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A finite element code based on the level set and distributed Lagrange multiplier (DLM) methods

is developed for simulating the motion of rigid spherical particles on two-fluid interfaces. The interface

position is tracked using a level set function. The contact angle on the particle surface is assumed to be

constant, even when the contact line on the particle surface moves. The fluid-particle system is treated

implicitly using a combined weak formulation in which the forces and moments between the particles and

fluid cancel. The governing Navier-Stokes equations are solved everywhere, including inside the

particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange

multipliers. The Marchuk-Yanenko operator-splitting technique is used to decouple the difficulties

associated with the nonlinear convection term, the incompressibility constraint, the rigid body motion

constraint inside the particles and the interface motion problem.

The code is verified by performing a convergence study to show that the numerical results are

independent of the mesh and time step sizes. Simulations show that a spherical particle released on a two-

fluid interface can remain suspended even when it is heavier than both liquids, provided the vertical

component of interfacial force balances its buoyant weight. This can happen when the sphere is

hydrophobic with the lower fluid and hydrophilic with the upper fluid, as in this case the interfacial force

can act against gravity. The numerically determined floating height and the interface shape are in good

agreement with the analytical results for static equilibrium. Our simulations also show that when two or

more particles are released along the interface they, as in experiments, form clusters due the attractive

capillary force which arises due to the asymmetric interface deformation around the particles.

Specifically, the heavy particles lower the interface creating depression. The particles then experience a

lateral attractive force due to gravity and capillarity. The gravity force causes the particle to fall into the

depression; this lowers and tilts the contact line. The lower contact line is associated with a smaller

vertical component of the capillary force for a fixed angle of contact and the rotation of the contact line

produces imbalance in the horizontal component. The former increases the depth to which the particles

sink in the lower fluid.
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1. Introduction

It is well known that the small tea leaves floating on the tea surface collect near the cup wall which is

due to the formation of meniscus that rises near the wall and results in a net capillary force towards the

wall. The meniscus rises near the wall because the water wets or likes the cup. If, on the other hand, the

liquid does not like the cup, i.e., the meniscus falls near the cup wall, floating small particles tend to move

away from the wall and towards the center of the cup. Similarly, the deformation of liquid-liquid

interfaces due to floating light particles, or due to trapped heavy particles, gives rise to capillary forces on

the particles which cause them to cluster, as can be seen in figure 1. The clustering of particles on

interfaces is important because it modifies the interfacial properties of the two-phase system and has been

used in many flotation based extraction and separation processes (Gerson, Zaijc and Ouchi (1979)). More

recently, this effect has been used for the self-assembly of submicron sized particles on two-liquid

interfaces (see Bowden, et al. (1997,1999), Grzybowski, et al. (2001), and references therein).

The motion of tea leaves along the interface, in the above example, is entirely due to the deformation

of the meniscus near the cup wall. The clustering of particles, on the other hand, is a consequence of the

interface deformation caused by neighboring particles. Specifically, when two heavy particles,

hydrophobic with respect to the lower liquid, are sufficiently close to each other the deformed interface

shape around the particles is not symmetric about the vertical passing through their respective centers, as

the interface height between the particles is lowered due to the interfacial force which acts downwards

(see figure 2a). If, on the other hand, the particles are less dense than the lower liquid and hydrophilic

with respect to it, the interface height between the particles is raised due to the action of interfacial force

(see figure 2b). In both of these cases, the lateral component of interfacial tension is attractive which

causes the spheres to move toward each other. But, when one particle is hydrophilic and the other is

hydrophobic with respect to the lower liquid, the lateral force is repulsive which causes them to move

away from each other.

For convenience, in our analysis we will assume that the lower fluid is water, the upper fluid is air

and the spherical particle is hydrophobic. The qualitative nature of above forces can be understood in

terms of the net vertical and lateral forces, i.e., normal and tangential to the undeformed interface, acting

on a sphere when the system is in a state of static equilibrium, i.e., there is no fluid or particle motion.

This analysis was given first by Princen (1969), then by Rapacchietta and Neumann (1977) and Kotah,

Fujita and Imazu (1992), who used the floating ball to measure contact angles.

In order to have static equilibrium, the buoyant weight of particle must be equal to the vertical

component of capillary force that arises due to the deformation of the interface. If the particle density is

larger than that of both fluids, the static equilibrium is possible only when the particle is hydrophobic

with respect to the lower fluid and hydrophilic with the upper fluid and the vertical component of
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interfacial tension is sufficiently large to balance its buoyant weight. The interface shape in this case is

concave down and the net interfacial force acts against gravity.

1.1 Vertical force balance

Next, we discuss the results of vertical force balance that quantify the conditions under which an

isolated floating sphere can be a state of static equilibrium. It is easy to see that the vertical component of

capillary force 
C
F  depends on the particle radiusR , the surface tension coefficient � , the filling angle

� c and the contact angle �  (see figure 3), and is given by

� � � �� ����������
ccC

sinsinR2F  � � � ���������
cc

sinsinR2 . (1)

The above expression holds for both the hydrophobic and hydrophilic cases. In the former case the

capillary force 
C
F  acts upwards against gravity and in the latter case it acts downwards.

It is worth noting that if �����
C

, 
C
F  is positive or acts against gravity, and if �����

C
, it is

negative. Therefore, if a particle is heavier than water and hydrophobic, it can float only when �����
C

and 
C
F  is equal to its buoyant weight. Also notice that for 4/3��� and 4/

C
��� , the force 

C
F  is zero

and there is no interface deformation (see figure 4). It increases, when 
C

�  is increased from 4� �and

reaches its maximum value at 9.1
C
��  and then decreases with increasing 

C
� . On the other hand, when

the contact angle is �, 
C
F  is always non-negative and its maximum value is for 2/

C
��� , i.e., the sphere

half immersed in the lower liquid. The buoyant weight of the particle, of course, also changes with 
C

� .

For static equilibrium, the sum of capillary force and the vertical resultant of pressure around the

sphere must be equal to the particle weight:

gR
3

4
FF 3

ppC ���� . (2)

where p� is the particle density and 
p
F  is the vertical resultant of pressure around the sphere (see figure

2). By integrating the contribution of pressure to force on the sphere surface, we can write
p
F  as
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where h2 is the meniscus height, which rises or falls, and �1 and �a are the densities of the lower and upper

fluids, respectively. Using the fact that 3
R

3

4
V ��  is the volume of the sphere,
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������  is the volume of the sphere immersed in the water and 

c

22
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is the area of the ring of contact, we can rewrite (3) as:

Agh)()VV(ggvF 2alwalp ��������� (4)

The first two terms on the right hand side are in agreement with Archimedes’ principle, while the term

Agh
al 2
)( ���  accounts for the meniscus effect. When a meniscus is present, the buoyancy calculated

by Archimedes’ principle )( vVggv
al

����  not only lifts the sphere, but also the fluid in the meniscus.

Hence, we need to subtract the weight of the lifted fluid from )( vVggv
al

����  to get the buoyancy

force acting on the sphere. Expression (4) implies that the volume of the lifted fluid is Ah
2

.

Inserting (1) and (3) into (2), we can write the dimensionless vertical force balance as
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     (5)

where B = �lR
2g/�� is the Bond number and �1 = �p /�l and �2 = �a /�l are the dimensionless density

parameters.

Notice that the left side of (5), and thus also the right side, lie in the range � � 1sinsin1
CC

������� .

Obviously, (5) cannot be solved if B is too large which may be the case when the particle is too heavy or

too large.  Also, for a suspended hydrophobic heavy particle � ����
C

sin  must be negative or �����
C

.

This is required because, as noted before, the interfacial force acts at an angle of �����
C

 from the

horizontal. Therefore, it acts against gravity only when �����
C

 is positive, otherwise it acts in the

same direction as gravity. For example, if 43��� , for a heavy particle to float 4/
C

��� .

