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The Lattice Boltzmann Equation (LBE) method is reviewed and ana-

lyzed. The focus is on the fundamental principles of the approach; its

`pros' and `cons' in comparison to other methods of the computational


uid dynamics (CFD); and its perspectives as a competitive alternative

computational approach for 
uid dynamics. An excursion into the history,

physical background and details of the theory and numerical implementa-

tion is made, with special attention paid to the method's advantages, limi-

tations and perspectives to be a useful framework to incorporate molecular

interactions for description of complex interfacial phenomena; eÆciency

and simplicity for modeling of hydrodynamics, comparing it to the meth-

ods, which directly solve for transport equations of macroscopic variables

(\traditional CFD").
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1. INTRODUCTION

From its birth over 10 years ago [54], the lattice Boltzmann Equation (LBE)

method has been aggressively pursued and at a pace that is strongly accelerating

in the past few years. The method has found application in many di�erent areas of

computational 
uid dynamics, including simulation of 
ows in porous media; non-

ideal, binary and ternary complex 
uids; micro
uids; particulate and suspension


ows; to name but a few (see for review [13]).

The purpose of the present paper is a comprehensive review of the LBE method.

In di�erence to other review papers on the topic (see [13]), we would not attempt

to cover all CFD areas where the LBE method has found application, but rather
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focus ourselves on few fundamental principles of the method and analysis of the

model's capabilities and limitations, `pros' and `cons' in comparison to the methods

of the \traditional" CFD.

The paper is organized as a comprehensive tutorial. It starts from the discussion

of the fundamental principles and origin of the approach, section 2, which includes

short introduction of the kinetic theory of gases and its connection to the LBE the-

ory; Chapman-Enskog analysis of the discrete Boltzmann equation; and derivation

and discussion of the hydrodynamic equations for three most commonly used LBE

models. Next, the capability and limitations of the LBE approach to model 
uid-


uid multiphase 
ows and 
uid-
uid interfaces are discussed in section 3. Finally,

in section 4, we discuss the details of practical implementation of the LBE algo-

rithms, which include introduction of the `basic' numerical schemes utilized to solve

the discrete Boltzmann equation, and comparative analysis of the method in terms

of simplicity and eÆciency of algorithms, and potentials for e�ective parallelization.

2. FUNDAMENTALS OF THE LATTICE BOLTZMANN

EQUATION METHOD

To better elucidate the signi�cance of the LBE theory, we �rst outline the basic

pieces of the `ground' for the LBE method, the Boltzmann equation theory, without

going into details, emphasizing the major assumptions made and the domain of

the theory applicability, section 2.1. Next, we describe how the `jump' from the

`continuous' to the `discrete' (LBE) case is made, section 2.2. The hydrodynamics

of the LBE method is discussed in section 2.3, in which we outline the basic steps

of the Chapman-Enskog expansion procedure and derive the `macroscopic-level'

equations for three most commonly used LBE models.

2.1. Origin of the LBE method: kinetic theory, Boltzmann equation

and Enskog' extension to dense gases

Kinetic theory. The Lattice Boltzmann Equation method originates from the

kinetic theory of gases. The primary variable of interest is a one-particle probability

distribution function (PPDF), f(r; e; t), so de�ned that
�
f(r; e; t) � d3r � d3e

�
is the

number of particles which, at time t, are located within a phase-space control

element
�
d3r � d3e

�
about r and e (r is a particle's coordinate in physical space and

e is a particle's velocity). Transport equation for PPDF can be expressed as [40]:

(@t + e � rr + a � re) f(r; e; t) = (@tf)coll (1)

where a is the external force acting on the particle.

Boltzmann equation. To derive the Boltzmann equation from equation (1),

the collision term (@tf)coll has to be explicitly speci�ed. Two major assumptions are

made [40]: (a) only binary collisions are taken into account. This is valid if the gas

is suÆciently dilute (ideal gas). (b) The velocity of a molecule is uncorrelated with

its position1 . The last assumption is known as the assumption of molecular chaos.

Importantly, without this assumption, the collision operator (@tf)coll would not be

1To be precise, there are two more assumptions made: (c) wall e�ects are ignored and (d) the

e�ect of the external force on the collision cross section is neglected.
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expressible in terms of f itself. Instead, it would involve a two-particle probability

distribution function, which is independent of f . In general case, equation (1) is

replaced by a set of N coupled equations (BBKGY equations).

Under the assumptions made, Boltzmann [8] expressed the collision term of equa-

tion (1) as2 [11] [40] [44]:

(@tf)coll =

Z
d


Z
d3e(0)�(
)

���e� e(0)
��� �f 0f 0(0) � ff (0)

�
(2)

where 
 is the scattering angle of the binary collision
�
e0; e0(0)

	
!
�
e; e(0)

	
with

�xed e; and � (
) is the di�erential cross section of this collision, [40].

Boltzmann's `H theorem'. Introducing the functional H as the complete

integral de�ned by the equation

H =

Z
f ln f de (3)

the Boltzmann `H theorem' states that if PPDF f satis�es Boltzmann transport

equation (1) and (2), then H is a non-increasing in time function,
dH(t)
dt

� 0. This is

the analog of the second law of thermodynamics, if we identify H with the negative

of the entropy per unit volume divided by Boltzmann's constant, H = � S
V kB

. Thus,

the `H theorem' states that, for a �xed volume V , the entropy never decreases, [40].

Collision interval theory. Signi�cant simpli�cation of the collision integral

eq.(2) can be made assuming that during time interval Æt a fraction Æt=� = 1
�?

of

the particles in a given small volume undergo collisions, which alter the PPDF from

f to the equilibrium value given by the Maxwellian:

feq =
�

(2��)
D=2 exp

�
�
(e� u)2

2�

�
; � = RT = c2s (4)

where D, R, T , cs, � and u are the dimension of space, gas constant, temperature,

ideal gas's sound speed, macroscopic density and velocity, respectively. Thus, the

collision term can be expressed in the form known as the `BGK collision operator'

[11]:

(@tf)coll = �
f � feq

�
= �

f � feq

Æt�?
(5)

where � is a relaxation time3;4.

2Boltzmann's derivation of the collision integral eq.(2) was rather intuitive. There is left a wide

and obscure gap between Newton's equations of motion of the molecules constituting a gas and

the Boltzmann equation (2). There is no proof that the Boltzmann equation is completely correct.

Nevertheless, the equation is known to be valid at least as an empirical formula, which has been

successfully applied to study transport properties of dilute gases [44]. The relevant equation is

derived consistently according to the more general BBGKY theory (due to Bogoliubov, 1946,

Kirkwood, 1947, and Grad, 1958, [49]).
3It is important to notice, that the BGK equation (5) is a phenomenological equation, because

it does not follow in a logical, self-contained manner from �rst principles [49]. Closely related to

this inhibiting phenomenological property is the domain of applicability of the equation: dilute

gases in a state close to thermal equilibrium. The inaccuracy of the BGK equation is enhanced

when one treats the equation by a method similar to the Chapman-Enskog method [44].
4It is instructive to note that the `H theorem' for BGK equation also holds, [44].
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Dense gases. In real (`dense', `non-ideal') gases, the mean free path is compa-

rable with molecular dimensions. Thus, additional mechanism for momentum and

energy transfer has to be considered. Beside the transfer of molecular properties

between collisions, a transfer during the collision event must be accounted for [11].

This collisional transfer has been considered by Enskog (1921), who approximated

the e�ects of the exclusion volume of the molecules under constant temperature

conditions by explicitely adding the `exclusion volume' term to the Boltzmann's

collision integral. The most commonly used (approximate) form of this term is

(@tf)coll, Enskog = (@tf)coll, Boltzmann � feqb��(e� u) � rln(�2�)| {z }
Approximation
of the Enskog's

`exclusion
volume' term

(6)

where b = 2�d
3m

is the second virial coeÆcient in the virial equation of state; � is

the increase in collision probability due to the increase in 
uid density, which has

the following asymptotic form [11]:

� = 1 +
5

8
b�+ 0:2869(b�)2 + 0:1103(b�)3 + ::: (7)

d and m are the diameter and mass of the molecules, respectively. Combination

of eqs.(1), (2) and (6), known as the `Enskog equation' in the literature [29], has

recently been used by Luo in his `uni�ed theory of lattice Boltzmann models for

nonideal gases'5, [50].

It is instructive to note that, in his derivation, Enskog employed `hard-sphere

model', which has advantage of mathematical simplicity, since many-body inter-

actions are neglected (collisions are instantaneous). This model is, however, not

appropriate for real gases under high pressure, because the molecules are in the

force �eld of others during a large part of their motion, and multiple encounters

are not rare6, [11].

\HSD" model. Recently, He, Shan and Doolen [31] proposed the following

approximate model of dense gases. The starting point is the Boltzmann equation

with the BGK collision operator:

@tf + e � rrf + a � ref = �
f � feq

�
(8)

In order to evaluate the forcing term, the derivative ref has to be explicitely

given. The following assumption is made:

ref � ref
eq (9)

5In his model, Luo employed the BGK collision operator multiplied by factor �,

(@tf)coll, Boltzmann = �
�(f�feq)

�
.

6The reason why Enskog preferred `hard-sphere model' is that at that time it was believed that

the assumption of molecular chaos for rigid spherical molecules is valid even at high densities. This

assumption is appropriate only in the case of uniform steady state [11], while for non-uniform state

(for example, in the regions of 
uid-solid boundaries and 
uid-gas interface), there may be some

correlation between velocities of neighbouring molecules, because of their recent interaction with

each other or with the same neighbours.
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which is due to the fact that feq is the leading part of the distribution func-

tion f (`an assumption of small deviation from the equilibrium'). Substituting the

Maxwellian eq.(4) into eq.(9), the following equation is obtained:

@tf + e � rrf = �
f � feq

�
+

(F+ g) � (e� u)

�c2s
feq (10)

where F and g are the e�ective molecular interaction and gravity forces, respec-

tively, a = F+g
�

. The e�ective molecular interaction force F is designed to simulate

non-ideal gas e�ects.

F = ��rV| {z }
Intermolecular
attraction by
mean-�eld

approximation

� b�2c2s� � rln(�
2�)| {z }

Enskog's exclusion volume e�ect
of the molecules on the

equilibrium properties of dense
gases

(11)

The intermolecular attraction potential7 V is expressed as

V(r0) =
Z
r01>d

uattr(r01) �(r1) dr1 (12)

where uattr(r01) is the attractive component of the intermolecular pairwise poten-

tial of molecules `0' and `1' separated by distance r01 = jr0 � r1j. The next step

is to expand density about r0. Assuming that the density gradients are small, the

intermolecular attraction potential is expressed as

V = �2a�� �r2� (13)

where constants a and � are given by

a = �
1

2

Z
r>d

uattr(r) dr; � = �
1

6

Z
r>d

r2uattr(r) dr (14)

with � determining the strength of the surface tension. Elucidating the thermo-

dynamical aspects of this model, the intermolecular force F can be cast into the

following form [32]:

F = �rP ? + ��rr2�| {z }
Force associated
with surface

tension

P ?(�) = b�2c2s�� a�2 = P � �c2s| {z }
`Non-ideal part'
of the equation

of state

; P = �c2s(1 + b��)� a�2
(15)

7To certain extent, implementation of the intermolecular attraction potential V allows to e�ec-

tively compensate for some limitations of the Enskog' `hard-sphere' model.
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Setting b = ��1
��

, the van der Waals equation of state is obtained:

P =
�c2s

1� b�
� a�2 (16)

2.2. From Boltzmann equation to Lattice Boltzmann Equation
2.2.1. Heuristic approach

Historically, the `classical' LB equation has been developed empirically, with basic

idea borrowed from the cellular automata 
uids [28] and [85]. The physical space

of interest is �lled with regular lattice populated by discrete particles. Particles

`jump' from one site of the lattice to another with discrete particle velocities ea,

(a = 0; :::; b, where b is the total number of possible molecule's directions), and

colliding with each other at the lattice nodes, Figs.1a,1b. The lattice geometry (a

set of possible particle velocities) should obey certain symmetry requirements (see

Appendix A), which are compelling in order to recover rotational invariance of the

momentum 
ux tensor at a macroscopic level [85].
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Orthogonal sublattice (q=1), cyc:(+/-1,0)
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The cell itself (q=0), (0,0,0)
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FIG. 1a. Lattice geometry and velocity vectors of the two-dimensional nine-speed D2Q9

model.

