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Pair interactions between neighboring particles and turning couples on long
bodies formed from touching bodies give rise to flow induced microstructures. In
Newtonian liquids, pair interactions in a fluidized suspension lead to dispersions with
particles arranged in lines across the stream. Similar microstructures in a modified
form can be observed in fluidized suspensions of particles in turbulent gas. In
viscoelastic liquids, sedimenting particles aggregate into chained bodies parallel to
the stream when the flow is slow and normal stresses dominate, and into across the
stream arrays again when the flow is supercritical and dominated by inertia. The
microstructural arrangements in Newtonian and viscoelastic fluids are maximally
different. Simple arguments are given here which identify the forces and couples that
give rise to all of the main observed microstructures.
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INTRODUCTION
We are going to describe and carry out a qualitative analysis of our recent experiments on the
sedimentation of particles in Newtonian and viscoelastic liquids. The results to be described are
generic and not results for one special liquid. Of course, the differences between liquids is
important, but we shall not focus on these differences which are well documented in our
original papers1-6. The main themes in our interpretations rest on the competition between inertia
and normal stresses, on the importance of turning couples on long bodies in determining the
stable configurations of suspension of spherical bodies, on the contrary behaviors of particles in
viscoelastic and Newtonian liquids, on the all-important contrary effects of viscoelastic
“pressures”7 and inertia. We are presently doing high performance direct simulations of the
motion of particles in Newtonian and viscoelastic liquids8-14. Gas-solid flows are usually
turbulent; they appear to give rise to microstructural features like those in turbulent liquids
which are dominated by wakes and turning couples on long bodies.

TURNING COUPLES ON LONG BODIES
It is surprising at first sight that turning couples on long bodies determine the stable
configurations of suspensions of spherical bodies. A long body is an ellipsoid or a cylinder; a
broad body is a flat plate. When such bodies are dropped in Newtonian fluids, they turn and put
their long or broadside perpendicular to the stream. This is an effect of inertia which is usually
explained by turning couples at points of stagnation. The mechanism is the same one that causes
an aircraft at a high angle of attack to stall.

It is not possible to get long particles to turn broadside in a Stokes flow; bodies with fore-
aft symmetry do not experience torques. The settling orientation is indeterminate in Stokes flow;
however, no matter how small the Reynolds number may be, the body will turn its broadside to
the stream; inertia will eventually have its way. When the same long bodies fall slowly in a
viscoelastic liquid, they do not put their broadside perpendicular to the stream; they do the
opposite, aligning the long side parallel to the stream.

The difference in the orientation of long bodies falling in Newtonian and viscoelastic liquids
is very dramatic; basically the flow orientations in the two liquids are orthogonal. Of course, in
very dilute polymeric liquids, the effects of inertia and viscoelasticity will compete and the
competition will be resolved by a tilt angle away along the stream. For cylinders with sharp
corners, normal stress effects produce the “shape tilting” observed by Liu and Joseph2 and
explained here. Another, much more dramatic change in the tilting of a long cylinder or flat plate



is associated with the way that inertia comes to dominate high-speed flows of viscoelastic
liquids.

PARTICLE-PARTICLE INTERACTIONS
The flow-induced anisotropy of a sedimenting or fluidized suspension of spheres is determined
by the pair interactions between neighboring spheres. The principal interactions can be described
as drafting, kissing and tumbling in Newtonian liquids and as drafting, kissing and chaining in
viscoelastic liquids. The drafting and kissing scenarios are surely different, despite appearances.
Kissing spheres align with the stream; they are then momentarily long bodies.

  The long bodies momentarily formed by kissing spheres are unstable in Newtonian liquids
to the same turning couples that turn long bodies broadside-on. Therefore, they tumble. This is a
local mechanism which implies that globally, the only stable configuration is the one in which
the most probable orientation between any pair of neighboring spheres is across the stream. The
consequence of this microstructural property is a flow-induced anisotropy, which leads
ubiquitously to lines of spheres across the stream; these are always in evidence in two-di-
mensional fluidized beds of finite size spheres. Though they are less stable, planes of spheres in
three-dimensional beds can also be found by anyone who cares to look.

