flow around
the outside of the sphere, as shown in
figure 7.

      If the same sphere is launched near
a vertical wall in a viscoelastic liquid,
it will be sucked all the way to the wall
(see Figure 3b). It rotates anomalously as
it falls.  This is very strange since the
sphere appears to touch the wall where
friction would make it rotate in the other
sense.  Closer consideration shows that
there is a gap between the sphere and the
wall.  The anomalous rotation is again due
to blocking which forces liquid to flow
around the outside of the sphere (see
figure 7).

     The pulling action of the wall can be
so strong that even if the wall is
slightly tilted from the vertical so that
the sphere should fall away, it will still
be sucked to the wall (see Figure 4).

     If the launching distance between the
sphere and a vertical wall is large
enough, the wall will not attract a sphere
falling in a viscoelastic fluid.  This

means that there is a critical distance δ̂
for attraction.  Of course, this distance
is smaller when the wall is tilted as in
Figure 4.  In this case, if the sphere is
launched at a distance greater than the
critical one, it will fall away from the
wall.

     The effect of two closely-spaced
walls on the migration of particles is
not completely understood. We have just
said that spheres which fall near a wall
in a viscoelastic liquid will be pulled
to the wall, but not if the launching
distance from the wall is larger than a
critical one. On the other hand, we
noted that spheres and cylinders dropped
between closely-spaced walls do center.
We may think that if a sphere is
launched between widely-spaced walls at
a distance farther than the critical
one, it will not be attracted to the
near wall and certainly not to the far
one.  So the equilibrium position will
depend on the initial distance, or it is
more likely from symmetry to seek the
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Figure 3: Sphere-wall
interactions.
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Figure 4: A Sphere in
viscoelastic liquid is
sucked to a tilted
wall.

Figure 5:   Spheres
dropped between widely-
spaced walls. The
dotted line is the
critical distance dcr
for wall-sphere inter-
action.  When d < dcr,
the sphere goes to the
wall.  When d > dcr, the
sphere seeks the
center.



center, as shown in Figure 5. We do not know the answer yet.

     If the walls are so closely spaced that the distance d between
walls is equal to or smaller than the critical one δ̂  for migration,
then both walls will attract the sphere, though perhaps not equally.
Experiments suggest centering in this case.

   FORCES       AND       TORQUES   

     Let n be the outward normal at a point on the boundary ∂ Ω of a
rigid body. The forces and torques on that body are the integrated
resultants of the traction vector:

T n n S n• = − + •∂ Ω p (1)

and its moments over the whole body, where p is the pressure and S is
the extra stress which is modeled by a constitutive equation. In
general p is not related to the deformation in a universal way; there
is no constitutive equation for p and it must be determined from the
solution of dynamical problems, a new p each time. There are two cases
in which we can relate p to the velocity and its gradients universally,
in potential flow and in creeping flow in two-dimensions. From these
two cases we can find good understanding of the forces and torques that
move and turn rigid bodies in Newtonian and viscoelastic fluids.

     Associated with (1) are three traction components, a normal
component

T pnn = − + • •n S n (2)

and two independent shear components

T Snt nt= • • = • • =t T n t S n (3)

where t is one of two independent unit vectors tangent to ∂ Ω. The
shear tractions are associated with the resistance of the fluid to the
motions of the body; the normal tractions turn long bodies and push
spherical bodies across streamlines.

     A great simplification of analysis comes from the fact that at a
point on the boundary of a rigid body

n A n n u u n• • = • ∇ + ∇[ ]• =1 0∂ ∂Ω Ω
T (4)

where A u1[ ] is twice the rate of strain for the velocity field u,
provided only that   divu = 0; the fluid is incompressible as is the case
here.

