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Abstract

The processes of nucleation, bubble growth and finally the creation of connected gas
during the pressure draw-down in an oil reservoir are discussed. From these mechanisms,
possible descriptions of foamy oil production appear. One of these mechanisms is the
creation of bubbles, small compared to pore sizes, which move with the oil phase and
which push the oil out of the reservoir. If this mechanism occurs, a very simple model can
describe the production of foamy oil. This model is obtained by establishing an
equilibrium relation between gas fraction and pressure, which then is modified into a
constitutive equation relating gas fraction and pressure in a dynamic context where super-
saturation is present. Together with a mixture mass conservation equation and Darcy’s
law, a two equation description of foamy oil production is obtained, depending on only two
dimensionless numbers. It is thought that this is the most simple possible way to describe
some particular cases of anomalous behavior of foamy oil. [Mention results]. The
implications of the model for the production of foamy oil reservoirs are eventually
discussed.
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1 Introduction
Some heavy oil reservoirs, most of which are located in Canada and Venezuela,

produce at the well-head an oil with obvious foaminess, so called foamy oil. Comparing its
production to conventional solution gas drive, most of these reservoirs exhibit anomalous
high production rates and high primary recovery factors. The gas-oil ratio is often low,
and stays low in time, whereas light oil reservoirs show a rapidly increasing gas-oil ratio
when the pressure decreases below the bubble point pressure (Maini, 1996). Some of the
foamy oil reservoirs show anomalous high sand production and so-called worm holing
(Wang, 1997, Geilikman et al., 1995, Smith, 1986) although this does not seem to be a
general rule. Especially in Venezuela such anomalous sand production is rarely observed in
reservoirs producing foamy oil. The solubility of gas in foamy oils does however not
appear to be much higher than that in light oils (comparison of for example the Methane /
Decane system with Methane / Athabasca bitumen, the solubility in the latter is found to
be approximately 1.5 times higher, see Reamer et al, 1942 and Svrcek & Mehrotra, 1982).

Although the reasons for the favorable response of foamy oils in solution gas drive
are not completely understood and tentative explanations which have been put forward are
somewhat controversial (see Maini, 1996 and Pooladi-Darvish & Firoozabadi, 1997 for
recent reviews), some general concepts of foamy oils have emerged.

Oils contain components of low molecular weight, which at initial reservoir
pressures are dissolved in the oil. If the reservoir pressure is above the bubble point
pressure, the oil is called sub-saturated. If the pressure in the reservoir is however drawn
down, and the bubble point pressure is crossed, the light component can no longer be
dissolved in the oil. The oil becomes super-saturated and starts to release gas by
nucleation of bubbles and subsequent diffusion of gas into these bubbles.

Initially the bubbles are small compared to the average pore size. It is then probable
that most of the bubbles move with the liquid phase, although some bubble trapping
potentially might occur. The bubble sizes however gradually increase due to diffusion of
gas into the bubbles and due to coalescence of several bubbles into larger bubbles.
Eventually, the bubble diameter will become of the order of magnitude of average pore
size. It is quite possible that if this happens, the gas and liquid can no longer be treated as
a mixture and the bubbles move at a velocity which differs from the liquid velocity,
because of the different relative permeability. Finally recombination of many large bubble
might lead to connected gas which flows, due to its low viscosity, much more rapidly than
the liquid phase. The gas fraction at which this happens is called the critical gas
saturation. Once connected gas is created, the oil reservoir stops producing oil without
artificial stimulation.

This explains the tight connection between critical gas saturation and primary
recovery. When the gas becomes connected, the end of primary recovery becomes in sight.
The (critical) gas saturation is then approximately equal to the fraction of oil pushed out of
the reservoir, which is the primary recovery.

The distinct phases in the process of nucleation and bubble growth are schematically
depicted in figure 1.
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Figure 1 Schematic representation of nucleation and bubble growth in a porous
media (white is rock, dark gray is oil and light gray is gas): (a) only dissolved gas;
(b) bubbles small compared to average pore size; (c) bubbles of size comparable to

average pore size; (d) fully connected gas. Typical time scales of transformation between
the stages are indicated as τ1 , τ 2  and τ 3 .

It is thought that the precedent description applies to any oil reservoir, whether the
oil is light or heavy and independent of composition. The difference between foamy and
conventional oil reservoirs is however that the characteristic time scales at which the
processes occur are very different. In normal light oil reservoirs it is thought that the
transformation of small bubbles, through larger bubbles to connected gas, happens on a
time scale which is short compared to a characteristic time scale of the pressure draw-
down of the reservoir. In foamy oils however, this is probably not the case. Possible
reasons are the following
1. The viscosity of heavy oil is much higher than the viscosity of light oil and the diffusion

coefficients of dissolved gas molecules are much smaller. This means that if the
pressure is decreased, the transfer of gas from a dissolved state into a small bubbles
occurs slower in a heavy oil than in a light oil. Therefore super saturation might at a
same pressure decline be higher in heavy oil.