FIG. 1b. Lattice geometry and velocity vectors of the three-dimensional �fteen-speed

D3Q15 model.

In e�ect, for the LBE method, this corresponds to the following formal discretiza-

tion of the phase space and Boltzmann equation:

a) f ! fa
b) e ! ea
c) feq ! feqa = Aa + Baeaiui + Cau

2 +Daeaieajuiuj

(17)

where the form of the discrete equilibrium distribution function is inspired by the

following constant-temperature and small velocity (low-Mach-number) approxima-
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tion of the Maxwellian eq.(4)

feq �
� � exp

h
� e

2

2c2s

i
(2�c2s)

D=2 �
�
1 +

(e � u)
c2s

+
(e � u)2

2(c2s)
2
�
u2

2c2s

�
+O(u3) (18)

Thus, the lattice Boltzmann BGK equation is heuristically postulated as8

@tfa + eaj@jfa| {z }
Advection operator, A(fa)

= �
fa � feqa

�
+
aj � (eaj � uj)

c2s
feqa| {z }

Collision operator, 
(fa)

(19)

At this point, a principal departure from the actual kinetic theory must be high-

lighted. As we show further below, if the 
uid being modeled is to retain its speed

of sound, the solution of eq.(19) is impossible for all practical purposes. As a con-

sequence, compressibility e�ects are outside the realm of the LBE method; cs is

retained, however, with a totally di�erent meaning and role - that of a pseudo

compressibility parameter that allows the solution to relax to the appropriate in-

compressible viscous solution. Rather than sound speed, let us call, therefore, cs
by the name \Lattice-Internal Speed" (\LIS"). While this departs from normal us-

age, its adoption, we believe, will clear up an enormous conceptual barrier for the

newcomers and uninitiated.

The coeÆcients Aa; Ba; Ca and Da of the `Chapman-Enskog' expansion for feqa ,

eq.(17), are `tuned' to recover mass, momentum conservation and viscous stress

tensor during the multiscale Chapman-Enskog perturbative expansion procedure9

(see section 2.3 and Appendix B).

Eqs.(19) are the coupled system of Hamilton-Jacobi equations, with Hamiltonian

eaj@jfa, and the `coupling' source term given by the collision operator. This system

can be solved by any appropriate numerical scheme (see section 4).

Non-dimensional form. To cast the discrete Boltzmann equation (19) into the

non-dimensional form, one must introduce the following characteristic scales:

Characteristic length scale: L

Characteristic velocity: U0

Reference density: �r
Molecular mean free path: �

(20)

8For approximation of the external forcing term, we use the `HSD' assumption eq.(9).
9In the case of the `thermal' LBE, it is also required to conserve energy, which would entail

addition of the expansion terms in the Taylor series eqs.(17) and (18).
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Using these scales, the variables utilized in the LBE theory are non-dimensionalized

as

Non-dimensional variables:

PDF: f̂a = fa
�r

Molecular velocity: êai =
eai
U0

Time: t̂ = tU0

L

Length: r̂ = r

L

Density: �̂ = �

�r

Macroscopic velocity: ûi = ui
U0

Lattice internal speed: ĉs = cs
U0

Body force: âj =
ajL

U2

0

= 1
Fr

Kinematic viscosity: �̂ = �
U0L

= 1
Re

(21)

To make a non-dimensional relaxation time, we will use the Knudsen number

de�ned as a ratio of the molecular mean free path � to the 
ow characteristic

length scale L:

" =
�

L
(22)

De�ning the collision time as tc � �
U0
, the dimensionless relaxation time is

�̂ =
�

tc
=
�U0

�
(23)

With this dimensionalization introduced, the discrete Boltzmann equation (19)

is transformed into the following non-dimensional equation:

@t̂f̂a + êaj@ĵ f̂a = �
f̂a � f̂eqa
"�̂

+
âj � (êaj � ûj)

ĉ2s
f̂eqa (24)

For the most of the paper, for compactness, the hat (̂�) is omitted; and, unless
explicitely speci�ed, all variables are assumed to be non-dimensional.

2.2.2. `Consistent discretization'

Recent studies by He and Luo [33] [34] pioneer another way to establish the LBE

theory. In particular, He and Luo [34] demonstrated that the lattice Boltzmann

equation can be viewed as a special �nite-di�erence approximation of the Boltz-

mann equation. The chief idea and motivation are to provide a sound theoretical

foundation for a transition from the `continuous' Boltzmann equation to the LBE,

which involves the choice of the discrete particle velocities (structure of the lattice)

and the choice of the coeÆcients of expansion for equilibrium distribution function,

eq.(17). There are two major ingredients in the procedure by He and Luo, discussed

below.

Time discretization. Eq.(8) is integrated over a time step Æt:

f (r+ e � Æt; e; t+ Æt)� f (r; e; t) = �
R t+Æt
t

f�feq
�

dt+

+
R t+Æt
t

a�(e�u)
c2s

feq
(25)
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The �rst integral in the collision operator is treated explicitely, using the �rst-order

approximation, while the second one can be treated using the trapezoidal implicit

scheme [31], which, in order to regain the expliciteness of the method, entails the

following variable transformation:

h = f �
a � (e� u)

2c2s
feqÆt (26)

Thus, the �rst-order time discretization yields the following Boltzmann equation:

h (r+ e � Æt; e; t+ Æt)� h (r; e; t) = �h(r;e;t)�heq(r;e;t)
�

where heq =
h
1� a�(e�u)

2c2s
Æt

i
feq

(27)

Phase space discretization. This step establishes the structure of the lattice

and the form of the equilibrium distribution function.

Connection of the Boltzmann equation to the hydrodynamics is realized through

the integration in the particle momentum space10:

� =
R
[f ] de; �u =

R
[f � e] de; �E = 1

2

R h
f � (e� u)

2
i
de

� =
R
[feq] de; �u =

R
[feq � e] de; �E = 1

2

R h
feq � (e� u)

2
i
de

(29)

with the kinetic energy E given by

E = D0

2
RT = D0

2
c2s =

D0

2
NAkBT (30)

where NA and kB are the Avogadro's number and the Boltzmann constant, respec-

tively. D0 is the number of degrees of freedom of a particle (D0 = 3 for monoatomic

gas).

To derive a consistent LBE scheme, the integration in momentum space eq.(29)

has to be approximated by the following quadrature [34]:Z
 (e)feq(r; e; t)de �

X
a

Wa (ea)f
eq
a (r; ea; t) (31)

where  (e) = [1; ei; (eiej); (eiejek); :::] and Wa are the polynomials of e and the

`weight' coeÆcient of the quadrature, respectively. Eq.(31) corresponds to the

following `link' of the LBE to hydrodynamics:

� =
P

a fa; �u =
P

a fa � ea; �E = 1
2

P
a fa � (ea � u)

2

� =
P

a f
eq
a ; �u =

P
a f

eq
a � ea; �E = 1

2

P
a f

eq
a � (ea � u)

2 (32)

where

fa(r; t) � Wa f(r; ea; t); feqa (r; t) � Wa f
eq(r; ea; t) (33)

10In the case of the transformation eq.(26), f is substituted by h, and the �rst momentum is

modi�ed as

�u�
1
2
�aÆt =

R
[h � e] de; �u�

1
2
�aÆt =

R
[heq � e] de (28)
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Now, a task is to properly specify the abscissas of the quadrature eq.(31), or,

in other words, the `structure' (`symmetry') of the lattice. To do that, one must

impose a set of constraints for this `structure'. These constraints are formulated

based on the Chapman-Enskog procedure to `link' the Boltzmann equation to the

Navier-Stokes equations, see section 2.3.1, which involves the following moments of

the equilibrium distribution function:

Mass conservation:  (e) = 1; ei; and eiej
Momentum conservation:  (e) = 1; ei; eiej ; and eiejek
Energy conservation:  (e) = 1; ei; eiej ; eiejek; and eiejekel

(34)

Thus, the basic idea is that with the chosen abscissas of the quadrature eq.(31), the

moments of feqa , eq.(34), should be calculated exactly. With this, the Chapman-

Enskog procedure is intact, and it is argued that the framework of the lattice Boltz-

mann equation can rest on that of the Boltzmann equation, and the rigorous results

of the Boltzmann equation can be extended to the LBE via this explicit connection

[33]. It is important to note that the Maxwell-Boltzmann equilibrium distribution

function feq is an exact solution of the Chapman-Enskog's zero-order approxima-

tion of the Boltzmann equation [40]. In �nding the abscissas of the quadrature

eq.(31), however, instead of the exact Maxwellian, its constant-temperature and

low-Mach-number approximation eq.(18) is utilized, [34], with which no rigorous

link to the Navier-Stokes equations is available. Moreover, this is exactly the reason

why the Boltzmann's \H theorem" does not hold for the LBE. Therefore, this proce-

dure does not provide substitute for the Chapman-Enskog multiscale perturbative

expansion procedure, section 2.3.1.

The details of the procedure to �nd the required abscissas of the quadrature

and corresponding approximations of the Maxwellian are given in [34] for two-

dimensional 6-, 7- and 9-bit and three-dimensional 27-bit lattice models. It is

important to note that with this procedure, the `weighting' coeÆcients for the

`composing' sublattices and the coeÆcients of the equilibrium distribution function

are exactly the same as those of the `heuristic' LBE, summarized in Appendices A

and B, providing that11 c2s =
�(4)

�(2) , [35].

2.3. Derivation of the hydrodynamic equations from the Lattice

Boltzmann Equation
2.3.1. Chapman-Enskog expansion method

The purpose of the Chapman-Enskog method is to solve Boltzmann equation by

successive approximations. This yields only a particular type of solutions, namely,

those that depend on the time implicitely through the local density, velocity and

temperature, f(t) = f ( �(t);u(t); T (t) ) - the `Chapman-Enskog ansatz', [40]. In

11Note, that, in general, in the `heuristic' LBEs, the lattice symmetry parameters �(4) and

�(2) are adjustable, with free parameter w0, allowing to vary lattice sound speed. For D2Q9, the

requirement c2s =
�(4)

�(2) is satis�ed with w0 =
4
9
.
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the present section, we outline the basic steps of the procedure, applied to the

isothermal discrete Boltzmann equation (24)12.

First, introduce the following formal expansion of the discrete probability distri-

bution function:

fa = f (0)a + "f (1)a + "2f (2)a + ::: =

1X
k=0

"kf (k)a (36)

where " is a Knudsen number, eq.(22). In the Chapman-Enskog theory, this

parameter is introduced to keep track of the order of the terms in the series. The

functions f
(k)
a are de�ned in such a way that f

(k)
a gets smaller and smaller as k

increases. The main achievement of the Chapman-Enskog expansion is to provide

a way of de�ning f
(k)
a that is both consistent and practicable [40]. It is required that

the �rst three moments of the zeroth approximation reproduce macroscopic density,

velocity and kinetic energy, while corresponding moments of the higher-order terms

are zero:

P
a f

(0)
a = �;

P
a f

(0)
a eai = �ui

1
2

P
a f

(0)
a � (eai � ui)

2
= �E ;P

a f
(n)
a = 0;

P
a f

(n)
a eai = 0;

P
a f

(n)
a e2a = 0; n > 0

(37)

Thus, eqs.(32) are satis�ed13.

LBE conservation laws. Substituting expansion eq.(36) into eq.(24) and tak-

ing the �rst `discrete moment' (
P

a eq.(24)) result in the mass conservation equation

Mass conservation law:

@t�+ @j�uj = 0
(38)

Taking the second `discrete moment' (
P

a eq.(24)� eai) yields the momentum con-

servation law:

@t�ui = �@j
1X
n=0

"n
X
a

eaieajf
(n)
a +

aj

c2s

 X
a

feqa eaieaj � �uiuj

!
(39)

Introducing the nth approximation of the pressure tensor as

P(n)
i;j �

X
a

(eai � ui)(eaj � uj)f
(n)
a (40)

12To avoid using expansions:

fa(r+ eaÆt; t+ Æt) =

1X
k=0

"
n

n!
Dn
t fa(r; t); Dt � (@t + ea � r) (35)

traditionally employed to evaluate `stream-and-collide' advection operator, A(fa) = fa(r +

eaÆt; t + Æt) � fa(r; t), [30] [77], we assume that high-order �nite-di�erence scheme is applied

to the A(fa) = @tfa + eaj@jfa (see section 4).
13Importantly, this is not the only way to satisfy these equations, but it is de�nitely a possible

one.