It is noteworthy that as R approaches zero, the interfacial force, which varies linearly with R,

dominates the buoyant weight of the particles which varies as R3. In this limit, since 0gR
2

p ��� , the

right hand side of (5) is zero and thus sin (� + �C) �  0 or �����
C

. We may therefore conclude that

small particles can be suspended along fluid surfaces without causing significant interfacial deformation

no matter how heavy they are. Krahshesky, et al. (1992, 1993) have noted that for particles floating on

water this limit is approximately reached when their diameter is 10 �m. Consequently, the lateral particle-

particle attraction force, which arises due to interface deformation, is also insignificant when the particle

diameter is smaller than 10 �m.
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Even though the above result for small particles was obtained using the static equilibrium equations

for spheres, it is easy to see that it is also true for particles of other shapes, including those containing flat

surfaces. It, in general, implies that the floating height of a small particle must be such that the vertical

component of interfacial force acting on it is zero, as its weight is negligible, which is achieved when

there is negligible interface deformation. For spherical particles, this height is a function of the contact

angle and nothing but the zero of the transcendental function in (1). For example, if 43��� , a small

sphere will float with 4/
C

��� . It also allows us to make the following interesting observation. If the

particle surface consists of straight planes, e.g., a cube settling with its four sides vertical, the interface

deformation, which strictly depends on the contact angle, cannot change when its floating height changes.

The vertical component of interfacial force is therefore also independent of the floating height. This

implies that a small hydrophobic cube must float such that the interface is near the edges of bottom plane,

i.e., there is a negligible penetration of the lower liquid, because otherwise the interfacial deformation,

and thus also the vertical interfacial force, cannot be negligible. The interfacial deformation and force, as

noted earlier, depend only on the normal to the particle surface. This argument assumes that the contact

angle on the particle surface remains fixed and that when the contact line is along an edge the vertical

interfacial force can take any value, between the values corresponding to the two surfaces, required for

equilibrium without noticeable movement of the contact line. Also note that for particles containing flat

surfaces and sharp corners the interfacial force as well as the interfacial deformation change suddenly

when the contact line moves from one flat surface to another, as the direction of the normal to the surface

changes suddenly.

The above statement regarding a sudden change in the interfacial force around corners is true even for

large heavy particles. This was demonstrated in recent experiments of Singh, Joseph, Wang and Bai

(2003) where it was shown that for a cylinder floating such that its top flat surface is exposed to the air

and the curved side and the bottom are immersed, the contact line remains at the corner for a wide range

cylinder weights. The cylinder weight was changed by adding heavy metal balls into a conical cavity on

the top surface. This demonstrates that the vertical interfacial force adjusts to balance the increased

particle weight while the contact line remains “trapped” at the corner.

This was demonstrated in recent experiments reported in Singh, Joseph, Wang and Bai (2003) where

it was shown that the contact line remains “trapped” at the corner even when the weight of a floating

cylinder is changed by adding heavy metal balls into a conical cavity on its top surface. Specifically, they

found that for a cylinder floating such that it is almost completely immersed in the water, except its top

flat surface, the contact line remains at corner for a wide range cylinder weights.

Finally, we note that when particles are partially immersed in a thin liquid film, and their weight is

supported by the substrate below, the interface deformation can be significant even for small particles
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because the above restriction of negligible interface deformation is not applicable in this case. In fact,

Kralchevsky and Nagayama (2000) have shown that in thin films the particle-particle attraction force

increases with decreasing particle size.

1.2 Horizontal force balance and particle clustering

The deformation of a fluid-fluid interface due to floating or trapped particles gives rise to lateral

capillary forces exerted on the particles. A simple explanation is given in figure 2. A heavier-than-liquid

particle will fall down a downward sloping meniscus while an upwardly buoyant particle will rise.

There are several ways to isolate the effects of capillarity uninfluenced by gravity. Poynting and

Thompson (1913) investigated the capillary effect by considering two vertical plates immersed in a liquid,

the space between the plates is a two dimensional capillary tube. If the plates are hydrophobic, the level in

the capillary gap sinks below the liquid outside; if the plates are hydrophilic the levels will rise. Their

argument about the nature of horizontal forces on the plates is given in the caption of figure 5. Repulsion

between particles with different wetting properties is rather short range because it stops when the

meniscus between particles gets flat.

Another way to take away the effects of gravity is to support the particles on a substrate. In this case

the horizontal forces are due to capillary effects alone. Katoh, Fujita and Imazu (1992) studied the motion

of a particle floating on a liquid meniscus surface which could be interpreted as motion on a substrate

because the foaming phlystyrol particles used by them are an order of magnitude lighter than water, and

minimize the effects of gravity compared to capillarity. Their experimental results are completely

consistent with the predictions of Poynting and Thompson: when the sphere and the wall are alike with

respect to wetting; say both are hydrophobic or hydrophilic, the wall and sphere attracts; when they are

unlike the sphere and wall repel.

Despite the well-established importance of the capillary meniscus forces there are only a few

theoretical works devoted to them. Nicolson (1949) was the first to derive an analytical expression for the

capillary force between two floating bubbles by using the superposition of approximation to solve the

Laplace equation of capillarity. A similar approximate method was applied by Chan et al. (1981) to

floating spheres and horizontal cylinders. For horizontal cylinders the alternative approaches were

proposed by Gifford and Scriven (1971) and by Fortes (1982). The theoretical works are based on

solutions of the Laplace equations for capillary menisci of translational or rotational symmetry, where the

Laplace equation reduces to an ordinary differential equation.

For the case where the meniscus slope and the particle size are small, the Laplace equation for the

interface shape was solved using bipolar coordinates by Krahshesky, et al. (1992, 1993). This solution
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provides expressions for calculating the capillary meniscus force between two vertical cylinders, between

two spheres partially immersed in a liquid layer and between a vertical cylinder and a sphere.

Specifically, Kralchevsky and Nagayama have shown that the lateral force Fl acting on the particles of

radii of R1 and R2 separated by distance L is equal in magnitude and opposite in sign and is given by

� �2
k

2

121l
Rq(O1)qL(qKQQ2F ����   when L >> rk.

Here )sin(Rr
ckk

�� , k=1, 2 are the radii of the two contact lines as shown in figure 3, )sin(rQ
kkk

�� ,

where 
k

�  is the interface slope with the horizontal plane at the point of contact, ����� g)(q pl  is the

inverse of the capillary length, K1(x) is the modified Bessel function of the first order. Expression (6) is

valid for particles much smaller than the capillary length. A review of this approach was given in a recent

article by Kralchevsky and Nagayama (2000).

It is worth noting that since the interface curvature decreases with increasing distance from the

particle, i.e., the surface becomes flatter, we may define a region of influence around the suspended

particle within which the capillary force on another particle, due to interface deformation, is not small.

When a suspended particle is within the region of influence of another particle, it will move along the

interface due to the lateral component of the interfacial force (see figure 2).

The above static equilibrium analysis is useful for determining the parameter values for which the

particles can remain trapped on two-fluid interfaces, as well as the sign and magnitude of forces that act

between two suspended particles, but to understand the actual motion of particles on the interface we

must solve the equations of motion. Since the governing equations are complex, the dynamic behavior of

fluid particles is not well understood. Gifford and Scriven (1971) note that “casual observations… show

that floating needles and many other sorts of particles do indeed come together with astonishing

acceleration. The unsteady flow fields that are generated challenge analysis by both experiment and

theory. They will have to be understood before the common-place ‘capillary attraction’ can be more than

a mere label, so far as dynamic processes are concerned.”

To simulate the motion of rigid particles trapped on a two-fluid interface, we must solve the

governing mass and momentum conservation equations for the two fluids, compute the forces acting on

the particles and then move them according to the net force acting on them. This is clearly a difficult

numerical task because the interface shape changes in response to the fluid motion and across the

interface the fluid properties change suddenly and an interfacial force acts between the two fluids.

In addition, we must prescribe the contact angle for the contact line on the particle surface when the

particle or the interface near the particle moves. In this study we will assume that the dynamic contact

angle is the same as the static contact angle. This enforcement of the contact angle on the particle surface

causes the contact line to move which may be described as a capillary induced motion of the contact line
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due to a prescribed contact angle (see Friedrichs and Guceri (1993) and Sussman (2001) and references

therein). This motion of the contact line on the particle surface, however, is in conflict with the no slip

condition for viscous fluids (see Dussan and Davis (1974), Dussan (1976) and Kistler and Scriven (1993)

and references therein). But, since the fluid velocity on the particle surface is the same as that of the

particle, the contact line cannot move unless the contact angle condition is used. An alternative approach

used in some studies is to use a slip boundary condition in a small neighborhood of the contact line (see

Friedrichs and Guceri (1993) and Kamal, Goyal and Chu (1988) and references therein).