2. The transformation of small bubbles into large bubbles is governed by the coalescence
between two bubbles, which increases the mean bubble size. The coalescence process
involves the drainage of an oil film which is created between two bubbles which are in
near contact. This drainage takes more time when the viscosity of the oil is higher
(Chesters, 1991).

3. Also the presence of surface active components such as, for example, asphaltenes or
other large chain molecules, might significantly increase drainage time by the so-called
Marangoni effect.

4. The coalescence of bubbles is however not only governed by a film drainage process
but also by a collision process which has to occur before film drainage can take place. It
might be expected that the collision rate between bubbles is lower when the viscosity of
the fluid is higher.

Thus the transformation of small bubbles into large bubbles and of large bubbles into
connected gas, will be slower in heavy oils than in light oils.

Within this framework, some of the typical foamy oil observations can be explained.
The low gas-oil ratio follows from the fact that the creation of connected gas is very slow,
so that gas moves with the oil, or even slower than the oil if some bubbles are trapped.
The high critical gas saturation is simply explained by the fact that coalescence between
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bubbles is more difficult in a heavy than in a light oil, so that higher gas fraction can be
achieved without creating connected gas. The high production rates might be directly the
result of the fact that all the dissolved gas helps to push the oil out, and that none of this
gas escapes the reservoir by creating channels of connected gas.

The terminology “foamy oil” might however be somewhat misleading. At actual
reservoir pressures, gas fraction can be as low as 5 to 10%, far below the gas fraction
value of 70% at which bubbles are arranged in close packed arrays, something usually
associated with the onset of foaming. It might be possible that this bubbly liquid, that we
call foamy oil, actually behaves like a foam, when bubble sizes become large. In this case,
the thickness of the “oil lamellae” between the bubbles would be small compared to the
bubble sizes, which might be seen as a typical characteristic of foam.

It is also not quite clear from the previous description whether foamy oils display a
foaming threshold. That is to say, whether for example the rate of pressure draw-down is
determining for whether the oil “foams” or not. Eventually bubbles will always be
generated, but it might be that the actual bubble size depends on the pressure decline by
for example differences in achieved super saturating. This change in bubble size might then
influence the critical gas saturation and so couple back on achievable primary production.

1.1 A model for bubbly oils
The creation of a model for the processes of nucleation and bubble growth assumes

that we know at which rates they take place. A detailed mathematical description appears
however to be extremely difficult. Nucleation modeling involves often quite a lot of
undetermined parameters, which are difficult to obtain in practically relevant situations.
Activation energies are not well known and neither are the role and distribution of
nucleation sites. Nucleation modeling often introduces extra time scales which make
reservoir simulation numerically more difficult to achieve. Film drainage and coalescence
between bubbles are processes on which still much work has to be done. Also the
dependence of relative permeabilities on bubble sizes and gas fraction are not fully
understood.

For these reasons, it seems wise to restrict potential models to the description of
situations where one transfer rate is much slower than all other transfer rates. Three
possibilities are indicated in table 1.

determining time scale observed behavior
τ1 few bubbles, oil heavily supersaturated
τ 2 small bubbles (possibly moving with the oil)
τ 3 large (possibly trapped) bubbles

Table 1 Different observed behaviors for different determinant time constants

In this document we will try to set up a simple description for the case where the
transfer rate from bubbles to connected gas is much lower than the transfer rate for
dissolved gas to bubbles.

The proposed model does not require any microscale information about nucleation,
bubble growth, compressibility or forces which produce relative velocity. We put up a
mixture theory in which the dispersed gas is described by a gas fraction field in a single



5

fluid in which the viscosity, density and mobility in Darcy's law all depend on the gas
fraction. This fluid satisfies the usual Darcy law, and the continuity equation together with
a kinetic (constitutive) equation required by the condensation and outgassing of the heavy
crude. The theory depends only on three parameters which can be measured in a PVT cell
and sand pack experiments: a mobility, a solubility and a time constant for mass transfer
from a dissolved state to free gas. The virtue of the model is simplicity, but it can only
work if the gas is dispersed and moves with the oil. If the gas phase does not move with
the oil, no relation between local concentration of dissolved gas and local gas fraction can
be derived.

Certainly the theory could not be expected to give rise to a percolation threshold or
even to a critical gas fraction, but it might describe many features of solution gas drive of
foamy oils in the dispersed bubbly mixture regime.

It is our idea that the increased recovery and production are generated by the
pumping of nucleating and growing gas bubbles. The gas fraction increases the volume of
the composite fluid and it acts as a pump, the gas coming out of solution pumping the fluid
outward. This pumping action is well described by the continuity equation (2.24) which
implies that in a closed volume V with boundary S containing dispersed bubbles of gas
fraction φ .

1
1 −

= ⋅∫ ∫φ
φD

Dt
dV

V
dS

S
mu n (1.1)

Where n is the outward normal on S and um is the velocity of our composite fluid.