12 NOURGALIEV, THEOFANOUS, DINH AND JOSEPH

the momentum conservation equation (39) is re-arranged into the following form14:

Momentum conservation law:

@t�ui + @j�uiuj = �@j
P1

n=0 "
nP(n)

i;j +
aj

c2s

�
�
eq
i;j � �uiuj

�
| {z }

Fi;j

(41)

To derive the kinetic energy conservation equation, substitute expansion eq.(36)

into eq.(24), then multiply it by
e2a
2
, and sum over all molecule directions. In

addition, make use of the following equation:

@t
X
a

f (0)a

e2a
2

= @t�E + ui@t�ui �
u2

2
@t� (42)

coming from the de�nition of the kinetic energy eq.(32) and constraints eq.(37).

Also, introduce the nth approximation of the heat 
ux as

Q(n)
i �

1

2

X
a

(eai � ui)(eaj � uj)
2f (n)a (43)

which allows to write the energy conservation equation as

Kinetic energy conservation law:

@t�E + @j�Euj = �@j
P1

n=0 "
nQ(n)

j � @jui �
P1

n=0 "
nP(n)

i;j

+
aj

c2s

"X
a

f (eq)a

�
(eaj � uj)e

2
a

2
� eaieajui

�
+ �uju

2

#
| {z }

Qj

(44)

LBE successive approximation. To obtain a consistent scheme of successive

approximation, f
(n)
a is de�ned in such a way that if all f

(k)
a , P(k)

i;j and Q(k)
j are

neglected for k > n, than we have the nth approximation to the distribution function

and to the hydrodynamic equations. To �nd such a de�nition, we decompose eq.(24)

into successive equations for f
(n)
a in the following manner.

1. Introduce expansion:

Dfa = Df (0)a + "Df (1)a + "2Df (2)a + ::: (45)

Consistency of this expansion with eq.(36) follows from the linearity of the operator

D � eaj@j .

2. Consider @tfa. Due to the `Chapman-Enskog ansatz', fa depends on time

implicitly, only through the �, �ui and �E . Thus,

@fa

@t
=
@fa

@�

@�

@t
+

@fa

@�ui

@�ui

@t
+
@fa

@�E
@�E
@t

(46)

14Note, the following notation is in use: �
eq
i;j
�

P
a
f
(eq)
a eaieaj .
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To expand eq.(46) into in�nite series in powers of ", expand @fa
@�

, @fa
@�ui

and @fa
@�E as

@fa
@�

=
@f (0)a

@�
+"

@f (1)a

@�
+"2

@f (2)a

@�
+ :::

@fa
@�ui

=
@f (0)a

@�ui
+"

@f (1)a

@�ui
+"2

@f (2)a

@�ui
+ :::

@fa
@�E =

@f (0)a

@�E +"
@f (1)a

@�E +"2
@f (2)a

@�E + :::

(47)

The expansions for time derivatives @t�, @t�ui and @t�E must be de�ned to be

consistent with the conservation laws eqs.(38), (41) and (44). Thus, the de�nition

of @n
@t

is taken from the nth approximation to the conservation laws:

Mass conservation:

@t0� � �@j�uj
@tn� � 0; (n > 0)

(48)

Momentum conservation:

@t0�ui � �@j�uiuj � @jP
(0)

i;j + Fi;j

@tn�ui � �@jP
(n)
i;j ; (n > 0)

(49)

Energy conservation:

@t0�E � �@j�Euj � @jQ
(0)

j � @jui � P
(0)

i;j +Qj

@tn�E � �@jQ
(n)
j � @jui � P

(n)
i;j ; (n > 0)

(50)

With this, the following consistent expansion of @t is obtained
15:

@t = @t0 + "@t1 + "2@t2 + ::: (52)

3. With de�ned expansions (36), (45) and (52), the LBE transport equation (24)

can be written as16:

��
@t0 + "@t1 + "2@t2 + :::

�
+ D

� �
f
(0)
a + "f

(1)
a + "2f

(2)
a + :::

�
=

= � 1
"�

h�
f
(0)
a + "f

(1)
a + "2f

(2)
a + :::

�
� feqa

i
+

aj
c2s
(eaj � uj)f

eq
a

(53)

4. Now, we de�ne f
(n)
a uniquely by requiring that in eq.(53), the coeÆcient of

each power of " vanish separately. Thus, the equations to be solved to yield all the

15This de�nition is di�erent from [2] and [14], where the time derivative is expanded as

@t = "@t1 + "
2
@t2 + ::: (51)

16Let us remind, that (̂�) is omitted.
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f
(n)
a are

Successive hierarchy of the LBGK equations:

�
"
�1
�

: f
(0)
a = f

eq
a

0th-order: \Euler"�
"
0
�

: @t0f
(0)
a +Df

(0)
a = �

f
(1)
a

�
+

aj

c2s
(eaj � uj)f

(0)
a

1st-order: \Navier-Stokes"

::: :::

High-order: \Burnett", \Super-Burnett"

::: :::�
"
k
�

: @t0f
(k)
a + @t1f

(k�1)
a + :::+ @tkf

(0)
a + Df

(k)
a = �

f
(k+1)
a

�

::: :::

(54)

In the Chapman-Enskog theory for `continuous' Boltzmann equation, in order

to reproduce the Navier-Stokes equations, only the �rst two approximations f
(0)
a

and f
(1)
a are required17. In the next section, we recover and analyze equations

of hydrodynamics corresponding to three most commonly used isothermal18 LBE

models.

17There exist certain fundamental diÆculties when one tries to use truncations of the Chapman-

Enskog expansion beyond the Navier-Stokes order f
(1)
a , (`Burnett-' and `super-Burnett' equations

level). The most signi�cant problem is that any truncation beyond f
(1)
a is inconsistent with

the Clausius-Duhem inequality, which is often taken as a representation of the second law of

thermodynamics [75]. This fact was �rst noted for compressible gas dynamics by Bobylev [6] and

later by Luk'shin [51]. Furthermore, the modi�cations of Navier-Stokes equations due to Burnett

might have been expected to be superior to Navier-Stokes equations itself, under conditions of

high Kn numbers. But all present evidence indicates that this is not so; in fact, where the Navier-

Stokes equations are themselves perhaps not completely adequate, the higher-order equations may

even be inferior. Perhaps the expansion eq.(41) is asymptotic; when the �rst two terms give a

very good approximation, the third may give even better approximation; but when the �rst two

terms do not provide so good approximation, taking another term may make matters worse; this

is a known behavior in asymptotic series [21].
18Modeling of the `complete' set of Navier-Stokes and energy equations (with conservation of

energy as well as mass and momentum) using the discrete kinetic approach has met signi�cant

diÆculties. There are three major `plagues' of the LBE thermohydrodynamics. First, the TLBE

models employing single-relaxation time are limited to Pr = 1
2
[2]. Second, due to the limited

set of the discrete particle velocities utilized in the LBE method, there are severe limitations on

allowable variations of temperature and velocity. This hampers the use of the LBE model for sim-

ulation of compressible 
ow and 
uids undergoing large temperature variations. Third, `thermal'

LBE models are prone to signi�cant numerical instabilities. This is probably related to the fact

that `thermal' LBEs require the `larger stencil' of discrete velocities, because more constraints on

the `discrete' equilibrium distribution function must be imposed in order to preserve energy con-

servation and to recover correct macroscopic equations. From this point of view, `thermal' LBE

are somewhat remnant of the higher-order �nite di�erence schemes in `traditional' CFD, in which

the `large stencil', used to approximate point-to-point solution by high-order polinomials, is prone

to oscillations and numerical instabilities [79]. Even though some of these limitations could be

alleviated (e.g., [39] [7] [55] [80]), there is no potential advantage of the `thermal' LBE approach

over a conventional Navier-Stokes solvers for thermal systems and compressible 
ows (McNa-

mara et al. [55] [56] and Guangwu et al. [23]). In particular, in [56], the thermal LBE model is

compared to the \traditional CFD" �nite-di�erence code, utilizing the MacCormack scheme. It

was found, that, in the case of the LBE approach, the running times on the comparable size grids

are a factor two greater. Furthermore, the memory requirements are signi�cantly greater; and a

numerical stability property is signi�cantly poorer.
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2.3.2. Hydrodynamic equations of the isothermal `ideal 
uid' LBGK model

Classical Navier-Stokes equations. The governing equations of the com-

pressible isothermal Newtonian 
uid hydrodynamics are

@t�+ @j�uj = 0

@t�ui + @j�uiuj = �@iP + @jTi;j + �ai
(55)

where the viscous stress tensor has the following form [4] [48]:

Ti;j = � (@jui + @iuj) +

�
� �

2

3
�

�
| {z }

`Bulk' viscosity,
�

@kuk � Æi;j (56)

and � and � are the `�rst' and the `second' 
uid viscosities. Following Stokes, the

`bulk' and `second' viscosities are � = � 2
3
� and � = 0, respectively, [4].

LBGK hydrodynamic equations19;20. For this `basic' LBGK model, the

pressure tensor is given by

P̂(0)

i;j = �̂ĉ2s � Æi;j (57)

Since the \zeroth-order solution of the LBGK equation", eq.(54), is f̂
(0)
a = f̂

(eq)
a ,

the momentum 
ux tensor is �̂
(0)

i;j = �̂
(eq)

i;j . Thus, the momentum conservation

equation (41), which is the \�rst-order solution of the LBGK equation", is:

@t̂�̂ûi + @ĵ �̂ûiûj = �@î�̂ĉ
2
s � @ĵ

0
BBBBBBBBBBBB@

"P̂(1)
i;j| {z }

Viscous stress
tensor,

�T̂ LBGK
i;j

1
CCCCCCCCCCCCA
+ �̂âi (58)

An assumption of the constant temperature would require the following con-

straint be satis�ed:

@ĵQ̂
(0)
j = �"@ĵ �̂ûj � @ĵ ûi � P̂

(0)
i;j + Q̂j

@ĵQ̂
(1)
j = �@ĵûi � P̂

(1)
i;j

(59)

For this LBGK model, the viscous stress term is (details of the derivation are

given in Appendix C):

�@ĵ
�
"P̂(1)

i;j

�
= @ĵ T̂

LBGK
i;j = @ĵ

h
T̂i;j
i
+ Â

(n:l:d:)
i;j (60)

19To avoid confusion, in the present section, we will use (̂�) to denote non-dimensional variables.
20In the following analysis, it is assumed that the lattice geometry is chosen in such a way so

that �(4) = ĉ
4
s .
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where T̂i;j is the non-dimensional Navier-Stokes viscous stress tensor, de�ned by

eq.(56); Â
(n:l:d:)
i;j is a term of the \non-linear21 deviation" of this LBGK model from

the classical Navier-Stokes equations, given by

Â
(n:l:d:)

i;j = 1
Re ĉ2s

h
@ĵ
�
�2ûiûjûk@k̂�̂

�
� @ĵ �̂ �

�
ûi@k̂ûkûj + ûj@k̂ûkûi

�
�

��̂@ĵ
�
ûi@ĵ ûkûj + ûj@îûkûi

�i
+

+ 1
Re Fr ĉ4s

@ĵ

�
�̂ûiûjûk îk

� (61)

where Re = �̂

�̂
= 1

�̂
and Fr are the Reynolds and Froude numbers, respectively.

Thus, the governing equations of this LBGK model are

@t̂�̂+ @ĵ �̂ûj = 0

@t̂�̂ûi + @ĵ �̂ûiûj = �@îP̂ + @ĵ

�
�̂

Re

�
@ĵ ûi + @îûj

��
+
�̂

Fr
îi| {z }

Linear Part � Navier-Stokes

+ Â
(n:l:d:)
i;j| {z }

Non-linear deviations

(62)

where îi is a unit vector specifying the orientation of the external body force.