In this work the level set method is used to track the interface (see Osher and Sethian (1988),

Sussman, Smereka and Osher (1994), Pillaipakkam and Singh (2001), Sussman (2001)). The level set

method works efficiently on a regular fixed grid and is compatible with the distributed Lagrange

multiplier method (DLM) which will be used to track the motion of rigid particles (see Glowinski, Pan,

Hesla and Joseph (1999) and Singh, Joseph, Hesla, Glowinski and Pan (2000)). The DLM method also

works efficiently on regular fixed grids. It is worth noting that there are several other numerical

approaches available for tracking the interface between two immiscible liquids, e.g., the surface tracking

method (Unverdi and Tryggvason (1992)), the volume of fluid method (Hirt and Nichlos (1981)), the

moving grid methods (Glowinski, Tallec, Ravachol and Tsikkinis (1992)) and the mapping method

(Ryskin and Leal (1984)).

In the level set method, the interface position is not explicitly tracked, but is defined to be the zero

level set of a smooth function 	
��which is assumed to be the signed distance from the interface. In order

to track the interface, the level set function is advected according the velocity field. One of the attractive

features of this approach is that the method does not require any special treatment when a front splits into

two or when two fronts merge.

In our numerical scheme the Marchuk-Yanenko operator splitting technique is used to decouple the

difficulties associated with the incompressibility constraint, the nonlinear convection term, the rigid body

motion constraint and the interface motion. The operator-splitting gives rise to the following four sub-

problems: a L2 projection problem for the velocity and the pressure; a nonlinear advection-diffusion

problem for the velocity; a distributed Lagrange multiplier problem that forces rigid body motion within

the particles; and an advection problem for the interface.

A small number of theoretical studies have looked at the drag and diffusion coefficient of a spherical

particle attached to a fluid interface (Brenner and Leal (1978, 1982); Goldman, Cox and Brenner (1967);

Schneider, O’Neill and Brenner (1973); Majumdar, O’Neill and Brenner (1974) and Wakiga (1957);

Redoev, Nedjalkov and Djakovich (1992); Danov, Aust, Durst and Lange (1995)).
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The only experimental determination of drag coefficients for particles of any size were determined by

Petkov, et al. (1995) for large particles of sub-millimeter radius by measuring the particle velocity under

the action of a well defined external force. They showed that the capillary interactions are quite strong

and very long range. Accelerations, which are very great under many conditions of interest, have not been

studied before.

The outline of the paper is as follows. In the next section we will state the governing equations for the

fluids and the particles, briefly describe the level set and distributed Lagrange multiplier approaches and

present our finite element method. In section 3, we will discuss the convergence study that shows that the

numerical results are independent of the mesh size as well as the time step size and present results for the

transient motion of particles along two-fluid interfaces.

2. Governing Equations

In our numerical studies of particle motion along two-fluid interfaces we will assume that the

fluids are immiscible and Newtonian. The particles are assumed to be rigid and spherical. Let us denote

the domain containing the liquid and N particles by �, the interior of the ith particle by Pi(t) and the

domain boundary by �. The governing mass and momentum conservation equations for the fluid phases

can be written as

�L� �
�

�
�
�

�
�

�

�
uu

u

  . + 

t

  = �Lg - �p + ����� � ��	��n in �\ P(t)

�
. u = 0 in �\ P(t) (6)

u = uL on �� ���

u = U + � x r on )t(P� (8)

with the extra stress tensor ��=2�D, �L��is the fluid density which is different for the two fluids, p is the

pressure, D is the symmetric part of the velocity gradient tensor, ��� is the Dirac delta function, n is the

outer normal at the interface, ��is the surface tension, � is the surface curvature, 	 is the distance from

interface and ��is the viscosity which is different for the two fluids. The surface tension force acts only

along the interface.

The particle velocity U and angular velocity � are governed by

Fg
U

��M
dt

d
M

T
ω

�

dt

d
I (9)

00t
| UU �
�
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00t
| ωω �
�

(10)

where M and I are the mass and moment of inertia of the particle, and F = � �� ds).p( nσI and T =

� �� ���� ds).p()( nσIXx  are the force and torque acting on the particle, respectively. Here X is the

center of particle and the integral is over the particle surface. The particle density will be denoted by 
P

� .

2.1 Particle Motion: The motion of particles is tracked using a distributed Lagrange multiplier method

(DLM) (see Glowinski, et al. (1999) and Singh, et al. (2000)). One of the key features of the DLM

method is that the fluid-particle system is treated implicitly by using a combined weak formulation where

the forces and moments between the particles and fluid cancel, as they are internal to the combined

system. The flow inside the particles is forced to be a rigid body motion using the distributed Lagrange

multiplier method. This multiplier represents the additional body force per unit volume needed to

maintain rigid-body motion inside the particle boundary, and is analogous to the pressure in

incompressible fluid flow, whose gradient is the force needed to maintain the constraint of

incompressibility.

2.2 Interface Tracking: The interface position in our code is tracked by using the level-set method see

Osher and Sethian (1988), Sussman, et al. (1994), Pillaipakkam and Singh (2001), Sussman (2001)). The

key idea in this method is to define a scalar variable 	, which is equal to the distance from interface, and

to advect it with the local velocity, i.e.,

0
t

����
�

��
.u .  (11)

As 	 is a smooth function, it is relatively easy to numerically solve the above equation to update the

interface position. In our implementation, it is assumed to be negative for the upper fluid, positive for the

lower fluid and zero along the interface. The method also allows us to enforce the contact angle on the

rigid particle surfaces and it is relatively easy to implement it in both two and three dimensions.

The contact angle boundary condition on the particle surface which requires that n.n� =cos(�),

where n is the unit outer normal on the particle surface and 
��

��
��n  is normal to the interface, is

enforced using the approach described in Sussman (2001). Sussman used this approach to prescribe the

contact angle on a stationary flat wall by extending 	 to the "outside" of the fluid domain. In this article

the same approach is used to prescribe the contact angle of the two-fluid interface on the surface of a

moving sphere. Let us define t and n2 as
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Notice that t is tangent to the contact line, and thus n2 is orthogonal to the contact line and lies in the

tangent plane of the particle surface (see figure 6b). The next step is to construct a unit vector uex which is

tangent to the interface with contact angle �, points inwards, and�lies in the plane formed by n and n2. It

is easy to verify that uex depends on c = n�.n2 and is given by

�
�
�

�

�
�
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2
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u (12)

To enforce the prescribed contact angle condition on the particle surfaces, 	 is extended inside

particles and on their surfaces by solving

0
t

����
�

��
.

ex
u . (13)

In other words, for all nodes inside and on the particle surface the above equation is used to modify 	.

The resulting extended level set function satisfies the contact angle condition on the particle surface.

It is worth noting that the contact line on the particle surface moves when the contact angle

condition is enforced using (14). This approach has been used in many past numerical studies of problems

involving moving contact lines (see Friedrichs and Guceri (1993) and Sussman (2001) and references

therein). For example, in the injection molding problems this approach has been used to track the motion

of liquid front advancing into empty molds.

Clearly, this motion of the contact line on the particle surface is in conflict with the noslip

condition for viscous fluids (see Dussan and Davis (1974), Dussan (1976) and Kistler and Scriven (1993)

and references therein). However, if the contact line position on the particle surface is not updated using

the contact angle condition, the contact line cannot move because the fluid velocity on the particle surface

is the same as that of the particle. This could be called the capillary induced motion of the contact due to a

prescribed contact angle. The no slip condition is satisfied before and after the contact line moves. An

alternative approach used in some studies is to use a slip condition in a small neighborhood of the contact

line to ensure that it moves (see Kamal, Goyal and Chu (1988) and references therein). The slip velocity

of the contact line is assumed to be proportional to the shear stress on the wall. This approach however

does not ensure that the contact angle remains constant. Another aspect of the floating particle problem
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not treated here is that the contact angle for advancing and receding contact lines is different which can

change the dynamical behavior of floating particles.

2.3 Reinitialization of 	

The level set function 	�is reinitialized to be a distance function after each time step by solving

the following equation obtained in Sussman, et al. (1994) to the steady state

)(S
t

0
�����

�

��
.w (14)

where 	0 is the distribution to be reinitialized and

��

��
�� )(S
0

w .

