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Introduction
In this short note I discuss the solubility data from Svrcek & Mehrotra (1982) and I

show how these can be used to derive a solubility relation between gas fraction and void
fraction. After a short presentation of the experimental procedure, it is shown how the
slopes of the solubility curves obtained by Svrcek & Mehrotra can be used to calculate a
solubility constant. Two approaches are used: one based on the volume ratio and the other
on the weight fraction. When both approaches are transformed into a pressure-gas fraction
relation, it is shown that both approaches do not lead to the same result. However in the
most frequently occurring cases, the result is identical.

The experimental procedure
A more detailed presentation of the experimental set-up and measurement

procedures can be found in Svrcek & Mehrotra. I resume in a few words some important
points. Bitumen and gas (CO2, CH4 or N2) are recombined in a mixing cell. From this
mixing cell, live oil is pumped to a sample and expansion cell, which is contained in an
oven which keeps the bitumen at a given temperature T. The pressure p in the cell is
decreased by volume expansion of the cell until atmospheric pressure p1 and the
temperature is increased to T1 = 100°C. We suppose that the pressure p1 is low enough
and the temperature T1 is high enough so that the quantity of gas that remains in the crude
under these conditions can be neglected. The solubility of the gas is then calculated by a
material balance in terms of volume of gas per volume of original live crude and in terms
of weight percent.. The volume of gas is the volume of measured gas at standard pressure
pref = 760 mmHg = 1.013 Pa and standard temperature Tref = 0°C = 273.15 K

Results
We discuss here the results of the dissolution of CO2, but the results for the other

gases (N2 and CH4) are similar. The volume solubility is shown in Figure 1 in terms of
volume of liberated gas per original volume of live oil.
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Figure 1 Solubility of CO2 in Athabasca bitumen in volume of gas (measured at
1.013 Pa and 273.15 K) per volume of live crude, at different temperatures (in K)

This gas is liberated when the pressure is brought back to 1.013 Pa pressure and the
temperature is increased to 373.15 K, but its volume is measured at 1.013 Pa and 273.15
K. The straight lines represent linear regressions of a solubility which is supposed
proportional to the pressure. The data are not precise enough in order to decide whether
at zero pressure still gas remains in the crude or whether at a pressure higher than zero
already all the gas has been liberated. Therefor we suppose that zero pressure, the quantity
of dissolved gas is zero too.

The temperatures are an average of the exact temperatures in each point of the same
curve. These temperatures display a variation of less than 1 K around the mean
temperature.
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Figure 2 Solubility of CO2 in Athabasca bitumen in weight fraction, at different
temperatures (in K)



3

In Figure 2 the same data are represented, but now in terms of weight fraction. The
data are again fitted by straight lines through the origin, although, as we will see later, this
does not lead to the same solubility relation as the one that can be obtained from Figure 1.

The slopes of the linear regressions of volume solubility and weight solubility are
given in Table 1.

T (K) slope Rs (Pa-1) slope ξ (Pa-1)
297.6 1.40⋅10-8 7.43⋅10-6

315.0 1.05⋅10-8 5.47⋅10-6

336.0 8.76⋅10-9 4.49⋅10-6

365.5 5.78⋅10-9 2.88⋅10-6

Table 1 Slopes of solubility graphs

Gas fraction-pressure relation from volume solubility
According to the linear regression in Figure 1, we can model the solubility expressed

in volumes ratios as
( )R K ps pref Tref

p T
V.

, = (1)

where (p,T) are the condition at which this quantity of gas is dissolved and (pref, Tref) are
the conditions in which it is expressed. The volume ratio Rs can be written as

( ) ( )R V Vs pref Tref

p T
g pref Tref

p T

l,

,

,

,
/= (2)

where ( )Vg pref Tref

p T

,

,
 is the volume of gas which is dissolved at conditions (p,T), measured at

conditions (pref, Tref) and Vl  is the original volume of live oil before depressurisation. It is
supposed that the liquid can be treated as incompressible since we are mainly interested in
live oils below their bubble point. Under these conditions, when the pressure is lowered,
the creation of volume by gas coming out of solution is much larger than that by liquid
depressurisation.

According to the ideal gas law (for convenience we assume its applicability valid,
although any other equation of state connecting the gas pressure and density could be used
as well)

( ) ( )
V

N p T RT
pg pref Tref

p t ref

ref
,

, ,
= (3)

where N(p, T) is the number of moles of gas dissolved at (p, T) and R is the gas constant.
Note that although Vg depends on the reference conditions, N does not.