The drafting of spheres in a Newtonian liquid is governed by the same mechanism by
which one cyclist is aided by the low pressure in the wake of another. The spheres certainly do
not follow streamlines since they are big and heavy. If a part of one sphere enters in the wake of
another, there will be a pressure difference to impel the second sphere all the way into the wake
where it experiences a reduced pressure at its front and not so reduced pressure at the rear. This
increased pressure difference impels the trailing sphere into kissing contact with the leading
sphere. The motion of the trailing sphere relative to the leading one is in the same sense as in the
undisturbed case, into the rear pole of the leading sphere.

  Riddle, Navarez and Bird10 presented an experimental investigation in which the dis-
tance between the two identical spheres falling along their line of centers in a viscoelastic fluid
was a function of time. They found that for all five fluids used in the experiments that the
spheres attract if they are initially close and separate if they are not close; there is a critical
separation distance. This looks like a competition between normal stresses and inertia, which
is decided by a critical distance which may vary with latitude. Competition of normal stresses
and inertia is more typical than rare, and for flows slow enough to enter into the second order
region the critical distance scales with Ψ1 ρ , where Ψ1> 0 is the coefficient of the first
normal stress difference and ρ  is the density. The property that chaining tensions are short
range is also put in evidence in Figure 1b, which shows that spheres can also detach from the
trailing end of a chain when the distance between the last two spheres exceeds a critical value,
as in the experiments of Riddle et al.16.

If two touching spheres are launched side-by-side in a Newtonian fluid, they will be
pushed apart until a stable separation distance between centers across the stream is established;
then the spheres fall together without further lateral migrations (see Figure 2a).



 
  On the other hand, if the same two spheres are launched from an initial side-by-side

configuration in which the two spheres are separated by a smaller than critical gap, as in
Figure 2b, the spheres will attract, turn and chain. One might say that we get dispersion in the
Newtonian liquid and aggregation in the viscoelastic liquid.

SPHERE-WALL INTERACTIONS
If a sphere is launched near a vertical wall in a Newtonian liquid, it will be forced away from
the wall to an equilibrium distance at which lateral migrations stop (see figure 3a); in the course
of its migration it will acquire a counter-clockwise rotation (see Figure 7) which appears to stop
when the sphere stops migrating. The rotation is anomalous in that clockwise rotation would be
induced from shear at the wall. The anomalous rotation seems to be generated by blockage in
which high stagnation pressures force the fluid to flow around the outside of the sphere, as
shown in figure 7.
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Figure 1. The falling chained spheres are
viewed in a frame in which they are at
rest. Particles may link to the chain from
the bottom or top. If δ δ> cr  the chained
spheres will fall away faster than the
trailing sphere.
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Figure 2. Side-by-side sphere-sphere
interactions
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Figure 3: Sphere-wall interactions.
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Figure 4: A Sphere in viscoelastic
liquid is sucked to a tilted wall.



Figure 5: Spheres dropped between widely-spaced walls. The dotted line is the
critical distance dcr for wall-sphere inter-action. When d < dcr, the sphere goes to
the wall. When d > dcr, the sphere seeks the center.

  If the same sphere is launched near a vertical wall in a viscoelastic liquid, it will be
sucked all the way to the wall (see Figure 3b). It rotates anomalously as it falls. This is very
strange since the sphere appears to touch the wall where friction would make it rotate in the
other sense. Closer consideration shows that there is a gap between the sphere and the wall.
The anomalous rotation is again due to blocking which forces liquid to flow around the outside
of the sphere (see figure 7).

  The pulling action of the wall can be so strong that even if the wall is slightly tilted from
the vertical so that the sphere should fall away, it will still be sucked to the wall (see Figure 4).

  If the launching distance between the sphere and a vertical wall is large enough, the wall
will not attract a sphere falling in a viscoelastic fluid. This means that there is a critical distance

δ̂  for attraction. Of course, this distance is smaller when the wall is tilted as in Figure 4. In this
case, if the sphere is launched at a distance greater than the critical one, it will fall away from the
wall.