Here S(	0) is the sign function, i.e., S(	0) = 1 if 	0 > 0 and S(	0) = -1 if 	0 < 0. In order to avoid

discontinuities, in our code we use the following smoothed sign function

22

0

0

0

h
)(S

��

�
�� ,

where h is equal to one and half times the element size. Equation (14) is a first order hyperbolic partial

differential equation which is solved using a positive only upwinding scheme described in Singh and Leal

(1993). Clearly, the characteristics of (14) point in the direction of w.  Therefore, for the points inside the

upper fluid w points upwards away from the interface and for the points inside the lower fluid it points

downwards. Thus, (14) can be solved by specifying the boundary condition 	�= 	0 at the two-fluid

interface 	����.

2.4 Variation of fluid properties across the interface

In our finite element scheme the fluid viscosity is assumed to take a jump across the interface,

i.e.,

            �l if 	�< 0

��   0.5(�l + �u) if 	�= 0 (15)

�������������u if 	�> 0.

Here �l and �u are the viscosities of the lower and upper fluids, respectively. In other words, the nodes

that are above the interface have the upper fluid viscosity and the nodes that are below the interface have
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the lower fluid viscosity. The fluid density, on the other hand, is assumed to vary smoothly across the

interface

            �l if 	 < -h

�� �u if 	 > h (16)

0.5(�l + �u )+ 0.5(�l - �u) �
�

�
�
�

� ��

h2
sin otherwise

where h is equal to one and half times the element size, and �l and �u are the densities of the two fluids,

respectively. This smoothing of the density is similar to that in Sussman, et al. (1994), and is needed for

avoiding numerical instabilities for relatively large density ratio �l/�u.

The surface tension force is smoothed and acts only on the elements for which 	 is smaller than h.

This is done by approximating ��	��in (6) by a mollified delta function )(
h
��  using the approach

described in Sussman, et al. (1994):

)(
h
�� =

� �
h2

h/cos(1 ���
for |	| < h (17)

0 otherwise

The error introduced by smoothing of the surface tension force is O(h). Also note that equations

(16) and (17) require that 	�be maintained as a distance function which we do in our implementation by

reinitializing 	�after each time step.

2.5 Weak form of equations and finite-element discretization

The approach used for obtaining the weak form of the governing equations stated in the previous

section was described in Glowinski, et al. (1999) and Singh, et al. (2000). In obtaining this weak form, the

hydrodynamic forces and torques acting on the particles can be completely eliminated by combining the

fluid and particle equations of motion into a single weak equation of motion for the combined fluid-

particle system. The hydrodynamic stresses acting at the interface are also completely eliminated. For

simplicity, in this section we will assume that there is only one particle. The extension to the many-

particle case is straightforward.

The solution and variation are required to satisfy the strong form of the constraint of rigid body

motion throughout P(t). In the distributed Lagrange multiplier method this constraint is removed from the

velocity space and enforced weakly as a side constraint using a distributed Lagrange multiplier term. It
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was shown in Glowinski, et al. (1999) that the following weak formulation of the problem holds in the

extended domain:

For a.e. t>0, find u � �uW , p � )(L2

0
� , ��� )t(� , U � R3, ��� R3 and 	 � �W , satisfying

)t(P

'

d

L

L

)(,d)(.
dt

d
I

dt

d
M1

d][:][2d.pd
dt

d

rξVvλxvnVFξ
ω

Vg
U

xvDuDxvxvg
u

��������	��


�

�

�

�
��


�

�

�

�
�



�

�

�

�

�

�
��

�����

�

�

�

�
��

�

���

�

���

for all v � 0W , V � R3, and ��� R3, (18)

0d.q �� �
�

xu for all q � )(L
2
� , (19)

)t(P
)(, rUuµ ���� = 0 for all ��� )t(� , (20)

o0t
| uu �� in �, (21)

0dg
t

���
�

�
��
�

�
�	


�

��
�� x.u for all g � W��, (22)

00t
| ���
�

in �.

as well as the kinematic equations and the initial conditions for the particle linear and angular velocities.

Here F’ is the additional body force applied to the particles to limit the extent of overlap (see equation

(19) in Glowinski, et al. (1999)), � is the distributed Lagrange multiplier,

},on)t(|)(H{W 31

u �����
�� uvv

,)(HW 31

00 ��

}0dq|)(Lq{)(L 22

0 �� ����� x ,

},on)t(|)(H{W
0

1 �
� ��������

},on0|)(H{W 1

0

�
� �������

}0dq|)(Lq{)(L 22

0 �� ����� x , (23)

where 
�

�  is the upstream part of �  and )t(�  is 32 ))t(P(L , with 
)t(P

.,.  denoting the L2 inner product

over the particle. In our simulations, since the velocity and � are in L2, we will use the following inner

product

� � xvµvµ d.,
)t(P)t(P �� . (24)
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In order to solve the above problem numerically, we will discretize the domain using a regular

tetrahedral mesh Th for the velocity, where h is the mesh size, and a regular tetrahedral mesh T2h for the

pressure. The following finite dimensional spaces are defined for approximating �uW , 0W , )(L
2
� ,

)(L2

0
� , �W  and 

0
W� :

}on,TTallforPPP||)(C{W h,hh111Th

30

hh,u ���������
��

uvvv ,

}on0,TTallforPPP||)(C{W hh111Th

30

hh,0 ��������� vvv ,

}TTallforP|q|)(Cq{L
h21Th

0

h

2

h
����� ,

}0dq|Lq{L h

2

hh

2

h,0 �� ��� x ,

}ong,TTallforP|g|)(Hg{W
n

hh1Th

1

h

n

h,

�

��������
�

}on0g,TTallforP|g|)(Hg{W hh1Th

1

hh,0

�
� �������

interface}theon0g,TTallforP|g|)(Hg{W hh1Th

1

hh,R ������� . (25)

The particle inner product terms in (18) and (20) are obtained using the discrete L2 inner product defined

in Glowinski, et al. (1999). Specifically, we choose M points, x1,…,xM that uniformly cover )t(P , and

define

��

�
�
�

��

�
�
�

�	
�� �
�

M

1i

3

M,h1,hii,hhh ,...,),()t( RµµxxµµµΛ  .

Using these finite dimensional spaces, it is straightforward to discretize equations (18) - (22). Notice that

the discrete space h,W�  assumes that � is known on the upstream portion of the boundary. This is not a

problem even when �(t) is not known on the upstream boundary in advance because the imposed

boundary value can be corrected during the reinitialization step. Also notice that since only the zero level

set of �(t) is physically relevant, we have a lot of freedom in treating �(t) away from the interface. In our

code, the value from the previous time step is used as the boundary value. Also note that the

reinitialization space h,RW�  assumes that � remains zero along the interface which is done by imposing

Dirichlet boundary condition, ��= 0, along the interface during reinitialization iterations.

2.6 Strong form
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The strong form for the weak formulation can be obtained by integrating the stress term by parts. The

resulting equations inside the region occupied by the fluid �\ )t(P are

�L� �
�

�
�
�

�
�

�

�
uu

u

  . + 

t

  = �Lg - �p + ������ � 	
���n in �\ P(t)

�
. u = 0 in �\ P(t)

u = uL on ��

u = U +  x r on )t(P�

and the equations inside the region occupied by the particles P(t) are

�L� �
�

�
�
�

�
�

�

�
uu

u

  . + 

t

  = �Lg - �p +���(2�D) + λλ
22

R ��

u = Ui + i x ri on )t(P
i

� , i=1,…,N,

Here we have used the fact that the rigid body motion satisfies the incompressibility constraint and that D(u)

inside the particles is zero. The boundary condition for � on the interface between the fluid and particle regions

� P(t) is

λnn ���� .).(
L

where n is the normal at the fluid-particle interface, and ��
L

-pI ���2�D is the stress in the fluid phase, and

P
� = 0 is the stress inside the particles. For given U(t) and (t), and the positions Xi(t), i=1,…, N, equation

(26) can be written as:

λλ
22

R �� = �
�

�
�
�

�
��	�	
�

	

� grr

U
)(

dt

d

dt

d
L

2.7 Time discretization using the Marchuk-Yanenko operator splitting scheme

The discretized initial value problem (18-22) is solved by using the Marchuk-Yanenko operator

splitting scheme. This allows us to decouple its four primary difficulties:

1. The incompressibility condition and the related unknown pressure ph,

2. The nonlinear convection term,

3. The rigid body motion problem inside the particles,

4. The interface problem and the related unknown level set distribution �h,

The Marchuk-Yanenko operator splitting scheme can be applied to an initial value problem of the

form
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f)(A)(A)(A)(A
dt

d
4321

���������
�

where the operators A1, A2, A3, and A4 can be multiple-valued.