   NEWTONIAN       FLUIDS       AND       INERTIA



     For Newtonian fluids the extra stress is given by S A u= [ ]η 1  where
η is the viscosity and (2) and (4) imply that

T p p pnn
Newt Newt Inertia Viscous= − = − − (5)

When inertia is negligible, p p
N

viscous =  given by Stokes flow with

∇ = = ∇p
N

divη ηA u1
2 (6)

when η is constant. Spherical bodies do not migrate and bodies with
fore-aft symmetry do not experience torques in Stokes flow. On the
other hand it is well known that

T pnn
inertia inertia= − (7)

is quadratic in velocity and gives rise to forces which produce lateral
drift and turn long and broad bodies perpendicular to the stream.

   VISCOELASTIC       FLUIDS   

     It is necessary to propose a constitutive equation for the extra
stress. No single constitutive equation works for all motions. So many
constitutive equations have been proposed based on molecular cartoons
of real fluids. Fortunately aggregations of particles with chained
spheres along the stream occur in very slow flows in which all those
models collapse into a universal form, the second order fluid which is
quadratic in the shear rate and represents the recent memory of the
fluid by a time derivative; it is valid asymptotically only for slow
and slowly varying motions, but for these motions the rheology is
general and not model dependent. The equations of motion for a second
order fluid are

ρ ∂
∂

u u u T
t

+ + ∇





= div , (8)

T A A A= − + + +p1 η α α1 1 2 2 1
2 , (9)

A u A A u u A2 1 1 1= + • ∇



 + ∇ + ∇∂

∂t
T

where α1 and α2 are the quadratic constants and

Ψ Ψ1 1 2 1 22 0 2= − > = +α α α, (10)

are the coefficients of γ⋅ 2  (where γ⋅  is the shear rate) in the ex-
pansion of the first and second normal stress functions in powers of
γ⋅ 2 . Ψ2 is usually negative and much smaller than Ψ1; it vanishes in
popular models like Oldroyd B.



     Analysis of motions of a second order fluid may be greatly
simplified in two dimensions [11] or when α α1 2 1 22 2 0+ = +( ) =Ψ Ψ /  [12]. In
either case, the velocity field is the same as that of the Stokes flow
while the pressure is given by

p = pN + α1

η
DpN

Dt
+ (

α2

2
+ 3α1

4
)A1:A1, (11)

where pN is defined by (6).

     For plane flows, the stress can be written as [11]
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where D/Dt is the substantial derivative, a=∂u/∂x=-∂v/∂y, b=∂u/∂y,
c=∂v/∂x, α1=-Ψ1/2 and Γ=4a2+(b+c)2. Now choose a generic point P on the
boundary ∂Ω  of the body Ω and define local coordinates (x,y) with
velocity (u,v) where x is tangential and y normal to ∂Ω. Since Ω is a
rigid body, there is no variation of u or v along ∂Ω. Hence, a=c=0,
b= γ̇ , and  the stress at P is
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It follows that the normal component of the stress Tyy is given by [13]:

Tyy = − pN + Ψ1

2η
DpN

Dt
− Ψ1

4
γ̇ 2. (14)

The foregoing analysis works also in three dimensions when α1=-α2  (Ψ1=-

2Ψ2) [4]. In either case, the total stress depends on Ψ1 but the
pressure is given by (11).

     In determining the contribution of the pressure to the total
normal stress in the plane case where α2 is actually irrelevant, it is

necessary to assign a value to α2. The irrelevance of α2 stems from the



fact that in the reduction of (8) to (12), α2 in the expression for the
pressure

p = pN − Ψ1

2η
DpN

Dt
+ (α2 + 3

2
α1)γ̇ 2 (15)

cancels an identical contribution in the extra stress

Tyy + p = (2α1 + α2 )γ̇ 2. (16)

The decomposition of the total normal stress into a "pressure" and
extra stress is unique because of (11), but the decision to call (11) a
pressure is arbitrary. Since

α2 + 3

2
α1





 = β̂ / 2

where β̂>0 is the climbing constant, and

2α1 + α2 = Ψ2 < 0

for nearly all solutions and melts, both quadratic contributions to

(15) and (16) are compressive. Moreover, in many cases β̂ is large and
Ψ2 is small, so that the main compressive stresses are generated by the
normal stresses in the pressure (15) [14].