  The effect of two closely-spaced walls on the migration of particles is not completely
understood. We have just said that spheres which fall near a wall in a viscoelastic liquid will be
pulled to the wall, but not if the launching distance from the wall is larger than a critical one. On
the other hand, we noted that spheres and cylinders dropped between closely-spaced walls do
center. We may think that if a sphere is launched between widely-spaced walls at a distance
farther than the critical one, it will not be attracted to the near wall and certainly not to the far
one. So the equilibrium position will depend on the initial distance, or it is more likely from
symmetry to seek the center, as shown in Figure 5. We do not know the answer yet.

  If the walls are so closely spaced that the distance d between walls is equal to or smaller
than the critical one δ̂  for migration, then both walls will attract the sphere, though perhaps
not equally. Experiments suggest centering in this case.

FORCES AND TORQUES
The forces and torques which control the  microstructural properties of fluidized suspensions
have been analyzed and computed in some papers listed in the references. Here we describe the
fluid mechanics in qualitative terms. The forces and torques on the boundary of a solid are the
integrated resultant of the traction vector and its moments over the whole body. The traction
vector has a tangential (shear stress) and normal component. The shear tractions are associated
with the resistance of the fluid to the motions of the body; the normal tractions turn long bodies
and push spherical bodies across streamlines. The shear tractions are of only minor importance
for flow induced microstructure. Moreover the viscous part of the normal stress is usually
small; it is zero in Newtonian fluids for which div u = 012. Of course, in gases div u ≠ 0 but it
is probable that the effects of the gas compressibility on the motion of solids is minor.

It follows from what we just said that the main action in determining microstructure is the
action of the pressure, to which we have already alluded. The pressure in Newtonian liquids



and gases is determined by inertial effects in flow; we may think of the Bernoulli equation and
high pressures are at points where the flow is slow and the highest pressures are at stagnation
points.

A point of stagnation on a stationary body in potential flow is a unique point at the end of a
dividing streamline at which the velocity vanishes. In a viscous fluid all the points on the
boundary of a stationary body have a zero velocity but the dividing streamline can be found and
it marks the place of zero stress near which the velocity is small. The stagnation pressure makes
sense even in a viscous fluid where the high pressure of the potential flow outside the boundary
layer is transmitted right through the boundary layer to the body. It is a good idea to look for the
dividing streamlines where the shear stress vanishes in any analysis of the flow pattern around
the body.

The high pressures at stagnation points are at the front of bodies where the stream
impinges. Behind bodies in viscous liquids and gases are “dead water” or wake regions
associated with the separation of the boundary layer. Points of separation are like reverse
stagnation points and they are close to the points where the flow speed is highest; such points
are associated with adverse pressure gradients.

Wake regions behind bodies and high pressure regions in front of bodies produce a large
pressure gradient between bodies falling in tandem, pulling the rearward body into the forward
body, like debris behind a fast moving truck.

The foregoing description is not appropriate for flows without inertia; Stokes flows are
basically boring since the forces which cause symmetric bodies to turn and which impel
spherical bodies to cross streamlines are absent.

Slow flows of viscoelastic liquids are quite different; since inertia in such flows is
unimportant and normal stresses proportional to the square of the shear rate γ̇ on the boundary
of a solid dominate. For the slow steady flow of a body in a viscoelastic liquid the normal stress
at each point on the boundary of the solid is given by

T pnn N= − −
Ψ1 2

4
γ̇ (1)

where pN  is the pressure for a Stokes flow over the same body and Ψ1> 0. We can call
− <Ψ1

2 4 0γ̇  a viscoelastic “pressure”. It’s like a pressure because it is always compressive.
The viscoelastic pressure is great where γ̇  is large and it is large at points on the body