2 Model description

2.1 Solubility of gas in crude oil
In this model we avoid all constitutive equations regarding nucleation rates, bubble

growth, and compressibility. In our model we have only foamy oil and dispersed gas,
but the dispersed gas enters only through

φ =
+
V

V V
g

l g

(2.1)

where Vg  is a volume of dispersed gas and Vl  is the volume of liquid.
We propose to describe the evolution of φ  by a linear kinetics  evolution equation

for uniform samples in a PVT cell of the form

( )γτ φ τ φ1 2
D
Dt

Dp
Dt

f p+ = , (2.2)

where τ1  and τ 2  are characteristic time scales and γ  is a constant with dimension
pressure. ( )f pφ, is a function which is to be determined from experiments.

The derivatives in (2.2) are material derivatives defined by
D
Dt t m= + ∇α ∂

∂
u . (2.3)

where α  is the porosity of the medium and um the superficial velocity of mixture flow in
the porous medium.
We have equilibrium whenever
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( )f pφ, = 0 (2.4)
Svrcek and Mehrotra (1982) give volumetric solubility curves (CO2 and methane

CH4, in figure 2.1). In these figures $V  is the ratio between the volume of gas that can be
evolved out of bitumen when the pressure is dropped to less than one atmosphere at a
temperature of 100°C and the original volume of bitumen. We can assume that this tells
you how much dispersed gas can come out of solution of condensed gas which is at a
saturation value at any pressure and temperature. We are going to assume that this $V
determines the dispersed gas fraction φ  following an argument put forward in what is to
follow.

[insert solubility graphs from Svrcek & Mehrotra]

Figure 2.1 Svrcek & Mehrotra (1982) solubility curves $V  vs. p

In the present approach we have no way to predict the size or size distribution of gas
bubbles. This means that we are free to choose the size and distribution to measure $V  and
the most convenient choice is when all the released gas is collected at the top of a PVT
such as in the experiment of Svrcek & Mehrotra. Figure 2.2 describes such a
depressurization experiment

(c)(b)(a)

 Vl

 Vg

Figure 2.2 Depressurization experiment in PVT cell at constant temperature; the oil
is indicated in dark gray, the gas in light gray. (a) dissolved gas at pressure p and

temperature T; (b) just after the pressurization, pressure pref and temperature Tref; (c)
Finally all the gas percolates out and $ /V V Vg l=  can be measured.

The pressure in a saturated live oil is suddenly decreased from pressure p to
reference pressure p = pref. Bubble nucleate and eventually percolate out of the oil. Svrcek
& Mehrotra measure a gas-liquid ratio defined as
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( )
( )

$V
V p

V p
g ref

l

= (2.5)

which is the volume of gas that comes out of solution when the pressure is dropped to a
reference pressure pref and temperature Tref. Their data show that

( )p p T V− =0 $ $γ (2.6)

where $γ  is a reciprocal solubility and p p= 0  at $V = 0 . This $V  is the solubility of the gas
given as a volume ratio and it is plotted in figure 2.1. The saturated bitumen is called “live
oil”. $V  is the volume ratio of dispersed gas which comes out of solution.

We suppose that all the gas which comes out of solution is disperse and does not
percolate. In the experiments in figure 2.1, we must suppose that the nucleation, growth
and compressibility of gas bubbles are working, but these microstructural features are
suppressed in these experiments; embedded all in the solubility $V . This is also what we do
in the mathematical model.

We slightly alter a solubility isotherm in the cartoon of figure 2.3 below.

~φ

~p

$φ
~p

$V

~V

 p  p

Figure 2.3 Solubility isotherm used in this model

Suppose, at some high pressure, which is called the bubble point pressure p p= ~ ,

that $ ~V V= , and that there is no more gas available to go into solution; Equation (2.6) can
then be written as

( )~ $ ~ $p p V V− = −γ (2.7)

If we bring back the relative volume $V  of gas that has come out of solution at the
reference pressure and temperature to the original pressure and temperature, we obtain a
relative volume of dissolved gas which we call $φ

$ $φ ≡
p
p

T
T

Vref

ref

(2.8)

And from (2.7)

( ) ( )~ $
$

~φ φ
γ

− =






 −

p
T

T
T p

p pref

ref

1
(2.9)

The dependence on 1 / p is a compressibility effect, whereas ~p p−  comes from gas
coming out of solution. In other words, decreasing the pressure, increases the
compressibility of the mixture by gas coming out of solution and by increasing the
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compressibility of the free gas. The latter effect is however weak at pressure close to the
bubble point pressure ~p . So (2.9) can be approximated by

( )~ $ ~φ φ
γ

− = −1 p p (2.10)

where the parameter γ

( ) ( ) ( )γ γ γT T
p

p
T
T

T
p

p
T
Tref

ref

ref

ref≡ ≈$ $
~

(2.11)

can be considered constant. The gas is thus considered incompressible.
From volume conservation we find that the relative volume of gas that comes out of

solution when the pressure is dropped from ~p  to p is
V
V

g

l

= −~ $φ φ (2.12)

If the volume of free gas stays low compared to the total volume, then

φ =
+

≈
V

V V
V
V

g

g l

g

l

(2.13)

and combining this with (2.12)
φ φ φ= −~ $ (2.14)
Substituting this result in (2.9) we find that gas fraction and pressure are

approximately linearly related
( )~p p T− − =γ φ 0 (2.15)

In the following we will call this equation the equilibrium solubility.