Let �t be the time step, and �� and �� be two constants: 0���, �� �1 and �� + �� �= 1. We use the

following version of the Marchuk-Yanenko operator splitting to simulate the motion of particles on two-

fluid interfaces:

Set u0 = u0,h,  and 
h,0

0 ��� .

For n = 0,1,2,… assuming un, and �n are known, find the values for n+1 using the following:

STEP 1:

Find un+1/4 � 
h,u

W  and pn+1/4  � 
2

h,0
L , by solving

��� ���

�

��������
	

�



�

xvnxvxv

uu

d)(d.pd.
t

4/1n
n4/1n

L

for all v � 
h,0

W ,

0d.q 4/1n ����
�

xu for all q � 
2

h
L , (26)

STEP 2:

Find un+2/4 � 
h,u

W , by solving

0d][:][2d.).(d.
t

4/2n

1

4/2n4/2n

L

4/1n4/2n

L
�������

�

�
� �

��

��

�

��

��� xvDuDxvuuxv
uu

for all v � 
h,0

W , (27)

STEP 3:

Compute Un+3/4 and Xn+3/4 using the prediction procedure

Set Un,0= U
n, Xn,0 = X

n.

Do k=1,K

U
*n,k = Un,k-1 + 

K

t
)X('FM1 1k,n1

1

d

L �
�
�

�

�

�
�

�

�

��
�

�
��
�

�

�

�
	
 ��

�

g
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X
*n,k = Xn,k-1 + 

K

t

2

k,n*1k,n �
��
�

�
��
�

� ��

UU

U
n,k = Un,k-1 + 

K

t

2

)X('F)X('F
M1

1k,n*1k,n

1

1

d

L �
�
�

�

�

�
�

�

� �
��
�

�
��
�

�

	

	

�

��

�

�

g

X
n,k = Xn,k-1 + 

K

t

2

k,n1k,n �
��
�

�
��
�

� ��

UU

end do

Set Un+3/4= U
n,K, Xn+3/4 = X

n,K. (28)

Find un+1 � 1n

h,u
W

�

�
, �n+1 �� )t)4/2n((

h
��� , Un+1  � R3, and �n+1 �� R3, satisfying

)t)4/3n((P

4/3n1n1n

4/3n1n4/3n1n

d

L
4/2n1n

L

)(,d][:][2

t
I.

t
M1d.

t

��

���

�

����

�

��

������

���
�

	



�

�



�
�



�
��
�

	



�

�

�

�
��



�
�

�

�

rξVvλxvDuD

ξ
ωω

V
UU

xv
uu

for all v � 
h,0

W , V � R3, and ��� R3

)t)4/3n((P

1n1n1n
h )(,

��

���
��� rωUuµ = 0 for all 

h
µ �� )t)4/3n(( ��Λ , (29)

where the center of particle )t)4/3n((P ��  is at 4/3n
X

� .

Set Xn+1,0 = X
n.

Do k=1,K

X
*n+1,k = Xn+1,k-1 + 

K

t

2

1nn �
��
�

�
��
�

� � �

UU

X
n,k = X*n,k-1 + 

K2

)t(

2

)X('F)X('F
M1

2k,1n*1k,1n

1

1

d

L �
��
�

�
��
�

� �
��
�

�
��
�

�

	

	



���

�

�

end do

Set Xn+1 = X
n+1,K.

STEP 4:

Find �n+4/4 � 
n
h,W� , by solving
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0dg
t

h

1n1n

n4/4n

���
�

�
��
�

�
�	


�
���

��
��

�

x.u

for all gh � W��,h. (30)

Set pn+1= pn+1/4, �n+1
����

n+4/4.

STEP 4.1:

Reinitialize �
 n+1

Set 
0

R
� =�n+1

For r = 0, 1, 2, …

r

R

r

R1nr
)(S

��

��
��

�
w

Find 
1r

R

��  � 
h,R

W� , by solving

� ��� �
�

�

�

�
�

�

	
�
�

��� �

�

�

�
�

xx dg)(Sdg
t

h
1n

h
r
R

r
r
R

1r
R

.w

for all gh � W�R,h. (31)

go back to the above for loop.

STEP 4.2:

Modify �n+1 inside and on the particle surfaces to enforce contact angle

0
t

����
�

��
.

ex
u

Set 
0

R
� =�n+1

For r = 0, 1, 2, …

�
�
�

�
otherwise)12(from

particlesoutside0

ex

r

ex

u

u

Find 
1r

R

��  � 
h,R

W� , by solving
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0dg
t

h

r

R

r

r

R

1r

R ��
�
�

�
�
�
�

�
�	


�

���
��

�

x.

ex
u

for all gh � W�R,h. (32)

go back to the above for loop.

Set �n+1 = 
1r

R

��  and go back to the first step.

The decoupled sub-problems can be solved much more efficiently than the original problem (18-22). In

our code all of these sub-problems are solved using matrix-free algorithms, which reduces the memory

required.

Remarks:

1. The first step gives rise to a L2 projection problem for the velocity and pressure distributions which is

solved by using a conjugate gradient method (Glowinski, Tallec, Ravachol and Tsikkinis (1992) and

Glowinski, et al. (1999)).

2. The second step is a nonlinear problem for the velocity, which is solved by using a least square

conjugate gradient algorithm (Glowinski and Pironneau (1992)).

3. In this paper, we will assume that ���=1, �������

4. The fourth step is a hyperbolic problem for the scalar level set function �. This problem is solved by

using a upwinding scheme where the advection term is discretized using a third order scheme (Glowinski

and Pironneau (1992) and Pillaipakkam and Singh (2001)).

5. After advecting ��according to (30), we reinitialize ��to be a distance function near the interface by

performing one or two iterations of (31) using a fast algorithm developed in Pillaipakkam and Singh

(2001). The interface position �(t) = 0 does not change during these reinitialization iterations. It is

necessary to re-initialize � to ensure that the scheme accurately conserves mass.

6. The level set function is extended inside and on the surface of the particles such that the contact angle

is 135 degrees by performing one or two iterations of (32).

3. Results

In this section we discuss the numerical results obtained using the above algorithm for the motion

of spherical particles trapped on two-fluid interfaces. The domains used in our simulations are box shaped

with rectangular cross sections. Simulations are started by assuming that the higher density fluid is at the

bottom and the lower density fluid is at the top and the interface between the two fluids is flat. The
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coordinate system used throughout this paper is shown in figure 7. The x-, y- and z-components of

particle velocity will be denoted by u, v and w, respectively.

We will also assume that all dimensional quantities, unless otherwise noted, are in the CGS units.

The lower fluid density �L=1.0 gm/cm3 and viscosity is 1.0 Poise. The density and viscosity of the upper

fluid are varied and the particle density is assumed to be greater than one. The particle diameter is

assumed to be 0.2 cm. The interfacial tension value is selected to ensure that the particle remains

suspended along the interface. The dynamic contact angle is assumed to be equal to the static contact

angle which is assumed to be 135 degrees. The acceleration due to gravity g=981.0 gm/cm2 and acts

along the negative z-direction. The initial fluid velocity is assumed to be zero everywhere. The initial

particle velocities are also assumed to be zero.

No slip boundary condition is applied on the surface of the box shaped computational domains.

The contact angle between the interface and the box boundaries is assumed to be 90 degrees which

ensures that the interface near walls is flat and, as noted above, the contact angle between the interface

and the particle is assumed to be 135 degrees.

We next present the results of several simulations, to demonstrate that the scheme works

correctly, and that it reproduces the expected dynamical behavior and the static equilibrium state.

3.1. Motion of a single particle

In this subsection we investigate the case where a single spherical particle is released along the

interface, i.e., the contact line intersects the particle surface1, at a position which is different from that for

static equilibrium. The initial interface shape is assumed to be flat, except near the particle surface where

a contact angle of 135 degrees is prescribed (see figure 6). The parameters are the range for which a

particle trapped on the interface can be in static equilibrium. The equilibrium interface shape and the

particle floating height depend on the problem parameters.