where the flow is fastest; just the opposite of inertia. The viscoelastic pressure opposes inertia
and overcomes it when the flow is slow. The form of normal stresses in (1) informs intuition
about how particles move and turn in a slow flow of a viscoelastic liquid; one has only to look
for crowded streamlines in the Stokes flow near the body to see how the normal stresses are
distributed over the body. If the particle has fore-aft symmetry, the Stokes pressure and viscous
shear stress each yield a zero torque on the body; thus the normal stresses will turn the body into
the stream14,15 as in figure 6(a). The argument just given suggests that the longest line of less
regular bodies ought to align parallel to the stream; a cube actually does fall slowly with the line
through opposite vertices parallel to gravity. For two identical spheres or circular cylinders
settling side by side (figure 6b), strong shears occur on the outside and the resulting
compressive stresses push the particles together; they then act like a long body and are turned
into the stream by torques like those in figure 6(a). Two particles settling in tandem experience
imbalanced compressive normal stresses at the bottom of the leading particle and the top of the
trailing particle, causing them to chain as in figure 6(c). The lateral attraction of a particle to a
nearby wall can be explained by a similar mechanism (figure 6b). Experimental evidence of
particle-particle and particle-wall interactions has been documented in4.

   The compressive stresses which are generated by the motion of particles in plane flow of
a second-order fluid produce aggregation rather than dispersion; they align long bodies with the
stream and produce chains of particles aligned with the stream.
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Figure 6. Cartoons of streamlines around bodies settling in Stokes flow. The
normal stresses are negative and proportional to γ⋅ 2; they are large and compressive
where the streamlines are crowded, basically where the flow is fast. Inertial
pressures are large at stagnation point γ⋅ = 0 , where normal stresses vanish. (a)
Normal stresses turn the major axis of the ellipse into the stream. For slow flows
inertial forces are smaller than normal stresses. (b) The normal stresses force side
by side particles together and they urge particles to the wall. (c) Compressive forces
cause particles in tandem to chain.

INERTIA DOMINATES
When the body is moving at a much faster velocity than the stream inertia will dominate whether
or not the fluid is viscoelastic. A good measure of this is the stable orientation of a long body.
This was studied in a number of experiments2,3; it was found that long bodies which fall with
their long sides parallel to gravity abruptly turn their long sides perpendicular to gravity when
the fall speed is large. Huang et al.15 showed that this abrupt change can be framed in terms of
stability; there are only two possibilities, falling parallel or perpendicular to gravity. In
viscoelastic fluids the stable orientation is parallel to gravity when the fall velocity is slower than
critical and perpendicular when faster. Inertia dominates when the fall velocity is greater than
critical; that is, greater than the speed ν / d  of diffusion and greater than the speed c =( )η λρ  of
shear waves. Under these conditions, signals cannot reach the fluid before the falling body and
the body feels the pressures of potential flow at its front side. Such pressures turn the body
broadside-on. We may frame this criterion for the dominance of inertia in the following way: let
U be the relative speed of the particle, then U>ν / d  means that the Reynolds number Re =

Uν / d   >   1  a n d  U > c  m e a n s  t h a t  t h e  v i s c o e l a s t i c  M a c h  n u m b e r  M = U / c  i s  a l s o 
g r e a t e r  t h a n  o n e . 

When the relative velocity of particles is high enough the microstructural properties of
fluidized suspensions will always be dominated by inertia, no matter whether the fluid is a
viscoelastic or Newtonian liquid or a turbulent gas; in all these cases particle microstructure is
controlled by wakes and turning couples on long bodies. The basic rearrangement sequence
here has been described as drafting, kissing and tumbling which can be seen in particles settling
in liquids and in ping pong balls fluidized in turbulent air.

 CONCLUSIONS
• Fluidized suspensions have an anisotropic structure which is determined by the

microstructure.
• The microstructure depends on the dynamics of pair particle interactions.
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• Pair particle interactions are dominated by wakes and turning couples on long and broad
bodies.

• Pair particle interactions in Newtonian and viscoelastic fluids are maximally different.
• Stagnation pressures due to inertia turn long bodies across the stream. Spherical particles

draft, kiss and tumble into cross stream arrays. Inertial forces force particles to separate;
they are dispersive.

• Normal stresses are compressive and in plane flows are proportional to the square of the
shear rate. Normal stresses vanish at stagnation points and are large where the flow is fast
and inertia is small. Spherical particles draft, kiss and chain, linked along rather than across
the stream. Normal stresses force particles together; they are aggregative rather than
dispersive.

• Normal stress effects dominate flows for which the Reynolds number and viscoelastic Mach
numbers are less than one.
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