2.2 Dynamic constitutive equation
The equilibrium solubility relation (2.15) can be seen as a degeneration of (2.2). In

this case the gas fraction and the dissolved mass fraction of gas are in instantaneous
equilibrium with the pressure.

In many cases however, gas cannot come out of solution infinitely fast when
pressure is changed, so that equation (2.15) has to be violated. The rate at which gas can
come out of solution by nucleation of bubbles and diffusion of gas to these nucleated
bubbles might be predicted by a theory of nucleation and diffusion. These theories are
however complex and involve several constants which are difficult to quantify. Therefore
we suggest the that the dynamic behavior of solubility be described in terms of equation
(2.2). In the following we will concentrate on the special case

( )τ φDp
Dt

f p= , (2.16)

(in appendix A another special case is discussed)
Assuming linear kinetics, we propose then from (2.15) and (2.16)

τ γφDp
Dt

p p= − −~ (2.17)

which is a rate equation of the Maxwell type.
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Dp/Dt = 0 when p and φ  are at equilibrium and satisfy (2.15). When p is below this
value and φ  at equilibrium, then dp/dt > 0 and the pressure will increase to its equilibrium
value. When φ = 0 , p p− ~  relaxes to zero exponentially.

Including of a term proportional to D Dtφ /  would lead to an Oldroyd B type of
model (see also appendix A) with a retardation as well as relaxation time.

2.3 Governing equations
In addition to the constitutive equation (2.17), the flow is described by a mass

conservation equation for the mixture of gas and liquid
D
Dt

m
m m

ρ ρ+ ∇ ⋅ =u 0 (2.18)

where ρm  is the mixture density defined by
( )ρ φ ρ φρm l g= − +1  (2.19)

The mixture velocity um , which is the mixture flow rate divided by the total cross
sectional area of the porous medium, is supposed to be well represented by Darcy’s law

( )um p= − ∇λ φ (2.20)
Here the mobility λ  is the ratio between permeability κ  and mixture viscosity µ m

( )λ φ κ
µ

=
m

(2.21)

It is not expected that the mixture viscosity µ m  is very different from the oil viscosity µ l ,
because the bubbles are assumed small and the gas fraction low. Since the oil viscosity
increases as the quantity of dissolved gas decreases, µ l  and thus µ m  are expected to be
some increasing function of the gas fraction. Based on this argument, λ  would decrease
as the gas fraction increases.
If it further assumed that the gas density is small compared to the oil density ρ ρg l<< ,
then (2.19) can be approximated by

( )ρ φ ρm l≈ −1 (2.22)
After substitution of the definition of the material derivative (2.3), the mixture
density (2.22) and the mixture velocity (2.20) in equation (2.17) and (2.18), we obtain

α ∂
∂

λ γφ
τ

p
t

p
p p− ∇ = − −2
~

(2.23)

( ) ( )α ∂φ
∂

λ∇ φ λ∇
t

p p− ⋅∇ φ = − ∇ ⋅ −1 (2.24)

which are the two fundamental equations of the model.
It is possible to eliminate the gas fraction from the problem, which gives rise to a

very non-linear partial differential equation in pressure.

2.4 Dimensionless analysis
In order to make numerical solution of the equations easier and to determine the

number of independent constants in the problem, it is convenient to write the equations in
a dimensionless form. Therefore we choose a typical length scale L and a typical pressure
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difference ∆p . A dimensionless time can be chosen as t p Lλ∆ α/ 2 , a dimensionless
pressure as ( )~ /p p p− ∆  and a dimensionless void fraction as γφ / ∆p . Although the
mobility might depend on bubble size and gas fraction, we suppose that these
dependencies can be neglected in first order approach. Therefore we initially chose λ
constant.
The model equations (2.23) and (2.24) can then be written in dimensionless coordinates

( )∂
∂

φp
t

p
N

p+ ∇ = −2

1

1
(2.25a)

( )∂φ
∂

φ
t

p N p+ ∇ ⋅∇ φ = − ∇2
2 (2.25b)

where now the variables are dimensionless.
The model involves thus 2 dimensionless numbers:

N
p

L1
0

2= λ τ∆
(2.26a)

N
p2 = γ

∆
(2.26b)

the first is a ratio between the time constant for gas mass transfer and a typical transport
time and the second is a dimensionless (reciprocal) solubility. If the mobility would not be
assumed constant, then the model would  need a closure relation for the mobility
function λ .