As discussed in section 1, a particle trapped on a two-fluid interface can be in a state of static

equilibrium, even when it is heavier than both liquids, provided its buoyant weight is balanced by the

vertical component of capillary force. Also, in equilibrium, the interface shape must be such that the

interfacial tension is exactly balanced by a jump in the pressure across the interface and therefore no fluid

flow is induced. However, when a particle is suddenly released along the interface, the interface shape

evolves to the equilibrium shape in a finite time interval. During this time interval, the velocity field in the

                                               
1
 If the initial particle position was such that the contact line did not intersect the particle surface, then we

would also need to address the problem of an interface coming in contact with a solid surface. This would

require us to include additional physics to specify the conditions under which an interface can touch a

solid surface. This physics is not included in the current version of our code.
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two fluids is non-zero and the interfacial force acting on the particle varies. As a result, the particle

velocity and its vertical position relative to the interface change with time. The final static state, as

described by analytical expressions (1-3), however, is independent of these transients and can be used to

verify the accuracy of numerical results.

We first present results that show that the trajectory of a particle released along the two-fluid

interface is independent of the mesh resolution and the time step. We have used two regular tetrahedral

meshes to show that the results converge with mesh refinement. In a tetrahedral element there are seven

velocity and four pressure nodes. The rigid body constraint inside particles is enforced using uniformly

distributed collocation points. The number of velocity nodes and elements in the first mesh are 117,649

and 13,824, respectively. In the second mesh, referred to as mesh B, there are 249,985 velocity nodes and

124,416 elements. The time step for these simulations is 0.0001, 0.00005 or 0.000025.

The particle density is 1.05 gm/cm3 and the interfacial tension is 16.0 dynes/cm. For the upper

fluid density is 0.1 gm/cm3 and the viscosity is 0.1 Poise. The initial velocity distribution in the fluid, and

the particle’s linear and angular velocities are assumed to be zero. The domain is assumed to cubical with

sides 0.4 cm. The particle center is at a distance of h=0.02 cm above the undeformed interface which

passes though the domain center.

From figure 8, where w is plotted as a function of time for three different values of time step and

two different mesh resolutions, we note that when the time step is reduced or when the mesh is refined the

variation of w with time remains approximately the same. This allows us to conclude that the numerical

results converge with both mesh and time step refinements.

From figures 8 we notice that the vertical component of particle velocity w increases for t<~0.005

s and then it starts to decrease. It becomes negative for t=~0.019 s and then increases again and becomes

very small and fluctuates around zero for t>~0.06 s. The other components of velocity u and v remain

small for all times. We will assume that for t=0.06 s the particle has reached a state of static equilibrium

with h2=0.156R and 
c

� ��	�
����These values are in good agreement with the static equilibrium

requirements (1-3), as discussed in table 1. We may therefore conclude that the state of static equilibrium

is captured correctly by our code.

In order to understand the reason for the initial increase in w, we notice that the angle �c, i.e., the

position of the contact line on the particle surface, in figure 7a is larger than that for the equilibrium state

shown in figure 7b (also see figure 6). Thus, from figure 3 it is clear that the vertical component of

interfacial force is initially larger and as a result the particle moves upwards. This is a consequence of the

fact that initially the interface is approximately flat everywhere except near the particle surface (see figure

7a). But, with increasing time, due to the interfacial tension the fluid level around the particle decreases

and the interface takes its characteristic parabolic shape. Thus, the contact line position on the particle
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surface moves downwards and the vertical component of interfacial force decreases. Also notice that the

vertical component of the pressure force in figures 7a and b are different, but in figure 7a the fluid

velocity is not small and so the pressure force cannot be determined using hydrostatics.

To verify our code further, we performed calculations for five different values of interfacial

tension � while keeping the other parameters fixed. Figure 9 shows that, as expected, when � is smaller

the particle sinks to a greater depth. In table 1 we have listed the floating heights and the sum of the

pressure and vertical component of interfacial forces acting on the particle for these five values of the

interfacial tension. For all cases in equilibrium, as required, 
cp

FF �  is approximately equal to the

particle’s weight. There are small differences due to numerical errors.

In table 2 we have listed the floating heights for two additional cases where the density of the

upper fluid is 0.01 gm/cm3 and 0.0016 gm/cm3 and the corresponding viscosities are 0.033 Poise and

0.0166 Poise. The interfacial tension is 16.0 dynes/cm. The step used for these calculations was 2x10-5.

The domain was discretized using mesh B described above. The other parameters are the same as above.

The table shows that as expected the floating height decreases slightly when the density of the upper is

reduced as for the case considered above it is already a fraction of that for the lower fluid. The time step

required, however, is smaller and decreases as the ratio of lower and upper density increases. The same is

true when the viscosity ratio is large.

The static equilibrium analysis, presented in section 1, assumes that the fluid extends to infinity in

the x-, y- and z-directions which is not the case for our simulations. This may also explain some

difference between our simulations and the analytical results. These differences are expected to decrease

with increasing box size. We also wish to note that for our simulations the magnitude of fluid velocity

decreases as the state of equilibrium is approached, but it does not decrease beyond a value that depends

on the fluid viscosity, surface tension and the interface curvature. The flow develops steady spurious

circulation cells around the interface that are similar those seen in simulations of drops (Scardovelli and

Zaleski (1999)). It has been noted by D.D. Joseph that these circulation cells arise in simulations because

the discretized equation for the vorticity, which can be obtained by taking the curl of the momentum

equation, contains a non zero contribution from the surface tension term. This creates vorticity along the

discretized interface which diffuses into the domain. The presence of these cells, however, does not seem

to affect the overall force balance, discussed in table 1, for static equilibrium.

3.2. Motion of two particles

We next present results for the case where two spherical particles are released near each other

along the interface at the same vertical height. The initial interface position is assumed to be flat, except

near the particle surfaces where a contact angle of 135 degrees is prescribed. The initial vertical height of
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the particles is different from that for the static equilibrium of a single particle. The parameters are

assumed to be in the range for which the particles trapped on the interface can be in static equilibrium.

For these calculations the particle density is 1.05 gm/cm3. The interfacial tension is 16.0

dynes/cm. The upper fluid density is 0.01 gm/cm3 and the viscosity is 0.033 Poise. The initial velocity

distribution in the fluid and the particle velocities are assumed to be zero. The domain height is 0.5 cm.

The width along the x-direction is 0.5 cm and along the y-direction is 1.0 cm. The undeformed interface

passes though the domain center and initially the particle centers are at a height of h=0.02 cm above the

interface. The initial distance between the particles in the y-direction is 1.2 R. The mesh resolution is

comparable to that for the coarse mesh in section 3.1. The number of velocity nodes and elements are

141,285 and 16,184 respectively.

We have already noted that when two or more particles released along the interface are close they

move towards each other due to the action of the lateral component of interfacial tension which arises due

the asymmetric deformation of the interface around the particles. Figure 10a shows that for t=0.02 the

interface shape is deformed in a small region around the particles and away from the particles it is

relatively flat and there is no lowering of interface between the particles. Hence, at this time, the particles

do not experience any lateral attractive force. But, as was the case for a single particle, the interface

height around the particles decreases as t increases and, as a result, the contact lines for both particles

move downward. The vertical component of interfacial force which is initially larger than the steady state

value causes the particles to move upward, but as the contact lines move downward the vertical interfacial

force decreases and the vertical particle velocities become negative. After, this initial motion for t<~0.05

s, the vertical particle velocities become relatively small, but, as discussed below, remain negative as the

particles approach each other. These initial transients in the vertical component of particle velocities

could be diminished by setting their initial positions and interface shape close to that for the equilibrium

of an isolated particle. This would however complicate the problem of prescribing initial conditions and

make the problem less realistic.

In figure 10b the particle positions and the interface shape are shown at t=0.59. Due to the

lowering of the contact lines on the particle surfaces the interface height between the particles is also

lowered. This leads to further lowering of the contact lines between the particles. Consequently, the

interface shape and the contact lines for the particles are no longer symmetric about the vertical through

their respective centers. Thus, the lateral component of interfacial force acting on the particles is not zero

which causes them to move toward each other. As the particles move toward each other, the interface

shape evolves throughout the domain. The time taken for the lowering of the contact lines between the

particles depends on the distance between the particles which in this case is relatively short as the

particles are relatively close to each other.
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The particle positions and interface shape at t=0.82 are shown in figure 10c; The interface height

and the contact line positions between the particles are significantly lower than on the sides. Thus, the

magnitude of the attracting interfacial force in figure 10c is larger than for figure 10a. This is also seen as

an increase in the approach velocity v2-v1 in the lateral component of particle velocities plotted as a

function of time in figure 11. The simulations were stopped at t=1.05 when the distance between the

particles reduced to 0.012. The interface shape at this time is shown in figure 10d. Notice that the

interface height between the particles in this figure is even lower and the interface shape is flatter.