   FLOW       MICROSTRUCTURES       ASSOCIATED       WITH       COMPRESSIVE       NORMAL       STRESSES   

     The time derivative of pN vanishes in steady flows over stationary
bodies. The form of normal stresses in (15) and (16) informs intuition
about how particles move and turn in a slow flow of a viscoelastic
liquid; one has only to look for crowded streamlines in the Stokes flow
near the body to see how the normal stresses are distributed over the
body. If the particle has fore-aft symmetry, the Stokes pressure and
viscous shear stress each yield a zero torque on the body; thus the
normal stresses will turn the body into the stream [14,15] as in figure
6(a). The argument just given suggests that the longest line of less
regular bodies ought to align parallel to the stream; a cube actually
does fall slowly with the line through opposite vertices parallel to
gravity. For two identical spheres or circular cylinders settling side
by side (figure 6b), strong shears occur on the outside and the
resulting compressive stresses push the particles together; they then
act like a long body and are turned into the stream by torques like
those in figure 6(a). Two particles settling in tandem experience
imbalanced compressive normal stresses at the bottom of the leading
particle and the top of the trailing particle, causing them to chain as
in figure 6(c). The lateral attraction of a particle to a nearby wall
can be explained by a similar mechanism (figure 6b). Experimental evi-



dence of particle-particle and particle-wall interactions has been
documented in [5].

     The compressive stresses which are generated by the motion of
particles in plane flow of a second-order fluid produce aggregation
rather than dispersion; they align long bodies with the stream and
produce chains of particles aligned with the stream.

(a) (b) (c)

Figure 6  Cartoons of streamlines around bodies settling in Stokes flow. The
normal stresses are negative and proportional to γ⋅ 2; they are large and
compressive where the streamlines are crowded, basically where the flow is
fast. Inertial pressures are large at stagnation point γ⋅ = 0, where normal
stresses vanish. (a) Normal stresses turn the major axis of the ellipse into
the stream. For slow flows inertial forces are smaller than normal stresses.
(b) The normal stresses force side by side particles together and they urge
particles to the wall. (c) Compressive forces cause particles in tandem to
chain.

   SHEAR       THINNING   

     Now I give a heuristic argument which suggests that the effects of
compressive normal stresses are intensified by shear thinning because
larger values of γ⋅  are produced where the streamlines are crowded. In
the case of an Oldroyd B fluid

Ψ1 1 2= −( )η λ λ (17)

where λ1 and λ2 are the relaxation and retardation times. Shear
thinning does not appear at second-order in the asymptotic analysis
leading to the second-order form of the Oldroyd-B model. Therefore we
are taking liberties with mathematical rigor by writing the shear
thinning form of

Ψ1 1 2
1= −( ) ⋅ −η λ λ γ n (18)

where 0 < n < 1. The effect of shear thinning is to decrease the
viscosity and increase the shear rate at places of high γ⋅  on the
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F

F



body. In a pipe flow with a prescribed pressure gradient, the
pressure force balances the shear force at the wall so the shear
stress τ η γ γw = ⋅ ⋅( )  is the same for all viscosity functions. If the fluid

thins in shear, the viscosity η goes down and the shear-rate γ⋅  goes
up, keeping the product constant. Then η γ γ τ γ( )⋅ ⋅ = ⋅2 w  is larger than
what it would be if the fluid did not shear thin because γ⋅  is larger.

     The increase in the intensity of compressive normal stresses
means that the turning couples which turn long bodies into the stream
and the pushing stresses which
cause spherical particles to
aggregate are all increased. For
example, the standoff distance of
circular cylinder sedimenting near
a wall (figure 7) will be much
less in the shear thinning form of
the Oldroyd B fluid as is shown by
direct numerical simulation [9].