Now we can immediately see the implications of ĉs, the dimensionless \Internal-

Lattice Speed", introduced in eq.(24). In the linear term, it leads to the �̂ and the

Reynolds number that appears in front of the linear part. By appropriate choices

of ĉs and �̂ , 
ow with any Reynolds number (any viscosity) can be modeled by

eq.(62). On the other hand, in the non-linear term, we are left with terms that

contain, in addition to Re, ĉ2s and ĉ4s. Thus, we can make these terms as small as

we wish by requiring that ĉs is chosen so that

�
Re ĉ2s

�
� 1 and

�
Re Fr ĉ4s

�
� 1 (63)

In fact, it turns out that these conditions are automatically satis�ed as long as

ĉs � 1, and the basic stability criterion for integration of the LBE, namely that
csÆt
Æx

< 1 are satis�ed. To see this, take N as the number of lattice points in the

cross-stream direction (N� 1), and suppose we chose csÆt
Æx

= 1p
3
. We then have

1

Re ĉ2s
=

1
p
3Nĉs

from which is seen that the condition ĉs � 1 is moderate because N � 1. Also,

you will note that for inertia 
ows, Re� 1, the condition on ĉs � 1 is moderate22,

but for viscous 
ows, Re < 1, we must obey a stronger condition on ĉs � 1, so that

Re ĉ2s � 1 and the \non-linear term" is smaller than the inertia \term".

We have veri�ed numerically that indeed, as long as these conditions and ��

�
� 1

are satis�ed, exact solutions can be obtained arbitrarily close in Poisseulle and

21The term \non-linear" re
ects the fact that the deviation is `cubic' in velocity, � uiujuk.
22The smallest term in the Navier-Stokes equations is of order 1

Re
, thus, the requirement for ĉs

is 1
Re
�

1

Reĉ2s
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Couette 
ows, for any values of viscosity (or Reynolds number). Also note that as

appropriate for incompressible viscous 
ows, the pressure level is immaterial. If the

pressure drop is speci�ed, it implies a corresponding density drop, through eq.(57),

and care must be exercised, because errors will be introduced unless ��
�

remains

much less than 1.

Viscosity. The `�rst' and the `second' viscosities are de�ned as23

�̂ = �̂ "�̂ĉ2s =
� ĉ2sU0

L| {z }
1
Re

�̂; �̂ =
2

3
�̂ (64)

which renders the following de�nition of the dimensional kinematic viscosity:

� = �c2s (65)

In the actual LBE simulations, one employs the following dimensionless relaxation

parameter (see eq.(5)):

�? �
"�̂

Æ̂t
=
�

Æt
(66)

which is typically chosen in the range 1
2
< �? < 3, where the lower limit is dictated

by consideration of the numerical stability of the scheme.

Thus, the kinematic viscosity is24

� = �?Ætc
2
s; or � =

�
�? �

1

2

�
Ætc

2
s| {z }

\stream-and-collide"

(67)

From eq.(67), it is seen that in order to model 
uid with speci�c kinematic viscosity

(say, water or air) for a chosen spatial discretization Æx and relaxation parameter

�?, one has to �x time step of the LBE simulation. For example, in the case of the

D2Q9 \stream-and-collide" scheme with w0 =
4
9
, time step is

Æt =

�
�? � 1

2

�
Æ2x

3�
; Æ̂t =

�
�? � 1

2

�
Æ̂2xRe

3
(68)

Setting the range of the kinematic viscosity from 10�7m
2

s
(water) to 10�3m

2

s
(highly

viscous oils), simulation using the space resolution Æx = 1mm and relaxation pa-

rameter
�
�? � 1

2

�
� 1 would require the following range of time step: Æt vary-

ing from 1
3
� 10s to 1

3
� 10�3s. It is interesting to compare these estimates with

the \viscous" CFL (\Courant-Friedrichs-Levy") limit of the explicit schemes of

23The �̂ is not Stokesian, �̂ 6= 0. Though, the value of the `second' viscosity is not important as

long as velocity �eld is close to the `divergence-free' condition of the incompressible 
uid.
24In the case of the \stream-and-collide" scheme (see section 4), there is an additional `nu-

merical' viscosity coeÆcient absorbed into � by modifying �
?
!

�
�
?
�

1
2

�
. This coeÆcient is

due to the �rst-order accuracy of the advection operator, and it would appear if one employs the

expansion eq.(35), [76].
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the \traditional" CFD, Æt = CFLvis
Æ2x
�
� CFLvis

�
10� 10�3

�
s. From this, one can

make the following observations. First, the \viscous CFL number" of the LBE

is CFLvis
(LBE) =

�
�? � 1

2

� c2s
c2

=
�?� 1

2

3

���
D2Q9

. Next, for �? > 3:5, the D2Q9 LBE

method allows to utilize larger time step than the one admissable for explicit \tra-

ditional CFD" schemes, CFLvis
(LBE) > 1. However, for small relaxation parameter,

�? ! 1
2
, time step of the LBE becomes too small, CFLvis � 1. This is one of

the reasons why the LBE method is ineÆcient for simulation of high-Re-number


ows25.

Scaling analysis of the non-linear deviations. To estimate the order of the

non-linear deviation term, we cast the LBGK hydrodynamic equation (62) into the

following dimensional form:

@t�ui| {z }
�

�rU0
2

L
(1 + Æ�t )

� 0 (1 + Æ�t )

+ @j�uiuj| {z }
�

�rU0
2

L
(1 + Æ�

L
)

� 0 (1 + Æ�
L
)

= @iP + �ai|{z}
�

�rU0
2

L

1
Fr

� 0
�
1
Fr

�
+

+ @j [�� (@jui + @iuj)]| {z }
�

�rU0
2

L

1+Æ�
L

Re

� 0

�
1+Æ�

L

Re

�

+ A
(n:l:d:)

i;j| {z }
�

�rU0
2

L

(1+Æ�
L
)

ĉ2s Re

� 0

�
(1+Æ�

L
)

Re ĉ2s

� and

�
�rU0

2

L

(1+Æ�
L
)

ĉ4
s
Re Fr

� 0

�
(1+Æ�

L
)

ĉ4
s
Re Fr

�

(69)

where the Froude numbers is de�ned as Fr � U
2

0

aL
; a is an acceleration due to

the external body force. The non-dimensional density variations are introduced as

Æ�
L
� �

L
�

�r
and Æ�

t
� �t�

�r
, with �

L
� and �

t
� being the scales of density variation

over a characteristic length scale L, @i� � �L�

L
, and time scale t0 =

L

U0

, @t� �
�
t
�

t0
,

respectively. It can be seen that the non-linear deviation term is negligibly small

comparing to the Navier-Stokes equation terms under conditions26 ĉs � 1 (or

�(2) � 1, see Table 1).

In di�erence to our derivation, the LBGK hydrodynamic equations available in

the literature contain also linear deviations. For example, re-arranging the LBGK

hydrodynamic equations given in [13] and [63] in a similar way as eq.(69), one can

25As seen from eq.(68), in order to increase the Re number for a chosen discretization Æ̂x

and Æ̂t, one needs to decrease the relaxation time �
?
!

1
2
. This causes two problems. First,

dimensional time step Æt decreases according to eq.(68); and, second, the \stream-and-collide"

LBE schemes become numerically unstable when �
?
�

1
2
, [76]. Another alternative for increasing

the Re number, keeping Æt suÆciently large with �
? in the stability region, is to decrease the

non-dimensional lattice step Æ̂x �
1
N
by increasing the number of computational nodes N. This

makes the LBE simulation of high-Re-number 
ows computationally expensive.
26Recently, Qian and Zhou [65] explored a way to eliminate the non-linear term by extending

the \lattice stencil" from nine to 17 discrete velocities in 2D case.



THE LBE METHOD: FUNDAMENTALS, PLACE AND PERSPECTIVES 19

obtain the following \linear deviation term":

A
(l:d:)
i;j = �

�
@j� � (2@jui + @iuj) + @i� � @juj + ui@

2
j �+ uj@i@j�

�
| {z }

�
�rU0

2

L

Æ�
L

Re

� 0

�
Æ�

L

Re

� (70)

which is negligible in comparison to the Navier-Stokes terms in the limit Æ�L � 1.

The following linear and non-linear deviations can be obtained by re-arranging

the LBGK hydrodynamic equations of ref. [64]:

A
(l:d:)

i;j = �@j� (@jui + @iuj) ;| {z }
�

�rU0
2

L

Æ�
L

Re

� 0

�
Æ�

L

Re

�

A
(n:l:d:)

i;j = ��@j@k
�uiujuk

c2s| {z }
�

�rU0
2

L

Æ�
L

ĉ2s Re

� 0

�
Æ�

L

ĉ2s Re

� (71)

Both the linear and non-linear terms are negligible under conditions Æ�L � 1 and

ĉs � 1.

Compressibility e�ects. It can be seen that the LBE model is not actually

incompressible in a \classical" 
uid dynamics sense, which requires the velocity

�eld be solenoidal r � u = 0 and � = const. There are always density variations

and velocity divergence sources present due to the linearized equation of state P =

c2s� (see eqs.(73) and (74)). The undesirable compressibility e�ects are minor as

long as density variations are small27;28, � O (Æ�
L
), � O (Æ�

t
), � O

�
Æ�

L

Re

�
, and

thermodynamic e�ects are not considered.

27There are several LBGK models developed in an attempt to reduce these compressibility

e�ects [15] [30], in which di�erent `incompressible' techniques are borrowed from the `traditional'

CFD. In particular, He and Luo [30] employed Chorin's \pseudo-compressibility" method [16], in

which instead of eq.(38) the following macroscopic `pressure' equation is introduced:

1

c2s

@tP + @juj = 0 (72)

Instead of the mass and momentum, the P and Pu are conserved. Eqs.(72) and (58) become

a `target' macroscopic model in \heuristically" building the equilibrium distribution function. In

the case of the steady 
ow, this model completely recovers the `divergence-free' velocity �eld. In

case of the transient 
ow, the requirement Æ�t � 1 is still necessary to keep divergence sources

suppressed.
28Another remarkable \incompressible" LBE model is due to Chen and Ohashi [15]. In this

model, the incompressibility condition r �u is regained by applying velocity correction - the idea

borrowed from the `traditional' CFD `projection' methods [67].
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Modeling of acoustics. Simulation of the compressible 
uid using the isother-

mal \ideal gas" LBGK model, would require signi�cant computational resources.

In particular, in order to adequately represent the sound speed in air (cs jT=300K =p
RT � 300m

s
and �air � 10�5m

2

s
), considered as an ideal gas, a hypothetical

simulation would require time step Æt =
�

(�?� 1
2 )c2s

� 10�8s, if the D2Q9 \stream-

and-collide" LBGK scheme is utilized with
�
�? � 1

2

�
= 10�2 (probably, the lowest

stability limit of this scheme). The correspondent grid size is Æx =
p
3csÆt � 1�m.



THE LBE METHOD: FUNDAMENTALS, PLACE AND PERSPECTIVES 21

Similar estimates for water29 (cs � 1500m
s
and �H20 � 10�7m

2

s
) yield Æt � 10�11s

and Æx � 10nm.

2.3.3. Hydrodynamic equations of the isothermal `free-energy-based` LBGK model

for non-ideal 
uid

In order to represent complex thermodynamic e�ects of non-ideal 
uids, several

\non-ideal 
uid" LBGK models have been developed. One of the �rst successful

\non-ideal" LBGK model is due to Swift et al., [77] and [78]. For this model, the

pressure tensor is de�ned using the Cahn-Hilliard's approach for non-equilibrium

thermodynamics30;31 [10]

P(0)
i;j =

h
P0 � ��@2k��

�

2
(@k�)

2
i
Æi;j + �@i� � @j� (75)

Thermodynamical pressure P0 is given by, e.g., van der Waals model, eq.(16).

Parameter � is a measure of the interface free energy. In the case of the 
at

interface, the coeÆcient � is related to the coeÆcient of surface tension � through

the equation:

� =
�R �

@�

@n

�2
dn

(76)

where n is a normal-to-interface direction.

So far, no successful implementation of the body force for this model is known,

aj = 0. Thus, the governing hydrodynamic equations of this LBGK model written

in the \dimensional form" are:

@t� + @j�uj = 0
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`Capillary stress tensor',
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�@j( �rU0
2"P̂(1)

i;j| {z }
Viscous stress

tensor, �T LBGK
i;j

)
(77)

29Importantly, water cannot be considered as an \ideal gas" due to the \sti�" pressure-density

relation, P � �
7:15.

30The name `free-energy-based' is attributed to the model chosen for pressure tensor eq.(75).