3 Solution methods
In order to validate the proposed approach we have chosen to perform comparisons

between the proposed model, i.e. equations (2.23) and (2.24), and data from laboratory
core flow experiments. It is supposed that the core length L is much larger than its
diameter and that a one dimensional description in the axial co-ordinate x is sufficient (see
figure 3.1).

x = 0 x = Lum p= −λ∇

Figure 3.1 Schematic drawing of the de-pressurization of a core

A comparison with two types of core flow experiments is performed, which are both
described by (2.23) and (2.24), but with different boundary conditions:
1. Core depressurization of a core closed at one end (x = L) and with given pressure at the

other end (x = 0) (Sheng et al., 1996, Pooladi-Darvish & Firoozabadi, 1997,
Firoozabadi, 1992, Huerta et al., 1996);

2. Core through flow with a given pressure gradient over the core (Maini & Sharma,
1994, Maini et al., 1993).
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In numerical terms, these two cases correspond to the following boundary
conditions:
1. one Neumann boundary condition ∂ ∂p x x L/ = = 0  and a Dirichlet boundary condition

( ) ( )p p p t0 = −~ ∆
2. two Dirichlet boundary conditions: ( )p L psat= , ( )p p p0 = −~ ∆

Several solution strategies are possible, which will be discussed in the following.

3.1 Perturbation analysis
The equations (2.23) and (2.24) admit constant state solutions p p= 0  and φ φ= 0

which are solutions of the equilibrium solubility relation (2.15)
p p0 0+ =γφ ~ (3.1)

If we perturb these equilibrium solutions
p p p= + ′0 (3.2a)
φ φ φ= + ′0 (3.2b)

and we neglect the terms which are quadratic in the perturbation variables, we obtain

ατ ∂
∂

γφ′+ ′+ ′=p
t

p 0 (3.3a)

( )α ∂φ
∂

φ λ∇′+ − ′=
t

p1 00
2 (3.3b)

where ( )λ λ φ= 0 . The gradient cross term ∇ λ ⋅∇ ′p  has herein been neglected. We
may eliminate ′p  or ′φ  from (3.3); in both cases we find a telegrapher’s equation

∂
∂ ατ

∂
∂

2

2
2 21′+ ′= ∇ ′p

t
p
t

c p (3.4)

where

( )
c =

−







1 0
2

1 2φ λγ
τα

/

(3.5)

is a wave speed. The same equation is satisfied by ′φ .
The waves are damped which is a result of the second term in (3.4). If the relaxation time
τ → 0 , then the effects of wave propagation gives way to diffusion

( )∂
∂

φ λγ
α

′=
−

∇ ′p
t

p
1 0 2 (3.6)

Let us consider the solution of the telegraph equation (3.4) for “Stokes 1st problem” (see
Joseph, 1990, pp. 582-584). The pressure ′p at the boundary x = 0 of a semi-infinite
region is suddenly raised and held at value ∆p . We must solve (3.4) in one dimension

( )∂
∂ ατ

∂
∂

φ λγ
τα

∂
∂

2

2
0
2

2

2

1 1′+ ′=
− ′p

t
p
t

p
x

(3.7)

satisfying the initial conditions
( )′ = ≤ ≥p x t t x, ,0 0 0  and  (3.8)

and the boundary conditions



12

( ) ( )′ =p t pH t0, ∆ (3.9)
where H (t) is Heaviside's step function, and

( )′ → ∞ →p x t, 0
Equation (3.7) can be written in a dimensionless form, using the wave speed (3.5), a
length scale L, time scale ατ  and pressure scale ∆p

∂
∂

∂
∂

ατ ∂
∂

2

2

2 2

2

p
t

p
t

c
L

p
x

+ = 



 (3.10)

where now all variables are dimensionless.
Denoting

( ) ( )[ ]$ , ,p s t p x t= L (3.11)
and applying the Laplace transform L to (3.7)

( )c
L

p
x

s s p
ατ ∂

∂




 = +

2 2

2 1
$

$  (3.12)

which has solution

( ) ( ){ }[ ]c
L

p x s
s

s s x
ατ



 = − +

2
1 21

1$ , exp /  (3.13)

From inverse Laplace transform it is now found that the pressure as a function of space
and time is given by

( ) ( ){ }[ ]p x t
L

c s
s s x, exp /= 



 − +



ατ

2
1 1 21

1L-  (3.14)

Analytical solution of (3.14) is difficult. Numerical evaluation of (3.14), using the
technique of de Hoog et al (1982) can however easily be done by a readily available
routine in the MATLAB programming language.

An important observation is that according to (3.4), the behavior of
( )c L p pατ / /2 ′ ∆  as a function of x / L and t / ατ  is completely independent on the
solubility constant and the transfer time τ . The form of the solutions stays thus always the
same.

In some cases it is more convenient to choose the dimensionless time scale as
t p Lλ∆ α/ 2 . In dimensionless time, space gas fraction and pressure variables, the following
equations is then found:

( )N
p

t
p
t

N
p

x1

2

2 2 0

2

2

∂
∂

∂
∂

φ ∂
∂

+ = − (3.10a)

with solution

( ) ( )
p x t

s
s N s
N

x, exp
/

= −
+
−































L-1 1

2 0

1 2
1 1

φ
 (3.14)

For the case where nucleation is fast and τ → 0  ( N1 0→ ) it is straight forward to obtain
an analytical solution by inverse Laplace transform
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( )p
N

x
t

=
−













erfc
1

22 0
1 2φ / (x.18)

In this case thus similarity solutions exist in the variableζ = x t/ .