Substitution of (2) and (3) in (1) leads to

( )N p T
p V K

RT
pref l V

ref

, =

We assume that above the bubble point pressure ~p , the quantity of dissolved gas does not
vary anymore with the pressure. At the bubble point we denote ( )N p N~ ~= . The difference
between the number of moles in solution at the bubble point and the number of moles is
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solution at a pressure p, is the also the number of moles that will be present as a free gas at
pressure p, so

( )N N N
p V K

RT
p pg

ref l V

ref

= − = −~ ~ (4)

This molar quantity of gas also follows the ideal gas law, so that the volume of free gas at
that temperature T and pressure p

V
N RT

pg
g= (5)

Substitution of (4) then gives the gas-liquid ratio

( )V

V
Tp K

T p
p pg

l

ref V

ref

= −~

This gas-liquid ratio can be expressed in a void fraction φ  as
V

V
g

l

=
−
φ

φ1
(6)

so that by combination of the two precedent equations

γ φ
φ1−

= −~
~

p
p p

p
(7)

where

γ ≡
T p

Tp K
ref

ref V

~
(8)

Equation (7) can be simplified in the following cases:
a) small pressure drop ~ / ~p p p2 << <
b) small gas fraction φ << 1

If (a) is satisfied then

γ φ
φ1−

= −~p p (9)

if (b) is satisfied
γ φ~

~

p
p p

p
= −

(10)

and if both of them are satisfied
γφ = −~p p (11)

The last situation is also realised when φ << 1 and ( )γ ≥O 1 . The latter says that the
solubility has to be relatively small, shall both conditions be satisfied.

Gas fraction-pressure relation from mass solubility
According to Figure 2, expressed in mass fractions we obtain
ξ = K pm (12)

The mass fraction is defined as

ξ =
+

m

m m
gd

gd lp

(13)
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where mgd and mlp are the masses of dissolved gas and pure liquid per unit volume.
Supposing that the liquid density is constant, and neither a function of dissolved gas
concentration, nor of pressure through compressibility effects, we can write ρ l lpm= . The
mass density of gas equals the molar density multiplied by the molar mass M g , so that
(13) can be written as

ξ
ρ

=
+

NM

NM V
g

g l l

The same number of moles N that is measured at reference conditions, was dissolved
at pressure p. N can be written, using (12)

N
V K
M

p
K p

l l m

g m

=
−

ρ
1

Defining Ng in a way similar to that in the previous section

N
V K
M

p
K p

p
K pg

l l m

g m m

=
−

−
−









ρ ~
~1 1

and by (5)

′ =
−

−
−







γ

V
V

p
p

p
K p

p
K p

g

l m m

~ ~
~1 1

with

′≡ =γ
ρ

ρ
ρ

~pM

RT K K
g

l m

g

l m

(14)

where

ρ g
gpM

RT
≡

~

is the gas density at the bubble point pressure. In most situations, ρ ρg l<<  so that also
′<<γ 1/ Km , which in the following we will assume applicable.

By substitution of  (6)

′
−

=
−

−
−







γ φ

φ1 1 1

~ ~
~

p
p

p
K p

p
K pm m

(15)

Again some simplified cases appear, depending on the following two constraints
a) small pressure drop ~ / ~p p p2 << <
b) small gas fraction φ << 1

If only (a) is satisfied

( )′
−

=
−

−γ φ
φ1

1
1 K p

p p
m

~
~

which is similar to (10) if K pm
~ << 1; If only (b) is satisfied

′ =
−

−
−







γ φ

~ ~
~

p
p

p
K p

p
K pm m1 1

which is similar to (10) if K pm
~ << 1, and if both are satisfied
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′ = −γ φ ~p p (16)
which is similar to (11).

Comparison between the two approaches
To show that the approaches of the preceding paragraphs are equivalent, we

calculate the values of γ / ~p  and ′γ / ~p  for the data from Svrcek & Mehrotra (1982). This
involves the same calculations as Svrcek & Mehrotra carried out in their reporting.
Therefore it is not surprising that we will find γ γ= ′.

T (K) KV (Pa-1) Km (Pa-1) ρ l  (kg⋅m-3) γ / ~p ′γ / ~p
297.6 1.40⋅10-8 7.43⋅10-6 1041 1.22 1.22
315.0 1.05⋅10-8 5.47⋅10-6 1015 1.57 1.57
336.0 8.76⋅10-9 4.49⋅10-6 1005 1.79 1.79
365.5 5.78⋅10-9 2.88⋅10-6 984 2.56 2.55

Table 2 Solubility data from Svrcek & Mehrotra (1982) and calculated coefficients
γ / ~p  and ′γ / ~p

The results are reported in Table 2. The liquid density is an average of the different
pressures, but the deviation of the average is never more than approximately 1%. The
values of γ / ~p  are obtained using (8), using Tref  = 273.15 and pref = 1.013⋅105. The
values of ′γ / ~p  are calculated by (14), using Mg = 4.40⋅10-2 kg⋅mole-1.

The preceding calculations show that the earlier proposed relations
γ

ρ
ρ

ρ~ ~p
T

Tp K

M

RT K K p
ref

ref V

g

l m

g

l m

= = =

are coherent with the calculations and the results reported by Svrcek & Mehrotra.
In view of the preceding results, we propose to define a dimensionless reciprocal

solubility constant by replacing γ / ~p  by γ , which is only a function of the live crude oil
and does not depend on the bubble point pressure. The solubility relation then become

γ φ
φ1−

= −~p p
p

simplifying, for small pressure drops ~ / ~p p p2 << < , to

γ φ
φ

~ ~p p p
1−

= −

for small gas fractions, φ << 1, to

γφ = −~p p
p

and for small pressure drops and small gas fractions
γ φ~ ~p p p= −
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