Strictly speaking, this model is phenomenological, in which the thermodynamic e�ects are intro-

duced by the phenomenological equation of state, but not from the consideration of the kinetic

nature of the Lattice Boltzmann method.
31In the present section, we use (̂�) to explicitely denote non-dimensional variables.
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where the Weber number and density variations are de�ned as We � �rU0
2
L

�
,

Æ�
L
= �l��v

�r
and Æ�

t
=

�
t
�

�r
, respectively; �l and �v are the saturation density of the

liquid and vapor phase under chosen temperature T ; and �
t
� is a scale of the density

variation over characteristic time scale t0 � L

U0

. In the scaling analysis of eq.(77),

the temporal and spatial derivatives of the density are estimated as @t� �
U0��t

L
,

@i� �
�
l
��v
L

; @ij� �
�
l
��v
L2

and @ijk� �
�
l
��v
L3

. In addition, parameters �, a and b

are scaled as � � L�
�2r

=
L
2
U
2

0

�rWe
, a � c2s

�r
and b � 1

�r
, respectively.

Derivation of the viscous stress tensor T LBGK
i;j is similar to that one for the

\isothermal ideal gas" model and given in appendix C:

@j
�
T LBGK
i;j

�
= @jTi;j| {z }

�
�rU0
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L

1+Æ�
L

Re
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�
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+A
(l:d:)
i;j + A

(n:l:d:)
i;j (78)

In the analysis of the present section, we assume that the lattice geometry is

such, so �(4) = ĉ4s. With this, the following viscosities are obtained:

� = �c2s|{z}
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CCCCCCCCCCCA

(79)

Notably, the second viscosity is non-Stokesian32. It is also dependent on the virial

coeÆcients of the equation of state and second gradients of density.

The \linear deviation tensor" is given by the following equation:

32For this model, there are strong velocity divergence sources at the interface, making the

second viscosity important.
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and the \non-linear deviation tensor" is:

A
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c2s
@j [ui@kukuj + uj@kukui]�
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The linear deviation term includes unphysical capillary terms of order �
0
�

Æ�
L

ĉ2s Re We

�
. Comparison of these terms with the capillary stress tensor and Navier-

Stokes viscous stress tensor gives

A(l:d:)i;k

Ki;k

� O

�
1

ĉ2s (1 + Æ�
L
)Re

�
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and

A(l:d:)i;k

@jTi;j
� O

�
Æ�

L

1 + Æ�
L

1

ĉ2sWe

�
which indicates that in order to have the unphysical surface tension suppressed,

one has to keep large ĉs.

Furthermore, the \linear deviation term" includes terms of unphysical viscous

stresses of the order � O
�
1+Æ�

L

Re

�
. Comparison of these \artifacts" with the Navier-

Stokes viscous stress tensor:

A(l:d:)i;k

@jTi;j
� O

�
Æ�

L

1 + Æ�
L

�

indicates that these unphysical terms cannot be neglected for large density di�er-

ences �
l
� �

v
, even for conditions of vanishing Mach number. This is one of the

reasons why this LBGK scheme su�ers from few unphysical e�ects, such as Galilean

invariance problem [78].

Non-linear deviation. Unphysical viscous stresses due to the non-linear devi-

ation can be suppressed by keeping small Mach numbers,

A(n:l:d:)i;k

Ki;k

� O

�
We

ĉ2sÆ�L

�

and

A(n:l:d:)i;k

@jTi;j
� O

�
1

ĉ2s

�
Additional serious methodological drawback of this model is that even though

one can introduce the concept of temperature from the consideration of the pressure

tensor, it is in con
ict with the energy conservation considered in the LBE discrete

kinetic theory, eq.(44) - the fact noticed �rstly by Luo [50]. That is, one cannot

demonstrate that the `constant-temperature' condition eq.(59) is satis�ed. This

seems to be a problem for all \isothermal" LBGK models.

2.3.4. Hydrodynamic equations of the isothermal `HSD' LBGK model for non-

ideal 
uid

For this model, the pressure tensor and body force are given by

P(0)

i;j = �c2s � Æi;j
Fi;j = �ajÆi;j ; aj =

�@jP?+��@j@
2
k�+�gj

�

(82)

where gj is an acceleration due to the external body force; and the `non-ideal' part

of the equation of state P ? is given by, e.g., van der Waals eqs.(15) and (16).

Important methodological di�erence of this model from the `free-energy-based'

model is the way the `non-ideal e�ects' are incorporated. In the `free-energy-based'

approach, the non-ideal equation of state (pressure) is included through the `mo-

mentum 
ux tensor' constraint imposed on the equilibrium distribution function,

eq.(B.1), while in the `HSD' model, it is incorporated directly through the momen-

tum source term.

With this, the momentum conservation equation written in the \dimensional"

form is:
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The `constant-temperature' condition is de�ned by eq.(59).

The viscous stress tensor T LBGK
i;j is derived in appendix C. Choosing the lattice

with �(4) = ĉ4s, the `�rst' and the `second' viscosities are de�ned by eq.(64). The

\linear deviation" tensor is:
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Comparing this unphysical term with capillary and viscous stress tensors:
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indicates that keeping large ĉs � 1, this \artifact" can be considered as negligibly

small, even for large density ratios
�
l

�v
� 1, which is signi�cant improvement in

comparison to the \free-energy-based" approach.
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\Non-linear deviation" tensor is given by the following equation:
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ĉ4sReWe

�
+2uiujuk@k�| {z }
� 0

�
Æ�

L
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ĉ2sRe

�

3
777777777775

(86)

and includes terms of order � O

�
1+Æ�

L
+Æ�2

L

ĉ4sReWe

�
and � O

�
1+Æ�

L

ĉ2sRe

�
, which allows to

make this unphysical term be suppressed by keeping the limit ĉs � 1.

3. MODELING OF INHOMOGENEOUS FLUIDS AND

FLUID-FLUID INTERFACES

Modeling of gas-gas, gas-liquid, liquid-liquid 
ows and interfacial phenomena is

one of the most diÆcult area in the computational 
uid dynamics. The major

challenge is to properly describe the physics of the interface evolution (transport,

breakup and coalescence). The diÆculty is mainly related to the fact that the con-

cepts of the continuum mechanics - the ground of the \traditional" computational


uid dynamics - are not applicable across the interfaces, where the drastical change
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of material properties occurs. Considering interfaces, one naturally and intuitively

thinks in terms of molecules of di�erent kind, interacting over very short distance

across the interfaces. Thus, intuitively, the models operating with the concept of

particles and molecules should have methodological advantage over methods of the

`continuum mechanics'. Since the lattice Boltzmann equation method is the par-

ticle method, it is oftenly seen to be superior comparing to the `traditional CFD'

methods [71] [72] [73] [74] [77] [78] [84]. In the present section, we would like to

discuss the existing LBE models for multiphase 
ows, trying to address the ques-

tion whether, why and when the LBE approach is advantageous for simulation of

the interfacial phenomena. It is important to realize that the computational mod-

eling of multiphase 
ows is not open for `purism'. That is, there are no `universal

models' able to perfectly work under any 
ow conditions. One has to be aware

of the limitations and advantages of the approach chosen, since every one has its

own domain of applicability. Thus, we start with our classi�cation of the modern

computational methods for 
uid-
uid multiphase 
ows, which would enable us to

properly appreciate the perspectives of the discrete kinetic approach.

Based on the underlying physical concept of the interface, the modern CFD

methods for 
uid-
uid multiphase 
ows can be separated into three groups33:

1. \Free-boundary Approaches", FBA. In the classical 
uid mechanics, the

interface between two immiscible 
uids is modeled as a free boundary which evolves

in time. It is assumed that 
uid dynamics equations of motion hold in each 
uid.

These equations are supplemented by boundary conditions at the free surface, in-

volving the physical properties of the interface34. The formulation results in a

free-boundary problem (Lamb, 1932 [46], Batchelor, 1967 [5], etc.). It is assumed

that physical quantities, such as e.g. density, are discontinuous across the inter-

face. Physical processes such as e.g. capillarity occurring at the interface, are rep-

resented by boundary (\jump") conditions imposed there. Representative example

of computational methods involving \free-boundary formulation" is the boundary

element/boundary integral method, (BE/BIM) ([70] [86]).

2. \Physical-Di�use-Interface Approaches", PDIA [3]. The approaches

of this group are based on the Poisson's (1831) [61] Maxwell's (1876) [53] and

Gibbs's (1876) [20] concept of the interface as a rapid and smooth transition of

physical properties between the bulk 
uid values. This idea was further developed

by Rayleigh (1892) [66] and van der Waals (1893) [83] with their \gradient the-

ories for the interface" based on thermodynamic principles, and Korteweg (1901)

[45], who proposed a constitutive law for the capillary stress tensor in terms of

the density and its spatial gradients. Examples of the \PDIA" CFD models are

the \second-gradient theory", \phase-�eld" and \Model H" [37]. These models are

based on the \continuum mechanics methodology", in which transport equations

for macroscopic variables are constructed, introducing phenomenological physical

33We will discuss only the `direct numerical simulation' (DNS) methods (i.e. those which

resolve interface), putting aside `e�ective �eld' (EF) methods , which employ statistically-/, time-

or spatially-averaged equations for multiphase systems ([19] [41]).
34This approach originates from probably the earliest concept of 
uid-
uid interfaces: Young,

Laplace and Gauss, in the early part of the 1800's, considered the interface between two 
uids as

a surface of zero thickness endowed with physical properties such as surface tension.
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models for interfacial dynamics through the e�ective forcing terms in the momen-

tum equations (\capillary stress tensors", \free-energy" concept, Cahn-Hilliard's

approach, etc.) and additional evolution equations for \order" parameters. The

\PDIA" CFD models are quite successful in describing many di�erent interfacial

phenomena, including studies of critical point scaling laws [37], capillary waves [27],

moving contact lines [68], droplets and nucleation [18], droplet breakup [42] and

spinoidal decomposition [24] (see for review [3]).

3. \Numerical-Di�use-Interface Approaches", NDIA. The methods of this

group involve a numerical method to \capture" or \track" interface (e.g., the trans-

port equation for \volume-of-
uid", VOF [36], the level set equation, LSA, [69] or

\front-tracking" technique by Tryggvason [82]). Then, the interface region is nu-

merically smeared-out over few computational nodes, allowing numerically smooth

transition of 
uid properties (i.e., density and viscosity); and, in this \numerical

di�use interface" region, the capillary e�ects are included as \body forces", which

in e�ect mimic the Korteweg's capillary stress tensor.

To discuss the LBE method for multiphase 
ows, we have chosen three most

successful and popular LBEmodels: the `Shan-Chen' (`SC') model; the `free-energy-

based' model; and the `He-Shan-Doolen' (`HSD') model. The other multiphase LBE

models are due to Gunsteinsten at al. [25] and Luo [50].

3.1. Interparticle interaction potential model of Shan and Chen

(\SC")

One of the �rst and probably most used \multiphase LBE" model is due to Shan

and Chen [71] [72] [73] [74]. In this model, after each time step, an additional

momentum forcing term is explicitly added to the velocity �eld:

u0(x; t) = u(x; t) + ~�(x; t) where (87)

~�(x; t) = �
�

�
 (x)

bX
a

Ga (x+ ea)ea

where  is a \potential" function and G is a \strength" of interparticle interaction.

The 'corrected' velocity u0 is employed in the equilibrium distribution function,

given by eq.(B.9). By introducing an additional forcing term, this model e�ectively

mimics the intermolecular interactions.

One can avoid the step eq.(87) by directly substituting u0 into the equilibrium

distribution function eq.(B.9). E�ectively, this means addition of the following

\correction" term to the equilibrium distribution function:

feqa = feqa + Æf?a ; a = 0; ::; b (88)

Æf?0 =

�
1� w0

�(2)
�

�(2)

�(4)

�
�
�
�iui +

�2i
2�

�
and

Æf?a6=0 = wa

�
eai�i � ui�i � �2i =(2�)

�(2)
+
eaieaj
2�(4)

�
�iuj + �jui +

�i�j

�

��
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The forcing term ~� in eq.(87) corresponds to the following non-local potential

function

V(x;x0) = G(x;x0)  (x)  (x0) (89)

Notably, for this model, the momentum is not conserved locally35. Thus, there is

always spurious velocity present close to the interface36.

The `SC' LBE method has been quite successful in simulation of several funda-

mental interfacial phenomena, such as Laplace law for static droplets/bubbles and

oscillation of a capillary wave (see for review [13]).

There are few limitations of the `SC' model, which have to be overcome in order to

make it competitive approach for multiphase 
ows. The �rst serious problem is that

one cannot introduce temperature which is consistent with the thermodynamical

model. It is possible to show that the `SC' model has the following equation of

state [72]:

P = c2s�+
bc2G
2D

 2(�)| {z }
P?