3.2 Steady state solution
A steady state solution is of interest in the open core problem, where a gradient in

gas fraction and pressure are set up. The one-dimensional steady state equations obtained
from (2.23) and (2.24) are

− 



 = − −λ γφ

τ
dp
dx

p p2 ~
(3.15)

( )d
dx

dp
dx

1 0− −











=φ λ (3.16)

The second equation integrates to

( )
dp
dx

u= −
−
0

1λ φ
(3.17)

where u0 is a integration constant of dimension velocity.
A second integration gives

( )
~p p

u
dx

x

− =
−∫ 0

0 1λ φ
(3.18)

Substituting (3.17) and (3.18) in (3.15) we obtain

( ) ( )γφ τ
λ φ λ φ

−
−

=
−∫u u

dx
x

0
2

2
0

01 1
(3.19)

which differentiates to

( ) ( )γ τ
λ φ

φ
λ φ

−
−











=
−

2
1 1

0
2

3
0u d

dx
u

(3.20)

This can be integrated between an arbitrary position in the core and the end x = L where
the pressure is the saturation pressure and the gas fraction equal to zero

( ) ( ) ( )1
2

1 10
2

2
0

0− − −







− = −−∫ ∫φ τ
λγ

φ φ
φ λγ

u
d

u dx

x

L

(3.20a)

The result is

( ) ( )1 1
4 2

1 1
4

03 0
2

0 0
2

− − − + −













− − =φ τ
λγ λγ

φ τ
λγ

u u L x
L

u
(3.20c)

Using a dimensionless gas fraction φγ / ∆p ,  a dimensionless length x L/  and a
dimensionless integration constant u L p0 / λ∆  (in the following φ , x and u0  are thus
dimensionless variables
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( ){ }1 1 4 2 1 1 4 0
3

1 2 0
2

0 1 2 0
2−





− − + − −





− =∆ ∆p
N N u u x

p
N N u

φ
γ

φ
γ

(3.20c)

The dimensionless numbers N1 and N2 are defined in (2.26). This third order polynomial
has an analytical solution.

3.3 Equilibrium solution
If the gas can come out of solution infinitely fast, then τ = 0  and the equilibrium

solubility (2.15) replaces the constitutive equation (2.16). Equation (2.15) states that the
gas fraction is high where the pressure is low. The bubbles and the oil flow from regions
with higher pressure to regions with lower pressure and thus to regions with higher gas
fraction. From (2.15) the gas fraction can be expressed in the pressure as

φ
γ

= −~p p
(3.23)

Substituting this expression in (2.24) a non-linear diffusion equation is obtained

( ) ( )− + ∇ = + − ∇ ⋅ −α ∂
∂

λ γ λ∇p
t

p p p p2 ~ (3.24)

Prof. G.I. Barenblatt has noted that (3.24) can be rearranged in

( )( )α ∂
∂
p
t

D p p= ∇ ⋅ ∇ (3.25)

with diffusion coefficient
( ) ( )D p p p= + −λ γ ~ (3.26)

If we define
$: ~p p p= + −γ (3.27a)

( )ψ λ: $ $
$

= ∫ x pdp
p

(3.27b)

then (3.25) can be written as

α ∂
∂

ψ$p
t

= ∇ 2 (3.28)

which for constant λ  simplifies to the well-known Boussinesq equation (Kalashnikov,
1987)

α ∂
∂

λ$
$p

t
p= ∇

2
2 2 (3.29)

In order to solve the one-dimensional equilibrium equation numerically it is convenient to
write the equations in dimensionless co-ordinates. Therefore we use the dimensionless
pressure ( )~ /p p p− ∆  and time t p Lλ∆ α/ . The length scale is made dimensionless by the
core length L.

( )∂
∂
p
t

d
dx

N p
dp
dx

= −



2 (3.30)

Equation (3.30) can be written as
∂
∂

∂
∂

p
t

z
x

=
2

2 (3.30)

with
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z N p p= −2
2 2/ (3.31)

The time and the domain are discretized by
( )t n t n N= − ≤ ≤1 1∆ , (3.32a)
( )x j x j J= − ≤ ≤1 1∆ , (3.32b)

with
( )∆t t N= −max / 1 (3.33a)

( )∆x J= −1 1/ (3.33b)
Using an implicit Cranck-Nicholson scheme, (3.30) writes

p p
t

z z z
x

z z z
x

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n+

−
+ +

+
+

− +−
=

− +
+

− +1
1
1 1

1
1

2
1 1

20 5
2

0 5
2

∆ ∆ ∆
. . (3.34)

Each (n+1) term on the right hand side of (3.34) can be linearized by

( ) ( )z z p p
z
p

z p p Dn n n n

n

n n n n
* * * *

*,
* * * *

+ + += + − = + −1 1 1∂
∂

(3.35)

where * indicates (j-1, j, j+1), resulting in
p

t
D p D p D p

x
p

t
D p D p D p

x
z z z

x

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

+
− −

+ +
+ +

+

− − + + − +

−
− +

=

−
− +

+
− +

1
1 1

1 1
1 1

1

2

1 1 1 1
2

1 1
2

0 5
2

0 5
2 2

∆ ∆

∆ ∆ ∆

.