   REVERSAL       OF       THE       NORMAL       STRESS       AT       A
   POINT       OF       STAGNATION

     A point of stagnation on a
stationary body in potential flow
is a unique point at the end of a
dividing streamline at which the
velocity vanishes. In a viscous
fluid all the points on the
boundary of a stationary body have
a zero velocity but the dividing
streamline can be found and it
marks the place of zero stress
near which the velocity is small.
The stagnation pressure makes
sense even in a viscous fluid
where the high pressure of the
potential flow outside the
boundary layer is transmitted
right through the boundary layer
to the body. It is a good idea to
look for the dividing streamlines
where the shear stress vanishes in
any analysis of the flow pattern
around the body.

     The points marked S on Figure
7 are points of stagnation for a
real no-slip fluid marking the
place where γ⋅  =0. In the slow
flow analysis just given, these
points where γ⋅  =0 have no
viscoelastic normal stress. For
faster subcritical flows which are
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Figure 7. Cartoon of the settling
of a circular particle in a
Newtonian fluid at a vertical
wall in a coordinate system in
which the center of the particle
is at rest, so the wall moves up
with speed U0. If the particle is
dropped at the wall, the fluid
will go around the outside and
turn the particle in the
anamalous sense as shown. There
are two “stagnation” points S on
the circle where the shear stress
vanishes associated with high
positive pressure on the bottom
and a smaller negative pressure
near the top.  The positive pres-
sure “lifts” the particle away
from the wall and it seeks an
equilibrium in the channel cen-
ter. Normal stress effects are
greatest at the outside of the
cylinder where the streamlines
are crowded and the shear rates
are large. The effect of shear
thinning is to increase these
shear rates and the forces which
now push the cylinder closer to
the wall.



still dominated by viscoelastic stresses, we can imagine viscoelastic
effects to be transmitted through a boundary layer which will reverse
the sign of the normal stress there. Some of the principal causes for
the reversal can be seen in the equations governing the potential
flow of a second order fluid given in [16]. Not all models of a
viscoelastic fluid admit potential flow as a solution irrespective of
the boundary conditions [17], but a second order fluid does, and for
these, there is a Bernoulli equation which is in the form

    ρφ ρ β,
ˆ :t p c+ + − ∇ ∇ =u

u u
2

2
(19)

where β is the climbing constant which is positive in nearly all
viscoelastic liquids and can even be large.  Obviously there is a
competition between inertia ρ u 2 and normal stresses β ∇u 2

 with the
latter dominating for slow speeds and large gradients.  Inertia scales
with the square of the velocity and normal stresses scale with the
square U L2 2  of the rate of shear or extension. Carrying out analysis
of potential flow a little further, we find that at a stagnation point,
the stress σ11 in the direction x1 of stretching is given by

σ ρ η γ11
2

2

2
2

2
4= − + +U

U

L
s

U

L
s˙ ˆ ˙ (20)

where γ̂  is a positive combination of first and second normal stress
coefficients and ṡ is a dimensionless rate of stretching [1].  Equation
(20) shows clearly how the sign of the normal stress at a point of
stagnation can be reversed by high rates of stretching in a
viscoelastic fluid.

     The reversal of the extensional normal stresses at points of
stagnation would pull long bodies into the stream, reversing the
tendency of inertia to push them across the stream. In this case the
turning couples of high compressive normal stresses due to shear
compete with high tension at points of stagnation due to extension.   

