Correlation between R_{e} and R_{G} in Shear Thinning Fluid

by Jimmy Jing Wang

- Definition of shear Reynolds number R_{e} :

Use $V=\dot{\gamma}(y) \cdot d$, where $\dot{\gamma}(y)$ is the local shear rate, d is the diameter of particle.
From momentum equation,

$$
\dot{\gamma}(y)=-\bar{p} \frac{w}{2 \eta(y)}
$$

where \bar{p} is the pressure gradient, w is the width of the channel, $\eta(y)$ is local viscosity. Shear Reynolds number:

$$
R_{e}=\frac{\rho_{f} V d}{\eta(y)}=-\frac{\rho_{f} w d^{2}}{2 \eta^{2}(y)} \bar{p}
$$

using $\rho_{f}=1, w=12, d=1$,

$$
R_{e}=-6 \frac{\bar{p}}{\eta^{2}(y)}
$$

- Computation of R_{G} :

$$
R_{G}=\frac{\rho_{f}\left(\rho_{s}-\rho_{f}\right) g d^{3}}{\eta^{2}(y)}
$$

at equilibrium, lift force L satisfies:

$$
L=\left(\rho_{s}-\rho_{f}\right) g \frac{\pi d^{2}}{4}
$$

Therefore,

$$
R_{G}=\frac{4 \rho_{f} d L}{\pi \eta^{2}(y)}=\frac{4 L}{\pi \eta^{2}(y)}
$$

In Neelesh's paper, correlation was obtained between R_{G} and the critical R_{e} for lift-off. In our computation for shear thinning fluid, to simulate the case where equilibrium height equals 0.501 d is very difficult. The computations often diverge. So we draw correlation between R_{G} and the R_{e} for different equilibrium height. For each equilibrium height, the plot of R_{G} vs. R_{e} is nearly straight line in log-log coordinates.

Table 1: R_{G} vs. R_{e} is for each equilibrium height for $\boldsymbol{n}=\mathbf{0} .9$

$\begin{aligned} & \text { he=0.75 } \\ & \text { dpdx } \end{aligned}$	Re	Rg	$\begin{aligned} & \text { he=1 } \\ & \text { dpdx } \end{aligned}$	Re	Rg
1.667	15.28255	28.98325	1.667	15.14131	14.84394
2.5	24.7573	53.58735	2.5	24.52856	22.81926
3.333	34.85989	81.97618	3.333	34.53864	29.82089
5	56.46626	143.0233	5	55.94861	48.79665
6.667	79.48371	204.4807	6.667	78.75819	85.92145
he=3			¢		
dpdx	Re	Rg	dpdx	Re	Rg
1.667	13.74554	5.053382	1.667	12.75368	0.79228
2.5	22.25613	12.7386	2.5	20.61341	3.50469
3.333	31.34088	23.96901	3.333	29.01513	7.971296

Figure 1: R_{G} Vs. R_{e} is for each equilibrium height for $\boldsymbol{n}=\mathbf{0 . 9}$

$\begin{aligned} & \text { he=0.75 } \\ & \text { dpdx } \end{aligned}$	Re	Rg	$\begin{aligned} & \text { he=1 } \\ & \text { dpdx } \end{aligned}$	Re	Rg	$\begin{aligned} & \text { he=2 } \\ & \text { dpdx } \end{aligned}$	Re	Rg
1.667	25.06095	51.08183	1.667	24.57348	21.12577	1.667	22.45524	21.93816
2.5	44.18784	101.4774	2.5	43.34097	35.93177	2.5	39.65042	60.63187
3.333	65.97201	157.8694	3.333	64.7241	66.48622	3.333	59.27749	122.0733
5	115.7834	281.8425	5	113.6382	203.7458	5	104.2577	326.4864
6.667	172.21	458.7609	6.667	169.0701	411.0581	6.667	155.3217	649.6394
he=3			he=4					
dpdx	Re	Rg	dpdx	Re	Rg			
1.667	19.98467	9.751222	1.667	16.98205	1.556488			
2.5	35.3163	28.81428	2.5	29.96858	7.397405			
3.333	52.85983	60.6631	3.333	44.89156	18.30945			
5	93.16256	169.6834	5	79.30084	58.51825			
6.667	139.0199	347.2899	6.667	118.5798	127.6665			

Table 2: R_{G} vs. R_{e} is for each equilibrium height for $\boldsymbol{n}=\mathbf{0} . \boldsymbol{8}$

Figure 2: R_{G} vs. R_{e} is for each equilibrium height for $\boldsymbol{n}=\mathbf{0 . 8}$
From figure 1 and 2, we can see that:

1. The correlation between R_{G} and R_{e} for different equilibrium height in shear thinning fluid can be represented by $R_{G}=a R_{e}^{n}$. For different shear thinning fluids (parameter $\mathrm{n}=0.8$ or 0.9), a and n are constant at each equilibrium height. These parameters are listed in figure 1 and 2.
2. Larger R_{e} is required to lift a heavier particle to a certain equilibrium height.
3. Corresponding to the lift force profile where there's a minimum lift force at about $\mathrm{He}=1$, in figure 1 and 2 we can see the same thing. At $\mathrm{He}=0.75$, the lift force has a high value; at $\mathrm{He}=1$, the lift force decreases to a low value; at $\mathrm{He}=2$, the lift force return to a rather high value; then the lift force decreases monotonically with the He increasing. 4. The plots for different equilibrium heights cross each other. The intersection points indicate that for a particle with certain density, at a given R_{e}, it may have multiple equilibrium positions.
4. For the two shear thinning fluids ($n=0.8$ and $n=0.9$), the slopes of the R_{G} vs. R_{e} curves are similar.

Figure 3: power fit for coefficient \boldsymbol{a} for fluid $\boldsymbol{n}=\mathbf{0 . 9}$
Extrapolate to $\mathbf{H e}=\mathbf{0 . 5 0 1}, \mathbf{a}=\mathbf{5 . 5 7 3}$

Figure 4: power fit for coefficient \boldsymbol{a} for fluid $\boldsymbol{n}=\mathbf{0 . 8}$
Extrapolate to $\mathbf{H e}=\mathbf{0 . 5 0 1}, \mathbf{a}=\mathbf{1 . 2 9 7}$

Figure 5: power fit for coefficient \boldsymbol{n} for fluid $\boldsymbol{n}=\mathbf{0 . 9}$

Figure 6: power fit for coefficient \boldsymbol{n} for fluid $\boldsymbol{n}=\mathbf{0 . 8}$
Extrapolate to $\mathbf{H e}=\mathbf{0 . 5 0 1}, \mathbf{n}=\mathbf{1 . 1 8 4}$