(90)

where b = 24 and D = 2 for a D2Q9 lattice. Suppose we would like to study 
uid

with the `non-ideal' part of the equation of state P �. In order to reproduce this

equation of state, the following  function must be utilized:

 (�) =

r
2DP ?

bc2G
; P ? = P � c2s� (91)

It is possible to show (see [72]), that, for this model, the Maxwell's \equal-area"

reconstruction is possible only for one special form of the potential function,  =

 0 exp(��0=�), where  0 and �0 are arbitrary constants. This makes this model,

in general, thermodynamically inconsistent. The role of temperature in this model

is e�ectively taken by the strength of the interparticle interactions G. By varying

G, one could construct (G � �)-diagram, which mimics the (T � �)-diagram.

The next problem is related to the way this model represents capillary e�ects,

which can be quanti�ed by the coeÆcient of surface tension �. It can be shown [72],

that for the `SC' model, in the case of the 
at interface, the coeÆcient of surface

tension can be calculated from the following equation:

� =
c2

D+ 2

Z +1

�1

p
P ? �

d2
p
P ?

dn2
dn (92)

where n is a direction normal to the interface. This means that � is coupled to

the equation of state through P � and there is no freedom to vary it.

Another limitation is related to the ability of representing di�erent viscosities

in di�erent phases, which is important for modeling of real 
uids. In most LBE

35However, it is possible to show that the total momentum, in the whole computational domain,

is conserved [72].
36If one de�nes macroscopic velocity as u0, the interfacial spurious velocity is reduced.
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simulations of multiphase 
ows, it is assumed that all phases or components of

the modeled multiphase system have the same kinematic (�) and \second" ( �
�
)

viscosities, de�ned by the relaxation time37 � and lattice geometry, eq.(64).

In terms of our classi�cation of the CFD methods for 
uid-
uid multiphase 
ows,

the `SC' model is close to the \physical-di�use-interface" methods. Similar to the

`PDIA' methods, there is no need to \track" or \capture" interface position, since

the \phase separation" and \interface sharpening" mechanisms are provided by the

physical model for momentum forcing term ~�. E�ectively, ~� plays the role of both

the Korteweg's capillary stress tensor and the \non-ideal" part of the equation of

state P �. Similarly to the `PDIA', the `SC' method builds the interface physical

model based on the continuum variable �: ~� = F ( = f(�)). There is no direct use

of the one-particle probability distribution function, fa - the major distiquishable

feature of the LBE method. So far, there is no clear idea how to make use of fa for

better representation/interpretation of physical phenomena at the interface.

3.2. \Free-energy-based" model by Swift et al.

Another successful LBE model for 
uid-
uid multiphase 
ow is due to Swift et

al. [77]. For one-component 
uid, this model is introduced in section 2.3.3. Multi-

component versions of the model are developed in [78] and [47]. The general idea

is to incorporate phenomenological models of interface dynamics, such as Cahn-

Hilliard approach and Ginzburg-Landau model, using the concepts of free-energy

functional; and to utilize the discrete kinetic approach as a vehicle for coupling with

complex-
uid hydrodynamics. The method belongs to the class of the `physical-

di�use-interface' approaches.

The major advantage of this method over the `SC' LBE method is that ther-

modynamical model of complex 
uid is properly formulated, based on the physical

principles of quasilocal thermodynamics for multi-component 
uids in thermody-

namic equilibrium at a �xed temperature. In addition, since the model admits local

momentum conservation, interfacial spurious velocity is practically eliminated [57].

The free-energy-based LBE approach has been successfully applied to study sev-

eral physical phenomena in binary and ternary 
uids, such as 
ow patterns in

lamellar 
uids subjected to shear 
ow [22]; e�ect of shear on droplet phase in bi-

nary mixtures [84]; spontaneous emulsi�cation of droplet phase in ternary 
uid,

which mimics the oil-water-surfactant systems [47]; etc.

The major drawback of this approach is that the model su�ers from unphysi-

cal Galilean invariance e�ects, coming from the `non-Navier-Stokes' terms, which

appear at the level of the Chapman-Enskog analysis of the discrete Boltzmann

equation (see, e.g. section 2.3.3). There are few promising studies, in which these

unphysical e�ects are reduced [38].

Another problem of the free-energy-based LBE approach is that, similarly to the

'SC` model, it actually does not utilize the `particle' nature of the discrete kinetic

approach. That is, the same phenomenological models of quasilocal equilibrium

isothermal thermodynamics can also be introduced in the computational methods

which directly solve for transport equations for macroscopic variables (\traditional"

37One possible way to vary viscosity is to introduce spatially-variable relaxation time, which

allows to have di�erent viscosity in `bulk' regions of di�erent 
uids [52].
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CFD methods). These are the `PDIA' methods - see for review [3]. Moreover,

using the \traditional CFD" approaches, most of the severe problems of the LBE-

based hydrodynamics of complex 
uid (inability to represent heat transfer and

energy conservation, unphysical terms for the momentum conservation law, stability

problem for large density ratios) might be surpassed without signi�cant challenge.

3.3. He, Shan and Doolen (\HSD") model

This model has been recently developed [31] as a revision of the `SC' model. In

di�erence to the `SC' model, the `HSD' model is not heuristic, but has a solid ground

in the kinetic theory of dense gases, section 2.1. The intermolecular interactions

are coming not from the imposed arti�cial rules, but from the approximation of the

Enskog's extension of the Boltzmann equation. As a result, several limitations of

the `SC' model have been eliminated. In particular, the `HSD' approach is 
exible in

implementation of the thermodynamical model, with the \consistent" temperature

concept, admitting the correct Maxwell's \equal-area" reconstruction procedure.

Furthermore, the capillary e�ects are modeled by the explicit implementation of

the \density gradient model", �rr2�, eq.(15), allowing 
exibility in variation of

the coeÆcient of surface tension by varying the parameter �.

There are few limitations of the model, which have yet to be overcome. The

most serious one is that this model cannot be acceptable for modeling of phase

transition, until the heat transfer phenomena are properly represented. Currently,

the `HSD' model does not describe energy transport, eq.(44). This seems to be a

problem for all LBE models of multiphase 
ows.

The next limitation is related to the numerical instability, associated with the

`sti�ness' of the collision operator, when the `complex 
uid' e�ects are introduced

through the `forcing' term, eq.(15). These stability problems might be alleviated

by providing `robust' numerical schemes for advection and collision operators, like

those discussed in section 4 and ref. [81].

Another way to improve stability of the `HSD' model has been explored in [32]. In

this study, two probability distribution functions are utilized. The �rst one is used

to \capture" incompressible 
uid's pressure and velocity �elds, using the \pseudo-

compressibility" concept ([30] and [16]). Another discrete probability distribution

function ia is introduced with the sole purpose to \capture" the interface. After

each time step, the \index" function � =
P

a ia is re-constructed, allowing to en-

force a smooth transition of densities and viscosities at the \numerically smeared"

interface:

� (�) = �1 +
���1
�2��1 (�2 � �1)

� (�) = �1 +
���1
�2��1 (�2 � �1)

(93)

where �1, �2, �1 and �1 are the densities and kinematic viscosities of two modeled


uids; and �1, �2 are the minimum and maximum values of the `index' function.

With this, this version of the `HSD' model is close in spirit to the \front cap-

turing" methods of the `NDIA', where � e�ectively plays the role of the `volume-

of-
uid' or the `level set' functions. In [32], this model has been used to simulate

Rayleigh-Taylor instability. The results of the simulation are comparable with those

obtained by the \traditional" CFD approaches, using the \VOF" and Tryggvason's
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\front-tracking" methods.

Summarizing, the LBE methods for 
uid-
uid multiphase 
ows are able to

reproduce several basic interfacial phenomena, such as spinoidal decomposition in

binary 
uids, oscillation of a capillary wave, Rayleigh-Taylor instability, etc., with

the results comparable to those obtained by the methods of the \traditional" CFD.

From another side, the currently existing multiphase LBE methods are not able

to bene�cially utilize the `kinetic theory origin' of the method. That is, in order

to simulate the interfacial phenomena, all currently existing LBE models practi-

cally employ the same techniques, as those used in the \traditional" CFD: i.e.,

intermolecular interactions are practically implemented through the phenomeno-

logical thermodynamical models - equations of state; and the capillary e�ects are

introduced by utilizing the \density gradient" approaches.

4. NUMERICAL TREATMENT: IMPLEMENTATION,

EFFICIENCY AND PERSPECTIVES

Eq.(24) is a system of b PDE Hamilton-Jacobi equations, consisting of an \ad-

vection part", A (fa) and a \collision part", 
 (fa):

@fa

@t
+
Æxa
Æt

@fa

@xa| {z }
A(fa)

=

a (fa)

Æt
(94)

where the collision operator is 
a � �
fa�f (eq)a

�?
.

The simplest scheme for discretization of each of these equations involves the

�rst-order-accurate implicit forward di�erencing for an advection,

A (fa) =
f
(n+1)
a � f

(n)
a

Æt
+
Æa

Æt

f
(n+1)
a+1 � f

(n)
a

Æa

where Æa is a grid step in the\ath" direction; and the �rst-order-accurate explicit

Euler discretization for a collision, 

(n)
a [76] . This results in the \basic" two-step

\stream-and-collide" LBE algorithm.

\Stream-and-Collide Algorithm":

� Collision:

{ Flow macroscopic conserved variables are calculated using eq.(32).

{ Equilibrium distribution functions are determined, using eqs.(B.2)-(B.10).

{ 'Ready-to-advect' distribution functions are computed for each lattice direction, at

each site:

fa (x+ eaÆt; t+ Æt) = fa(x; t) + 
a(x; t); a = 0; :::; b (95)

{ Finally, if necessary (depending on the boundary conditions employed), the r.h.s. side

of eq.(95) is modi�ed for boundary nodes.

� Advection. After collision, advection takes place. Particle populations are streamed in the

directions of corresponding discrete velocities, towards the neighbor lattice nodes.
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One can introduce more elaborate schemes as follows.

4.1. Discretization of the advection operator

Let's consider general three-point �nite-di�erence formula for discretization of

the transport partial di�erential equation (94), at the point i in the \ath" direction

of the particle's motion:

fn+1a;i = aif
}
a;i�1 + bif

}
a;i + cif

}
a;i+1 +
}a;i (96)

where the upper indices are used to denote the level of implicity: } = n (explicit),

} = n + 1=2 (semi-implicit), and } = n + 1 (implicit). Eq.(96) can be written in

the following conservative form, [59]:

fn+1a;i = fna;i �
1
2

h
CFLi+ 1

2
(f}a;i+1 + f}a;i)�CFLi� 1

2
(f}a;i + f}a;i�1)

i
+

+
h
�
(n:d:)

i+ 1
2

(f}a;i+1 � f}a;i)� �
(n:d:)

i� 1
2

(f}a;i � f}a;i�1)
i
+
}a;i

(97)

where �
(n:d:)

i� 1
2

are the dimensionless coeÆcients of numerical di�usion, and

ai � �
(n:d:)

i� 1
2

+ 1
2
CFLi� 1

2

bi � 1� 1
2
CFLi+ 1

2
+ 1

2
CFLi� 1

2
� �

(n:d:)

i+ 1
2

� �
(n:d:)

i� 1
2

ci � �
(n:d:)

i+ 1
2

� 1
2
CFLi+ 1

2

(98)

Application of eqs.(96)-(98) to the 'stream-and-collide' equation (95) gives �(n:d:) =

1=2, [76]. This numerical di�usion can be directly compensated for by modifying

the relaxation parameter from �? to �? � 1=2.

Note, that for a \stream-and-collide" scheme, the \Courant, Friedrichs, and

Lewy" number for advection is CFL = eaÆt
�xa

� 1. The use of the CFL=1 is quite

restrictive, especially in the case of strong non-linearity of the collision operator.

The following `predictor-corrector' algorithm has been introduced in [57], allowing

to alleviate this problem.