   Tilt       Transition

     Liu and Joseph [2] have done experiments on the settling of long
cylinders in aqueous solutions of polyox and polyacrylamide, and in
solutions of polyox in glycerin and water.  The tilt angles of long
cylinders and flat plates falling in these viscoelastic liquids were
measured.  The effects of particle length, particle weight, particle
shape, liquid properties and liquid temperature were determined.  In
some experiments, the cylinders fall under gravity in a bed with
closely-spaced walls.  No matter how or where a cylinder is released,
the axis of the cylinder centers itself between the close walls and
falls steadily at a fixed angle of tilt with the horizontal.  A
discussion of the tilt angle may be framed in terms of competition
between viscous effects, viscoelastic effects and inertia.  When
inertia is small, viscoelasticity dominates and the particles settle
with their broadside parallel or nearly parallel to the direction of



fall. When inertia is large, the particles settle with their
broadside perpendicular to the direction of fall.  The tilt angle
varies continuously form 90˚, when viscoelasticity dominates, to 0˚,
when inertia dominates.  The balance between inertia and vis-
coelasticity was controlled by systematic variation of the weight of
the particles and the composition and the temperature of the
solution.  Particles will turn broadside-on when the inertia forces
are larger than viscous and viscoelastic forces.  This orientation
occurred when the Reynolds number R was greater than some number not
much greater than one in any case, and less than 0.1 in Newtonian
liquids and very dilute solutions.  In principle, a long particle
will eventually turn its broadside perpendicular to the stream in a
Newtonian liquid for any R > 0, but in a viscoelastic liquid this
turning cannot occur unless R > 1.  Another condition for inertial
tilting is that the elastic length λU should be longer than the
viscous length υ/U where U is the
terminal velocity, υ is the
kinematic viscosity and λ = υ/c2
is a relaxation time where c is the
shear wave speed measured with the
shear wave speed meter (Joseph
[11]).  The condition M = U/c > 1
was provisionally interpreted by
Liu and Joseph [2] as a hyperbolic
transition of solution of the
vorticity equation analogous to
transonic flow.  They showed that
strong departures of the tilt angle
from q = 90˚ begin at about M = 1
and end with q = 0˚ when 1 < M < 4
(see figures 8 and 9 for some
representative results).
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Figure 9. Tilt angle vs. Reynolds number and Mach number. Cylinders (length 0.8
in., diameters 0.1 - 0.4 in.) falling in 2% polyacrylamide/water solution. The
data are taken from cylinders with round ends only. (Reproduced from J. Fluid
Mech. 255, 1993, with permission.)
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Figure 8: Orientation of
cylinders falling in Newtonian
and viscoelastic liquids.



     It is perhaps helpful to frame the criteria for the tilt
transition in terms of a comparison between the fall speed U and the
other speeds which depend on material and not on U; long and broad
objects falling in a viscoelastic liquid will turn broadside to the
stream when the fall velocity U is greater than the diffusion speed
υ/d and the shear wave speed c. The reason is that under these
conditions, signals cannot reach the fluid before the falling body and
the body feels the pressures of potential flow at its front side.
Such pressures turn the body broadside-on.

    CONCLUSIONS

• Fluidized suspensions have an anisotropic structure which is
determined by the microstructure.

• The microstructure depends on the dynamics of pair particle
interactions.

• Pair particle interactions are dominated by wakes and turning couples
on long and broad bodies.

• Pair particle interactions in Newtonian and viscoelastic fluids are
maximally different.

• Stagnation pressures due to inertia turn long bodies across the
stream. Spherical particles draft, kiss and tumble into cross stream
arrays. Inertial forces force particles to separate; they are disper-
sive.

• Normal stresses are compressive and in plane flows are proportional
to the square of the shear rate. Normal stresses vanish at stagnation
points and are large where the flow is fast and inertia is small.
Spherical particles draft, kiss and chain, linked along rather than
across the stream. Normal stresses force particles together; they are
aggregative rather than dispersive.

• Shear thinning intensifies the effects of compressive normal stresses
by increasing the shear rate at the places where the shear rates are
greatest.

• Normal stress effects dominate flows for which the Reynolds number
and viscoelastic Mach numbers are less than one.

• Viscous effects and normal stress effects are suppressed when the
relative speed U between particle and fluid is greater than the speed
of diffusion

U d

U d

>
= >

υ
υ
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(Re )1
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