Another interesting consequence of the lowering of interface height and contact lines between the

particles, as they approach each other, is that there is a decrease in the vertical component of interfacial

force acting on the particles. The vertical component of interfacial tension acts against gravity and keeps

them floating on the interface even though they are heavier than both liquids. This decrease in the vertical

interfacial force causes the floating height of the particles to decrease slightly (see table 3). For example,

the height for a single particle in section 3.1 for the same parameters was 0.419, but for the two particles

in figure 10d it is 0.375, where they are almost touching. This decrease in the floating height raises the

contact line position everywhere on the particles and the vertical component of interfacial force increases

back to the value required for balancing the buoyant weight. It is worth noting that when the parameters

are such that for an isolated particle the sum of the vertical component of the interfacial and pressure

forces is near its maximum value, a decrease in the floating height would actually decrease the vertical

component of total force. Therefore, if the particles are barely floating a decrease in the floating height

will lead to the sinking of both particles. This suggests that the clusters of particles are more likely to sink

than an isolated particle.

3.3. Motion of four particles

Finally, we consider the case where four spherical particles are released near each other along the

interface at the same vertical height. The initial interface position is assumed to be flat, except near the

particle surfaces where the contact angle is assumed to be 135.

For these calculations the particle density is 1.05 gm/cm3 and the interfacial tension is 16.0

dynes/cm. The upper fluid density is 0.1 gm/cm3 and the viscosity is 0.1 Poise. The motion starts from

rest. The domain height is 0.4 cm. The width along x-direction is 0.8 cm and along y-direction is 0.8 cm.

The undeformed interface passes though the domain center. The initial positions of the four particles are

(0.4,0.22,0.22), (0.4,0.58,0.22), (0.23,0.4,0.22) and (0.57,0.4,0.22). The mesh resolution is the same as for

the coarse mesh in section 3.1.

In this case, as for the single and two-particle problems, after initial variations in the vertical

components of particle velocities, the particles begin to move toward each other. Their vertical velocity
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becomes small at t=0.05 and around this time the interface height between the particles begins to

decrease. 

In figures 12a and b the particle and interface shape are shown at t=0.02 and 0.96, respectively. In

the first figure the interface shape between particles is not significantly deformed and the lateral velocities

are small and in the second figure the interface height between the particles is already lowered. The

interface shape and the contact lines for the particles are no longer symmetric and thus the lateral

component of interfacial force acting on the particles is not zero which causes them to move laterally

towards each other.

As particles approach each other, the vertical component of interfacial force decreases due to the

lowering of interface height between the particles and thus the floating height of the particles decreases

slightly (see figure 12b). For example, the height for a single particle in section 3.1 for the same

parameters is 0.419, for the two particle case it is 0.375, and for the four particles in figure 12b, where

they are almost touching, it is 0.355. 

4. Conclusions

This is the first paper on the direct numerical simulation of the motion of solid floating particles.

A floating particle, embedded in the interface between two fluids, touches the interface at a fixed contact

angle, which at equilibrium given is by Young's law. The problem of the motion of contact line is difficult

and unsolved. The problem is that the no slip condition implies that the contact point cannot move which

contradicts the behavior seen in experiments (see Dussan and Davis (1974), Dussan (1976) and Kistler

and Scriven (1993) and references therein). Several approaches to this problem have been proposed and

could be implemented in direct numerical simulations (see Sussman (2001), Friedrichs and Guceri (1993),

Kamal, Goyal and Chu (1988), and references therein). Here we look at one approach which could be

called capillary induced motion of the contact line due to a prescribed contact angle. In this approach we

let the contact line adjust to the dynamics under the constraint that the contact angle is fixed. The no slip

condition is satisfied before and after the contact line moves. In another approach, not implemented here,

the contact line is allowed to slip by relaxing the no slip condition by putting the velocity of the contact

line proportional to the shear stress there. This approach requires us to relax of the prescribed contact

angle condition. Another feature, not treated here, which impacts the floating particle problem is the

existence of advancing and receding contact angle. The subject is very rich with many possibilities that

might be studied in direct simulations.

The Marchuk-Yenenko operator-splitting technique is used to decouple the four primary

numerical difficulties of the governing equations: incompressibility constraint, nonlinear convection term,

Lagrange multiplier problem that forces rigid body motion within the particles, and the interface
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advection problem. The resulting four sub-problems are solved efficiently using matrix free approaches.

Specifically, the DLM approach is used for enforcing rigid body motion inside the particles, the level set

approach for tracking the interface and the conjugate gradient algorithms are used to enforce the

incompressibility constraint and to solve the nonlinear convection problem. The code is validated by

simulating the time dependent motion of a particle released on a two-fluid interface to steady state. Our

simulations show that the interface shape near a particle adjusts quickly after it is released to meet the

contact angle requirement, but away from the particle the interface shape takes a much longer time

interval to adjust during which the vertical position of particle changes. The obtained results are shown to

be independent of the mesh resolution as well as the size of time step. We also show that the steady state

results of our dynamic simulations agree with the static equilibrium results. The time dependent

simulations of two or more floating particles show that they attract each other and form clusters. The

attractive capillary force arises due to the asymmetric interface deformation around the particles.

Specifically, the interface height between the particles is lowered which gives rise to a lateral attractive

force due to gravity and capillarity. This lowering of the interface also decreases the net vertical

component of the interfacial force which causes the floating height of the particles to decrease. These

results agree qualitatively with the experimental data as well as the static equilibrium analysis.
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6. Figures

Figure 1. Neutrally buoyant glass beads cluster in water.

Figure 2. Spherical particles in water, (a) heavier-than-water hydrophobic particles. The meniscus

between the particles is below the undisturbed level. Assuming that the contact angle remains fixed,

the horizontal component of capillary force moves them toward each other. (b) Lighter-than-water

hydrophilic particles will rise into the elevated section of the meniscus and come together.

Figure 3.  Hydrophobic and hydrophilic particles in static equilibrium. The position of the contact ring

determines the angle �C. The point of extension of the flat meniscus on the sphere determines the

angle ���.

Figure 4.  For the contact angle 4/3��� , � � � �����
cc

sinsin  is plotted as a function of 
C

� . Notice that

the vertical component of interfacial force 
C
F  given by (1) is negative for 

C
� < 4/�  and maximum for

9.1
C
�� .

Figure 5. (After Poynting and Thompson 1913). Horizontal forces associated with the fall (a) of liquid

between hydrophobic plates and the rise (b) of liquid between hydrophilic plates. In (c)  and (d) one plate

is hydrophilic and the other hydrophobic. The contacts on both sides of a plate are the same and the

tension � is constant. They argue that the net horizontal force due to � can be calculated at flat places; so

that there is no net horizontal component of the tension. In (a) and (b) the pressures are such that they

push the plates together; there is no net attractive force in (c). In (d) the plates are so close that there is no

flat place, then the horizontal projection � sin � of the slope tan ��of the interface midway between the

plates is smaller than the horizontal component � outside the plates and the plate are pulled apart; they

repel. They note that “…small bodies, such as straw or pieces of cork, floating on the surface of a liquid

often attract each other in clusters; this occurs when the bodies are all wet by the liquid and also when

none of them is wet; if one body is wet and one is not wet, they repel each other.”

Figure 6. (a) A schematic of the interface shape and the contact line are shown for the initial and steady
states. In simulations the contact angle on the particle surface is prescribed to be 135 degrees which is
done by extending the level set function to the inside of particle. Notice that the contact line move
downwards because of the interface deformation near the particle and this decreases the vertical
component of interfacial tension force. (b) The unit normal to the particle surface, the tangent to contact
line and the normal to the interface are shown.