\Multifractional stepping procedure (MFN)":

Time step from n to n + 1 is divided on 2N sub-steps (fractions). The downwind/upwind

di�erence are employed for an advection term, at each odd/even sub-step:

f
(2m+1)

a;i = f
(2m)

a;i +
f
(2m)

a;i � f
(2m)

a;i+1

2N
+


}a;i

2N
(99)

f
(2m+2)

a;i = f
(2m+1)

a;i +
f
(2m+1)

a;i�1 � f
(2m+1)

a;i

2N
+


}a;i

2N
; m = 0; :::; 2N

With this scheme, the CFL number can be varied arbitrarily, CFL= 1
2N

. In the

case of N = 1, this is exactly the explicit MacCormack scheme [59]. Further-

more, for each couple of sub-steps, we have central di�erencing for both time and

space. Therefore, this scheme is of second order accuracy. Applying eqs.(96)-(98),

the coeÆcient of the numerical di�usion is �(n:d:) = � 1
4N

for odd sub-steps, and



34 NOURGALIEV, THEOFANOUS, DINH AND JOSEPH

�(n:d:) = + 1
4N

for even sub-steps. Thus, in total, the coeÆcient of the numerical

di�usion is zero.

The other algorithms for discretization of the LBE's advection operator are given

in [81] (\TVD/AC" scheme) and [55] (\Lax-Wendro�" scheme). It is shown that

these schemes are able to alleviate the LBE stability problems, which are especially

acute in the case of the simulation of multiphase and thermal 
ows ([57] [81] and

[55]).

4.2. Discretization of the collision operator

`Stream-and-collide' LBE numerical scheme employs explicit Euler method for

a collision operator. In the case of ! = 1
�?
! 2, and in the case of the strong

non-linearity of the collision operator, this scheme fails to produce stable solution

[76] [57]. Notice, that the LBE equations (96)

A(fa)
!

� D!fa = K| {z } � feqa � fa (100)

are sti� di�erential equations in !: fa � e�!. This means, that the errors grow

exponentially.

There are several numerical schemes recommended for the solution of sti� dif-

ferential equations (see for review [59]). One obvious way to reduce error growth,

without iterative procedures, is to employ high-order explicit Runge-Kutta meth-

ods. Applying these approaches to the LBE equations, the following procedure

could be utilized:

\Runge-Kutta Schemes":

� Collision stage.

| Euler method (E), O(!):

1. Calculate macroscopic variables, [ui; �; Pij ]
n = Mn(fna );

2. Calculate equilibrium distribution function feq;na and the collision operator:

K
}

�

}a
!

= feq;na � fna .

| Improved Euler method (IE), O(!2):

1. Predictor:

� Calculate macroscopic variables, [ui; �; Pij ]
} = M}(fna );

� Calculate equilibrium distribution function feq;na and the collision operator:

K
} = K

n = feq;na � fna .

� Advance on !: f}a = fna + !K};

2. Corrector:

� Calculate macroscopic variables, [ui; �; Pij ]
} = M}(f}a );

� Calculate equilibrium distribution function feq;}a and a new collision operator:

K
} = feq;}a � f}a .

� Calculate the �nal collision term: K} �

}a
!Æt

= K
n+K}

2
.

� Advection stage: employ one of the advection numerical schemes, A(fna ! fn+1a ) =

!K}, discussed above.
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Similarly, one can develop algorithms for other high-order Runge-Kutta schemes.

Unfortunately, all Runge-Kutta schemes do not guarantee stability for sti� equa-

tions. Therefore, the following implicit trapezoidal method (IT) is recommended in

[57].

\Implicit Trapezoidal method (IT)":

D!fa =
K
n +Kn+1

2
(101)

1. Collision stage

(i) K(m=0) = K
n [Euler];

(ii) Iteration loop, m = m+ 1:

� K(m) = K
n+K(m�1)

2
;

� Relaxation (if needed): K(m) = r � K(m) + (1 � r) � K(m�1); r - is a relaxation

parameter;

� Advection: A
�
fna ! f

(m)
a

�
. Get new f

(m)
a .

� New macroscopic variables: [ui; �; Pij ]
(m) = M(m)(f

(m)
a );

� New equilibrium distribution function f
?;(m)
a from [ui; �; Pij ]

(m).

� New collision operator: K(m) = f
?;(m)
a � f

(m)
a .

� Convergence test:

���K(m)
�K

(m�1)

�(m)

��� � "c; "c is a `target' accuracy.

� Repeat, if not converged.

2. Advection stage: A(fna ! fn+1a ) = !K(m).

This scheme is known to be A-stable (absolute stability in the entire left half-

plane, [59]) from the Von Neumann linear stability analysis. Also, it is a second-

order accurate scheme, O(!2). However, the `IT' scheme requires the iterative

procedure. Fortunately, the iterations converge rapidly, especially when the `MFN'

scheme is imployed for an advection. Moreover, the more fractions N employed,

the faster the convergence [57].

In [57] the `IT' scheme is applied to the free-energy-based LBE method for non-

ideal 
uid. It is found that it can signi�cantly improve stability for high-surface-

tension and high-density-ratio non-ideal 
uids.

4.3. LBE as a solver of Navier-Stokes equations: place, eÆciency and

perspectives

Looking back at the fundamental principles and aspects of the practical imple-

mentation of the LBE method, it is clear that, currently, the fact that the LBE

method operates with particle probability distribution function does not give any

real advantage in better representation of molecular interactions. Thus, currently

existing LBE methods are actually not truly able to \capture" some physical phe-

nomena, which are `out-of-reach' for `traditional' CFD methods. In practice, the

LBE method is basically used as an alternative mean to solve the Navier-Stokes

equations, while the e�ects of the molecular interactions are represented by the phe-

nomenological models - equations of state - the same approach which is utilized in

the `PDIA' methods of the \traditional CFD". There is also no clear evidence that
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the LBE approach is more eÆcient `Navier-Stokes solver', than the \traditional"

CFD methods. In what follows, we will discuss `pros' and `cons' of the LBE method

as a `Navier-Stokes solver', in terms of its simplicity, eÆciency and capability for

eÆcient parallelization.

Simplicity. One argument in favor of the LBE method is its simplicity in im-

plementation. Many researchers may �nd the LBE codes easier to handle, than

the \traditional" CFD Navier-Stokes solvers. This is probably a true for a simplest

`stream-and-collide` LBE algorithm with bounceback boundary conditions. Surely,

this scheme is much simpler to \code" than the best methods of the \traditional"

CFD, which involve algorithms for a solution of Poisson equation; sophisticated

Riemann solvers to handle hyperbolic terms; using unstructured grids to handle

complex geometry; etc. However, from our experience with both the \traditional

CFD" and the \discrete kinetic" approaches, we found that actually there is no

signi�cant simpli�cation in using the LBE methodology, if we limit ourselves to the

methods of the comparable capacity. That is, the direct counterparts of the LBE are

the \compressible 
ow methods for incompressible 
ows", such as, e.g. widely used

Chorin's pseudocompressibility approach for incompressible 
ow. These methods

also do not require Poisson equation solvers, and are quite simple for implemen-

tation on regular mesh. Direct counterpart of the LBE's bounce-back boundary

conditions is, probably, the method of �ctitious (`ghost') cells, with polygonal rep-

resentation of the complex-geometry boundaries - the simplest approach widely

used in many \traditional" CFD N.-S. solvers.

Simplicity of the LBE approach signi�cantly deteriorates, however, when more

`advanced' features are being implemented, such as, e.g., non-uniform and body-

�tted lattices; adaptive lattice; high-order-accurate boundary condition treatment;

more sophisticated numerical algorithms for advection/collision needed to improve

stability; `�nite-volume' LBEs; etc. (see for review [13]). These capabilities are the

must for any competitive Navier-Stokes solver, for industrial applications.

EÆciency. Computational eÆciency advantages of the `isothermal' LBE ap-

proach is a subject of discussion in several studies. In particular, in [12], the

three-dimensional LBE algorithm is reported to be 2.5 times faster than the pseudo-

spectral method for incompressible 
ow, for low-Reynolds-number conditions.

Comparison of the LBE model with \traditional" CFD incompressible �nite-

volume (FVM) \projection" method (Patankar's and Spalding's SIMPLE algorithm

[60]) using the advanced multigrid technique on block-structured grids has been

recently performed by Berndorf et al. [9]. As a test-case for a comparison, a channel


ow with obstacles has been chosen. The results of calculations indicate that when

the number of obstacles is small, the FVM is more eÆcient than the LBE. This is

a direct \penalty" for explicitness of the method, requiring to keep small time step

in order to limit compressibility e�ects by small-Mach-number condition. However,

as geometrical complexity of the 
ow increased, the eÆciency of the multigrid38

Poisson solver is reduced, and, therefore, a break-even point between the multigrid

FVM and the LBE exists, where, at certain complexity of the geometry, the LBE

method becomes more eÆcient than the �nite volume approach.

38Multigrid is currently the best available algorithm for solution of system of algebraic equations.
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The advantage of the LBE method for `large-grid, complex-geometry' con�gu-

rations is seems to be due to the explicitness of the LBE algorithm, which does

not involve solution of the Poisson equation. The eÆciency of the best available

(multigrid) algorithms deteriorate with increase of 
ow geometrical complexity.

Currently, there is no available direct comparison of the LBE method with the

`pseudocompressible methods' of the \traditional" CFD. Those methods might be

as fast and as eÆcient, as the LBE approach, for massive calculations with complex-

geometry con�gurations, considering the fact that signi�cantly smaller number of

governing equations are needed to be solved39 and smaller number of variables

needed to be stored.

The LBE approach, however, might still be superior for low-Re-number 
ows,

since there is practically no large-viscosity-related numerical stability limitations,

which dwindle time step in explicit �nite-di�erence schemes of the \traditional"

CFD, Æt �
Æ2x
�
(see discussion in section 2.3.2).

Parallelization. The best criterium to evaluate the method's eÆciency in par-

allelization is scalability - the ratio of the computational time spent for the same

computational task, by increasing the number of processors involved. We approach

parallelization of the LBE algorithm by subdividing the computational domain

on N subdomains, corresponding to N processors available; solving for each sub-

domain on separate processor; and connecting the processors in a network using

MPI [57]. This is one of the most popular CFD strategy for parallelization [58].

Comparing scalability of the LBE method with scalability of the `traditional' CFD

�nite-di�erence code for compressible 
uid dynamics, we have found no signi�cant

advantage of either approaches. Depending on the implementation, optimization

and the size of the problem considered, scalabilities of both methods are within the

range 1.7 - 1.9. There is though some disadvantage of the LBE method, because

of the more complex stencil involved, and, thus, the network for connection of pro-

cessors is more sophisticated. Thus, in two dimensions, each processor, instead of

four neighbors of the \traditional" CFD �nite-di�erence code40, the D2Q9 LBE

code requires eight neighbors41. More sophisticated processor-network is required

in three dimensions, �g.1b. Closely related to this is the amount of information

to be `exchanged' at the end of each time step. In the case of the LBE's D2Q9

scheme, symbolically, 9 � 8 
oat variables are being sent/received, corresponding

to nine PPDFs, fa, and eight neighbor-processors. For the �nite-di�erence code,

3� 12 variables must be sent/received, corresponding to three conserved variables

39Comparing to the LBE, instead of solving in the most \optimistic" case (D2Q6) six explicit

equations for fa (a = 1; ::; 6), one has to deal with 3 explicit macroscopic equations for W =

(�; �u; �v). This \score" (\3:6") is much worse in 3D, where for the lattice with minimum possible

discrete velocities D3Q14 the count is \4:14". For the case of the thermal LBGK models, the

minimum number of discrete velocities in 2D is 16 [14], thus, the count is \4:16". In 3D, one

needs 40 discrete velocities to recover the correct macroscopic equations, elevating the \score"

to \5:40" (see also discussion in [56]). If one attempts to model multicomponent 
uids, one has

to introduce PPDF for each component, drastically increasing the number of explicit equations

solved and the memory storage requirements.
40We utilize the high-order-accurate (WENO5 [43]) conservative �nite-di�erence characteristic-

based approach [58] [26].
41Processors are also connected in `diagonal' directions, �g.1a.
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(�;u; v) and [4 `neighbor-processors' � 3 layers of the �nite-di�erence stencil42].

Note, that the scalability of the `domain decomposition' strategy for parallelization

depends on the amount of information sent/received during each `exchange' stage;

and the amount of the computational work to be undertaken by each independent

processor. From this perspective, the LBE approach is not advantageous.

5. CONCLUDING REMARKS

The Lattice Boltzmann Equation method is an alternative approximate scheme

for description of hydrodynamics. As a derivative of the kinetic theory of dilute

gases, the domain of the method's validity and applicability corresponds to that of

the Boltzmann equation theory: i.e. hydrodynamics of dilute monoatomic (ideal)

gases. The method is shown to be an e�ective and reasonably accurate scheme

for discretization of the continuous Boltzmann equation, in the limit of uniform

isothermal gases under vanishing Mach number conditions.