.

(3.36)

where
D N pj

n
j
n= −2 (3.37)

Noting

s
t

x
= ∆

∆ 2 (3.38)

equation (3.36) becomes
( )
( )

− + + − = − +

− + + −
− −

+ +
+ +

+
− +

− − + +

0 5 1 0 5 2

0 5 1 0 5

1 1
1 1

1 1
1

1 1

1 1 1 1

. .

. .

sD p sD p sD p sz sz sz

sD p sD p sD p

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

j
n

(3.39)

The values of z j
n  is given by (3.31) as

z N p pj
n

j
n

j
n= −2

2 2/ (4.40)
The boundary condition at j = J (x = 1) can either be Neumann, in which case we
discretize it as

p p
x

J
n

J
n

+ −− =1 1 0
∆

(3.42)

and then
( )
( )

− + + = −

− + +
− −

+ +
−

− −

sD p sD p sz sz

sD p sD p

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

1 1
1 1

1

1 1

1 2 2

1
(3.41b)

or Dirichlet ( pJ = 0 ) in which case
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( )
( )
1 0 5 2

1 0 5

1 1
1

2 2
1

1 2

1 1 2 2

+ − = − + +

+ −
− −

+
− −

+
− −

− − − −

sD p sD p sz sz

sD p sD p

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

J
n

.

.
(3.41a)

The boundary condition at j = 1 (x = 0) is always a Dirichlet boundary condition so that
for j = 2, equation (3.39) becomes

( )
( ) ( )
1 0 5 2

1 0 5 0 5

2 2
1

3 3
1

3 2 1

2 2 3 3 1 1
1

1 1

+ − = − +

+ − + −

+ +

+

sD p sD p sz sz sz

sD p sD p s D p D p

n n n n n n n

n n n n n n n n

.

. .
(3.43)

Equation (3.39) can be written in a matrix representation
Ap Ap dn n n+ = +1 (3.44)

The closed core problem is defined by (3.36), (3.41a) and (3.43) and yields

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

A =

+ − − −
− − + − − −

− − + − − −

− − + −



























− +

−

1 0 5
0 5 1 0 5

0 5 1 0 5

1

2 2 2 3

2 3 2 4 2 5

2 1 2 2 1

2 1 2

s N p s N p
s N p s N p s N p

s N p s N p s N p

s N p s N p

n n

n n n

j
n

j
n

j
n

J
n

J
n

.
. .

. .
O O

O

(3.45a)

[ ]pn n
J
n T

p p= 2 K (3.45b)

( )

dn

n n n n n n n

n n n

j
n

j
n

j
n

J
n

J
n

sz sz sz s D p D p
sz sz sz

sz sz sz

sz sz

=

− + + −
− +

− +

−



























+

− +

−

1 2 3 1 1
1

1 1

2 3 4

1 1

1

2 0 5
2

2

2 2

.

M

M

(3.45c)

The open core with prescribed pressure drop, given by (3.36), (3.41a) and (3.43) leads to
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( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

A1

2 2 2 3

3 2 4 2 5

2 1 2 2 1

2 2 2 1

1 0 5
0 5 1 0 5

0 5 1 0 5

0 5 1

=

+ − − −
− − + − − −

− − + − − −

− − + −



























− +

− −

s N p s N p
s p s N p s N p

s N p s N p s N p

s N p s N p

n n

n n n

j
n

j
n

j
n

J
n

J
n

.
. .

. .

.

γ
O O

O

(3.46a)

[ ]pn n
J
n T

p p= −2 1K (3.46b)

( )

dn

n n n n n n n

n n n

j
n

j
n

j
n

J
n

J
n

J
n

sz sz sz s D p D p
sz sz sz

sz sz sz

sz sz sz

=

− + + −
− +

− +

− +



























+

− +

− −

1 2 3 1 1
1

1 1

2 3 4

1 1

2 1

2 0 5
2

2

2

.

M

M

(3.46c)

3.4 Full numerical solution
... all this work still has to be done....

4 Results

4.1 Depressurization of a closed core
The result of the equilibrium solution are shown in figure 4.1 and 4.2 for N2 values

of 2 and 20. The main influence of increasing N2, which corresponds to increasing γ  or
lowering the solubility is a faster propagation of the pressure drop into the core. This is in
agreement with the perturbation analysis where a wave speed is found which is
proportional to γ 1 2/ .

In figure 4.3 and 4.4 we compare the same cases, but evaluated with the
perturbation analysis, leading to the telegrapher’s equation. In the case of a very small time
constant of transfer, the telegraph equation degenerates into a diffusion equation with
solutions which take the form of complementary error function (see equation x.18).