Figure 7. The vertical component of velocity w for a particle released along the interface is shown as a
function of time for three different values of the time step. The curve marked mesh B is for a more refined
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mesh.  The density and viscosity of the lower fluid are 1.0 gm/cm3 and 1.0 Poise and that of the upper
fluid are 0.1 gm/cm3 and 0.1 Poise. The interfacial tension is 16.0 dynes/cm and the particle density is
1.05 gm/cm3.

Figure 8. The particle position and the interface shape and the velocity field in the domain midsection are

shown. 1—oblique view, 2—side view and 3—velocity field (a) t=0.003, (b) t=0.08.

Figure 9. The particle position and the corresponding interface shape are shown in the domain midsection.
For the bottom circle and the interface shape the surface tension is 10 and for the top circle and the
interface shape it is 25. The depth to which a particle sinks into the lower fluid decreases with increasing
value of the surface tension.

Figure 10. The positions of two rigid particles suspended on the two-fluid interface and the velocity
distribution at the domain midsection are shown at t=0.02, 0.59, 0.82 and 1.05. They are moving towards
each other on the interface. Notice that the particles are "supported" by the capillary force which arises
due to the deformation of the interface. The surface tension is 16.0 dynes/cm, the particle density is 1.01
g/cm3 and the density of the top fluid is 0.1 g/cm3 and that on the bottom is 1.0 g/cm3. 1—oblique view,
2—velocity field.

Figure 11. The distance between the surfaces of particles and the approach velocity v2-v1 are plotted as
functions of time. The approach velocity v2-v1 is shown for three different values of the time step. Notice
that the approach velocity initially increases as the interface height between the particles decreases and
then decreases as the gap between the particles becomes small.

Figure 12. The positions of four rigid particles suspended on the two-fluid interface are shown at t=0.02
and 0.96. They are moving towards each other on the interface. The surface tension is 16.0 dynes/cm, the
particle density is 1.01 g/cm3 and the density of the top fluid is 0.1 g/cm3 and that on the bottom is 1.0
g/cm3.
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7. Tables

Table 1. The interfacial deformation h2/R, the floating height R cos(
c

� ), the point of contact 
c

�  and the

sum of the pressure and vertical component of interfacial forces obtained using (1) and (3) are shown as a
function of the interfacial tension. The particle density is 1.05 and its weight is 4.315. The density of

lower fluid is 1.0 and that of the upper fluid is 0.1. For all five cases, 
cp

FF �  is approximately equal to

the particle weight. Also notice that, as expected, the particle's floating height increases and the interface

deformation decreases with increasing surface tension. The interfacial deformation in these calculations is
restricted because the domain size is relatively small. But, we can still compare these values because the
same domain is used in all calculations.

��CGS Units) h2/R R cos(
c

� )
c

� (degrees)
cp

FF � (g)

10 0.237 0.257 75.00 4.33

14 0.173 0.376 67.95 4.35

16 0.156 0.419 65.26 4.35

20 0.130 0.466 62.28 4.36

25 0.114 0.514 59.07 4.33

Table 2. The interfacial deformation h2/R, the floating height R cos(
c

� ) and the point of contact 
c

�  are

shown as a function of the upper fluid density. The interfacial tension is 16. The particle density is 1.05
and its weight is 4.315. The density of lower fluid is 1.0 and that of the upper fluid is varied. The
particle's floating height increases and the interface deformation decreases with decreasing density of the
upper fluid.

Table 3. The floating height R cos(
c

� ), the point of contact 
c

�  and the interfacial deformation h2/R are

shown as a function of the distance d between the particles. The interfacial tension is 16.0. The particle
density is 1.05. The density of the lower fluid is 1.0 and that of the upper fluid is 0.1. Notice that the
floating height of the particles decreases and the interfacial deformation increases as they come closer.
These values should approach the values for an isolated particle when the distance d is large.

d cm) R cos(
c

� )
c

� (degrees) h2/R

0.279 0.397 66.60 0.234

0.2493 0.388 67.13 0.289

0.2118 0.375 67.99 0.302

�upper�g/cm3) h2/R R cos(
c

� )
c

� (degrees)

0.1 0.156 0.419 65.26

0.01 0.159 0.417 65.34

0.0016 0.161 0.417 65.37
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Figure 1. Neutrally buoyant glass beads cluster in water.
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Figure 2. Hydrophobic and hydrophilic particles in static equilibrium. The position of the

contact ring determines the angle �C. The point of extension of the flat meniscus on the

sphere determines the angle ���.



36 G:\faculty\faculty\joseph\archive\2002\papers\FloatingParticles\Figures.doc

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1 2 3 4

sin(�c) sin(�c + �)

(�c)

Figure 3.  For the contact angle 4/3��� , � � � �����
cc

sinsin  is plotted as a function of 
C

� .

Notice that the vertical component of interfacial force 
C
F  given by (1) is negative for 

C
� < 4/�

and maximum for 9.1
C
�� .



37 G:\faculty\faculty\joseph\archive\2002\papers\FloatingParticles\Figures.doc

(a)

(b)

Figure 4. Spherical particles in water, (a) heavier-than-water hydrophobic particles. The

meniscus between the particles is below the undisturbed level. Assuming that the contact

angle remains fixed, the horizontal component of capillary force moves them toward each

other. (b) Lighter-than-water hydrophilic particles will rise into the elevated section of the

meniscus and come together.
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Figure 5. (After Poynting and Thompson 1913). Horizontal forces associated with the fall (a) of

liquid between hydrophobic plates and the rise (b) of liquid between hydrophilic plates. In

(c) one plate is hydrophilic and the other hydrophobic. The contacts on both sides of a plate

are the same and the tension � is constant. They argue that the net horizontal force due to �

can be calculated at flat places; so that there is no net horizontal component of the tension.

In (a) and (b) the pressures are such that they push the plates together; there is no net

attractive force in (c). If the plates (c) are so close that there is no flat place, then the

horizontal projection � sin � of the slope tan ��of the interface midway between the plates is

smaller than the horizontal component � outside the plates and the plate are pulled apart;

they repel. They note that “…small bodies, such as straw or pieces of cork, floating on the

surface of a liquid often attract each other in clusters; this occurs when the bodies are all

wet by the liquid and also when none of them is wet; if one body is wet and one is not wet,

they repel each other.” (It may help here to note that if one face of the plate is hydrophobic

and the other hydrophilic, the contact angles will put the plates in tension, tending to pull

them apart.)
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Figure 6. The contact angle on the particle surface is prescribed to be 135 degrees. This is done
by extending the level set function to the inside of particle.
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Figure 7. The vertical component of velocity w for a particle released along the interface is

shown as a function of time for three different values of the time step. The curve marked mesh

B is for a more refined mesh.
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Figure 8. The particle position, the interface shape and the velocity field in the domain

midsection are shown. (a) t=0.003 .
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Figure 8b. t=0.08.
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Figure 9. The particle position and the corresponding interface shape are shown in the domain

midsection. For the bottom most circle and the interface shape the surface tension is 10 and for

the top most circle and the interface shape it is 25. The other cases are for the surface tension
values of 14, 16 and 20. The depth to which a particle sinks into the lower fluid decreases with

increasing value of the surface tension.



44 G:\faculty\faculty\joseph\archive\2002\papers\FloatingParticles\Figures.doc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2

t

(y
2
-y
1
)/
R

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2

dt=0.0001

dt=0.00005

dt=0.000025

(v
2
-v
1
)

Figure 10. The distance between the surfaces of particles and the approach velocity v2-v1 are

plotted as functions of time. The approach velocity w is shown for three different values of the

time step. Notice that the approach velocity initially increases as the interface height between

the particles decreases and then decreases as the gap between the particles becomes small.
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Figure 11. The positions of two rigid particles suspended on the two-fluid interface are shown at

t=0.02, 0.59, 0.82 and 1.05. They are moving towards each other on the interface. Notice that

the particles are "supported" by the capillary force which arises due to the deformation of the
interface. The surface tension is 16.0 dynes/cm, the particle density is 1.01 g/cm

3
 and the

density of the top fluid is 0.1 g/cm
3
 and that on the bottom is 1.0 g/cm

3
.
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Figure 12. The positions of four rigid particles suspended on the two-fluid interface are shown

at t=0.02 and 0.96. They are moving towards each other on the interface. The surface tension is
16.0 dynes/cm, the particle density is 1.01 g/cm

3
 and the density of the top fluid is 0.1 g/cm

3

and that on the bottom is 1.0 g/cm
3
.