The method belongs to the class of the \compressible CFD methods for sim-

ulation of incompressible 
ows" (\pseudocompressible" methods) and share ad-

vantages, disadvantages and limitations of this class of the computational 
uid

dynamics. This includes the simplicity and explicitness of the algorithm, which

requires no solution of the Poisson equation; the restrictive simulation time step in

order to maintain the low-Mach-number limit; the arti�cial compressibility e�ects,

r � u = uj@j ln � � @t ln � 6= 0, originating from both the linearized equation of

state Pt=d = c2s� and the discretization errors; and the inability to properly de-

scribe thermodynamics and acoustic e�ects. Similarly to the \pseudocompressible"

methods of the \traditional CFD", the LBE approach is eÆcient in parallelization

and suitable for massive computation of incompressible 
ows in complex geometry

con�gurations, such as 
ow in porous media, particulate and suspension multiphase


ows. The LBE method might be more advantageous under low-Re-number condi-

tions. Thus, this area can be considered as the most perspective direction of the

LBE method application.

Extension of the LBE method to nonuniform (non-ideal) gases, and more gen-

erally to 
uid-
uid multiphase 
ows, is realized either heuristically (by applying

certain rules which \mimic" complex-
uid behaviour); or based on the Enskog's

extension of the Boltzmann's theory to dense gases, with incorporation of the phe-

nomenological models of quasilocal equilibrium constant-temperature thermody-

namics; and using the LBE methodology to couple the later one to the hydrody-

namics of complex 
uid. The \complex-
uid" framework of the LBE method is able

to reproduce several multiphase 
ow phenomena with the results, comparable to

the methods of the \traditional CFD". There are few challenging problems, which

have yet to be overcome in order to demonstrate the LBE scheme as a compati-

tive and perspective methodology, comparing to the \traditional CFD" approach

of direct solution of the conservation equations of continuum mechanics. These in-

clude the modeling of heat transfer and energy transport; elimination of excessive

numerical discretization errors and robustness and numerical stability under wide

range of 
ow conditions and multiphase 
ow properties.

42`Size' of the stencil for WENO5 scheme is 3 [43].
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APPENDIX A

Lattice geometry and symmetry

Consider the lattice composed of r sublattices in D dimensions. Each sublattice

has weight wr, which are chosen to satisfy certain symmetry requirements. In total,

the lattice has a = 0; ::; b links, ea.

The most important properties of the lattice are related to the symmetries of the

tensors:

Nn
i1i2:::in

=
X
a

w(jeaj
2
)(ea)i1 :::(ea)in (A.1)

which are determined from the choice of the basic lattice directions ea.

The basic condition for standard hydrodynamic behaviour is that tensors N (n)

for n � 4 should be isotropic [85]. Isotropic tensors N (n), obtained with sets of b

vectors ea composing r sublattices in D space dimensions, must take the form

�
N (2n+1) = 0

N (2n) = �(2n)�(2n) (A.2)

where 8>>>><
>>>>:

�
(2)
i;j = Æi;j

�
(4)

i;j;k;l = Æi;jÆkl + ÆikÆjl + ÆilÆjk

�
(2n)
i1i2:::i2n

=

2nX
j=2

Æi1ij�
(2n�2)
i2:::ij�1ij+1:::i2n

(A.3)

CoeÆcients �(2n) in eq.(A.2) are dependent on the speci�c lattice geometry, and

are given in Table 1 for the most commonly used lattices.

APPENDIX B

Equilibrium distribution function

To �t into the Chapman-Enskog procedure (section 2.3.1), the equilibrium dis-

tribution function should satisfy the following constraints:

Pb

a=0 f
eq
a = � `Mass conservation'Pb

a=0 f
eq
a eai = �ui `Momentum conservation'

bX
a=0

feqa eaieaj| {z }
�
eq

i;j

= Pi;j + �uiuj `Momentum 
ux tensor'

bX
a=0

feqa eaieajeak| {z }
Deq

i;j;k

=M(uiÆjk + ujÆik + ukÆi;j) `Constitutive physics'

(B.1)

whereM and Pi;j are the coeÆcient related to the 
uid viscosity and the pressure

tensor, respectively.
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TABLE 1

Symmetry characteristics of the most commonly used lattices.

Lattice
Order of

symmetry
r wa

b;c �(2)d;e �(4)
ea=c,

D2Q7 4th 2 w0 = var = f
1
2
g 3c2 3

4
c4 (0,0)

wa 6=0 =
1�w0
6

(cos 2�a
6
; sin 2�a

6
)

D2Q9 w0 = var = f
4
9
g (0,0)

Fig.1a 4th 3 worth
a = 4wdiag

a
3(1�w0)

5
c2 1�w0

5
c4 cyc.(�1; 0)

wdiag
a = 1�w0

20
(�1;�1)

D3Q15 w0 = var = f
1
8
g (0,0,0)

Fig.1b 4th 3 worth
a = 8wdiag

a
3(1�w0)

7
c2 1�w0

7
c4 cyc.(�1; 0; 0)

wdiag
a = 1�w0

56
(�1;�1;�1)

a
DDQb+1, where D is a dimension and b is the total number of moving directions.

bThe most commonly used values are given in brackets.
cNote:

P
a
wa = 1.

d
c = Æx

Æt
, where Æx and Æt are length and time scales, correspondingly.

eNote that the pressure constitutes the diagonal part of the 
uid's stress tensor. Thus,

the coeÆcient before the second-order Kroenecker symbol Æi;j is the lattice sound

speed, �(2)
� c

2
s.

The equilibrium distribution function may be approximated by series of Chapman-

Enskog expansions in macroscopic variables, to the second order, in the low-Mach-

number limit:

feqa6=0 = �wa
�
A+Beaiui + Cu2 +Deaieajuiuj + :::

�
(B.2)

f
eq
0 = �w0

�
A0 + C0u

2 + :::
�

Using the symmetry properties of the lattice given in appendix A, one can show

that the constraints eq.(B.1) are satis�ed with the following parameters of the

expansion:

A+ Cu2 =
2c2s � u2

2�(2)
+ � (B.3)

B =
1

�(2)
(B.4)

Duiuj =
uiuj

2�(4)
+

1

2��(4)

�
P ?
ij �

Tr(P ?)

2 +D
Æij � ���(2) 2

2 +D
Æij

�
(B.5)

A0 + C0u
2 =

1

w0

�
1� (1� w0)

2c2s � u2

2�(2)
�
u2�(2)

2�(4)
� (B.6)
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�
�(2)

�(4)(2+D)
�
Tr(P ?)� ��D�(2)

�
� ��(1� w0)

�

3
5 (B.7)

where � is a free parameter left, D is a space dimension, and Tr(P ?) is a trace of

the nonideal part of the pressure tensor, P ?
i;j = Pi;j � �c2sÆi;j .

CoeÆcient M is given by:

M = �
�(4)

�(2)
(B.8)

Setting � = 0 and P ?
i;j = 0 (`ideal 
uid'), we can write feqa in the following

compact form:

feq0 = �

�
1�

1� w0

�(2)
c2s �

u2

2

�
�(2)

�(4)
�

1� w0

�(2)

��

feq;0a6=0 = �wa

�
c2s
�(2)

�
u2

2�(2)
+
eaiui

�(2)
+
eaieajuiuj

2�(4)

�
(B.9)

which are exactly the same equations as given in the LBE literature, [12] and [63].

Using the pressure tensor given by eq.(75) and the following equation for �:

� =
P ?
0 � ��@kk�+

�
1
D �

1
2

�
� (@k�)

2

�(2)�
(B.10)

where P ?
0 = P0 � �c2s is a 'nonideal part' of the equation of state, we arrive to

the `free-energy-based' lattice Boltzmann model for `non-ideal 
uid' by Swift et al.

[78].

Notably, that for `ideal 
uid' model the speed of sound is a function of the lattice

space and time scales, Æx and Æt, and the weight of the non-moving populations w0,

see Table 1. Setting w0 = 4
9
for the D2Q9, one can get the non-dimensionalized

sound speed of the lattice,
�
cs
c

�2
= 1

3
, the value which is widely used in the literature

of the LBE theory [63].

APPENDIX C

Derivation of the viscous stress tensor for the LBGK models

Isothermal ideal gas.

@jT LBGK
i;j = �@j"P

(1)
i;j = �@j"

X
a

(eai � ui)(eaj � uj)f
(1)
a| {z }
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a
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=

=
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:::f

(1)
a = eq.(54) = ��
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(0)
a + eak@kf
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a � ak

c2s
(eak � uk)f

(0)
a

�
:::
i
=

= �"@j

0
BBB@@kD(0)

i;j;k| {z }
(A)

+ @t0�
(0)
i;j| {z }

(B)

�
ak

c2s

�
D(0)

i;j;k � uk�
(0)
i;j

�
| {z }

(C)!Ai;j=Artifact

1
CCCA

(C.1)
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The D(0)

i;j;k and �
(0)
i;j are given by eq.(B.1).

(A) : @j@k

2
6664 �"�

�(4)

�(2)| {z }
=M̂; eq.(B.8)

(uiÆj;k + ujÆi;k + ukÆi;j)

3
7775 =

= @j

h
M̂ (@jui + @iuj) + M̂ � @kuk � Æi;j

i
| {z }

!Ti;j=N.S. viscous stress tensor

+ @j

h
ui@jM̂+ uj@iM̂+ uk � @kM̂ � Æi;j

i
| {z }

!Ai;j=Artifact

(C.2)

At this stage, we can identify shear viscosity as

� = M̂ = �"��
(4)

�(2)
(C.3)

and

�" = ��
(2)

�(4) ; � = �

�
= const (C.4)
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�(4) @j

2
64 c2s@t0�Æi;j| {z }
�c2s@k�ukÆi;j ; eq.(48)
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(C.5)

Combining all terms, the viscous stress tensor is given by

@jT LBGK
i;j = @j

h
� (@jui + @iuj) +

�
� � �c2s

�(2)

�(4)

�
@kuk � Æi;j

i
(C.6)

yielding the second viscosity given by eq.(64). The rest terms are agglomerated

into the `artifact' tensor:

Ai;j = �@j [ui@j�+ uj@i�+ uk@k�Æi;j ] +

+��
(2)

�(4) @j
�
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�(2) (uiÆj;k + ujÆi;k + ukÆi;j)� uk
�
�c2sÆi;j + �uiuj

��i(C.7)

which, setting �(4)

�(2) = c2s, can be further re-arranged to produce the non-linear

deviation term given by eq.(61).
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Free-energy-based model for non-ideal 
uid.Repeating the calculations pre-

sented above43, the following viscosities and \artifact" terms are obtained:

� = �"�
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; � = �

 
5

3
+

�(2)

�(4)

 
2a��

c2s
1� b�

�
�c2sb

(1� b�)
2
+ �@2l �

!!
(C.8)
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\HSD" model for non-ideal 
uid. The following \artifact" term is obtained

for the \HSD" model:

Ai;j = ���
(2)

�(4)

n
@j

h�
c2s � �(4)

�(2)

�
(uk@k�Æi;j + ui@j�+ uj@i�)�

�
�
2a�+ c2s �

c2s
1�b� �

�c2sb

(1�b�)2
��

uiujuk
c2s

@k�+
�
1� �(4)

�(2)c2s

�
�

� (ui@j�+ uj@i�+ uk@k�Æi;j))� ��
�
ui@

3
j �+ uj@

3
i �+ @k@

2
l ��

�
�
uk

�
1� �(4)

�(2)c2s

�
Æi;j +

uiujuk
c2s

�
� �(4)

�(2)c2s

�
ui@j@

2
k�+ uj@i@

2
k�
�i
+

+2uiujuk@k�]�
�@j�

h�
1� �(4)

�(2)c2s

�
(uigj + ujgi + ukgkÆi;j) +

uiujuk
c2s

gk � ui@kujuk � uj@kuiuk

io
+

+�@j

h�
�(2)

�(4) � 1
c2s

�
(uigj + ujgi + ukgkÆi;j)

+�(2)

�(4)

�
uiujukgk

c2s
� ui@kujuk � uj@kuiuk

�i

(C.10)

43In this derivation though, for simplicity, we neglected the derivatives of the third and higher

order. Strictly speaking, this is not well grounded, because the momentum conservation equation

(77) contains terms of the third-order derivative of density.