At small time the results of the perturbation analysis and of the numerical solution
are identical. At large time however, the perturbation analysis results do not approach the
new equilibrium situation as fast as predicted by the numerical solution.
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Figure 4.1 Closed core depressurization problem: equilibrium solution for N2 = 2 in
dimensionless co-ordinates; pressure as a function of space at different times. pb

indicates the bubbles point pressure ~p .
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Figure 4.2 Closed core depressurization problem: equilibrium solution for N2 = 20 in
dimensionless co-ordinates; pressure as a function of space at different times. pb

indicates the bubbles point pressure ~p .
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Figure 4.3 Closed core depressurization problem: equilibrium solution with
perturbation analysis for N2 = 2 in  dimensionless co-ordinates; pressure as a function of

space at different times. p0 indicates the pressure which satisfies the constant state
solutions.
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Figure 4.4 Closed core depressurization problem: equilibrium solution with
perturbation analysis for N2 = 20 in  dimensionless co-ordinates; pressure as a function

of space at different times. p0 indicates the pressure which satisfies the constant state
solutions.
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The result of increasing the transfer time is shown in figures 4.5 and 4.6 for N2 = 2.
A propagating discontinuity in the space derivative of pressure is found, which becomes
more pronounced as the time scale is increased.
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Figure 4.5 Closed core depressurization problem: equilibrium solution with
perturbation analysis for N2 = 2 and N1=0.01 in  dimensionless co-ordinates; pressure as

a function of space at different times. p0 indicates the pressure which satisfies the
constant state solutions.
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Figure 4.6 Closed core depressurization problem: equilibrium solution with
perturbation analysis for N2 = 2 and N1=0.1 in  dimensionless co-ordinates; pressure as a
function of space at different times. p0 indicates the pressure which satisfies the constant

state solutions.

When rendered dimensionless by a time scale ατ  as was done for equation (3.14),
the solutions of the perturbation equations in the dimensionless co-ordinates

( )( )p p p L c* / /= ∆ ατ 2  and x x L* /=  do not depend on any parameters other than those
embedded in the non-dimensionalization. The solution of (3.14) is shown in figure 4.7.
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Figure 4.7 Numerical evaluation of equation (3.14): pressure versus distance in the
core at different times; a discontinuity in the derivative propagates into the core

The pressure disturbance propagates into the core, resulting in a discontinuity in the
space derivative of the pressure which propagates at a speed c and an attenuation given by

( )′ = ′ 



p x x c p

x
c

, / exp0 2
ατ

(4.1)

If the result is plotted versus a similarity co-ordinate ( )ς ατ= −1 2 1/ /L x t , we observe that
at large times a similarity solution can be found.
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Figure 4.8 Numerical evaluation of equation (3.14): pressure versus similarity
co-ordinate x t* */  at different times; at large times a similarity solution can be observed
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4.2 Flow in an open core with imposed pressure drop

5 Conclusions

Acknowledgments: Prof. G.I. Barenblatt (University of California) is acknowledged
for some useful comments.

6 Appendix A: an alternative form of the constitutive equation
A general constitutive law of type

( )a
D
Dt

b
Dp
Dt

f p
φ φ+ = , (A.1)

has been assumed in section 2.2, where the special case a = 0 has been investigated in
detail. If we choose b = 0, equation (A.1) can be written as

τγ φ γφD
Dt

p p+ = −~ (A.2)

which is a statement that the volume fraction relaxes toward the equilibrium value, with
time constant τ . Using definition (2.3) of the material derivative in (A.2) yields

τγ ∂φ
∂

τγλ∇ γφ
t

p p p− ⋅∇ φ + = −~ (A.2)

Equations (A.2) and (2.24) are the basic governing equations in this form of the theory.
Clearly, when τ  = 0, we recovery exactly the same equilibrium theory as was derived
above. It is also clear that this version of the theory supports steady uniform states as
solution, again exactly as found above. The governing equations for small perturbations
around these steady states are however different, as we shall now show. As before,
introduce small perturbation quantities defined by (3.2) where equilibrium demands that
(3.1) holds. Substituting these quantities into (A.2) and (2.24), neglecting quantities of
second order in perturbations and treating the mobility as a constant, we obtain

ατγ ∂φ
∂

γφ′+ ′= − ′
t

p (A.3)

( )α ∂φ
∂

φ λ∇′+ − ′=
t

p1 00
2 (A.4)

where ( )λ λ φ= 0 . If we now take the time derivative of (A.3), and use (A.4) to replace
∂φ ∂′/ t  by the Laplacian of ′p , we find

( ){ } ( )α τ φ λγ∇ ∂
∂

φ λγ∇1 1 10
2

0
2− − ′= − ′p

t
p (A.5)

The perturbation volume fraction satisfies an identical equation. Initial and boundary
conditions on the perturbation pressure are the same here as for the model presented
above.

The evolution equation for the perturbation pressure, (A.5), is very different in
character from the telegraph equation found for the pressure relaxation form of the
constitutive law. It is lower order in time, and, from Laplace transform solutions, appears
not to exhibit wave propagation; rather, the solutions are diffusive in character although
similarity solutions in x t/ /1 2  do not exist (except as an asymptotic state at large t). The
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rate of advance of the pressure perturbation front is found from these Laplace transform
solutions to be faster in early time than would be the case for classical diffusion.
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