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[Arjan Kamp] Some remarks: I have somewhat rewritten the introduction, trying to
centre the work more in a general context. I hope that this does no harm to Dan’s
original ideas. The part on solubility has been rewritten as well, introducing
Henry’s law. I added a short appendix to justify the neglect of gas phase
compressibility compared to solubility. I somewhat changed the notation and the
terminology in order to be more in line with the usual practices in oil industry.
Some recent thought: should we take into account the effect of the dissolved gas
concentration on mobility through the viscosity dependence?
Left to be done:
-insert the numerical method and solutions for the equilibrium model
-perform and insert  numerical solutions of the complete model
-write conclusions and put a clear link to field applications
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Abstract

The processes of nucleation, bubble growth and finally the creation of connected gas
during the pressure draw-down in an oil reservoir are discussed. From these mechanisms,
possible descriptions of foamy oil production appear. One of these mechanisms is the
creation of bubbles, small compared to pore sizes, which move with the oil phase and
which push the oil out of the reservoir. If this mechanism occurs, a very simple model can
describe the production of foamy oil. This model is obtained by establishing an
equilibrium relation between gas saturation and pressure, which then is modified into a
constitutive equation relating gas saturation and pressure in a dynamic context where
super-saturation is present. Together with a mixture mass conservation equation and
Darcy’s law, a two equation description of foamy oil production is obtained, depending on
only two dimensionless numbers. It is thought that this is the most simple possible way to
describe some particular cases of anomalous behavior of foamy oil. The model is tested
against laboratory experiments and a satisfactory agreement is obtained. The implications
of the model for the production of foamy oil reservoirs are eventually discussed.

1 Introduction
Some heavy oil reservoirs, most of which are located in Canada and Venezuela,

produce at the well-head an oil with obvious foaminess, so called foamy oil. Comparing its
production to conventional solution gas drive, most of these reservoirs exhibit anomalous
high production rates and high primary recovery factors. The gas-oil ratio is often low,
and stays low in time, whereas light oil reservoirs show a rapidly increasing gas-oil ratio
when the pressure decreases below the bubble point pressure (Maini, 1996). Some of the
foamy oil reservoirs show anomalous high sand production and so-called worm holing
(Wang, 1997, Geilikman et al., 1995, Smith, 1986) although this does not seem to be a
general rule. Especially in Venezuela such anomalous sand production is rarely observed in
reservoirs producing foamy oil. The solubility of gas in foamy oils does however not
appear to be much higher than that in light oils (comparison of for example the Methane /
Decane system with Methane / Athabasca bitumen, the solubility in the latter is found to
be approximately 1.5 times higher, see Reamer et al, 1942 and Svrcek & Mehrotra, 1982).

Although the reasons for the favorable response of foamy oils in solution gas drive
are not completely understood and tentative explanations which have been put forward are
somewhat controversial (see Maini, 1996 and Pooladi-Darvish & Firoozabadi, 1997 for
recent reviews), some general concepts of foamy oils have emerged.

Oils contain components of low molecular weight, which at initial reservoir
pressures are dissolved in the oil. If the reservoir pressure is above the bubble point
pressure, the oil is called sub-saturated. If the pressure in the reservoir is however drawn
down, and the bubble point pressure is crossed, the light component can no longer be
dissolved in the oil. The oil becomes super-saturated and starts to release gas by
nucleation of bubbles and subsequent diffusion of gas into these bubbles.

Initially the bubbles are small compared to the average pore size. It is then probable
that most of the bubbles move with the liquid phase, although some bubble trapping
potentially might occur. The bubble sizes however gradually increase due to diffusion of
gas into the bubbles and due to coalescence of several bubbles into larger bubbles.
Eventually, the bubble diameter will become of the order of magnitude of average pore
size. It is quite possible that if this happens, the gas and liquid can no longer be treated as
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a mixture and the bubbles move at a velocity which differs from the liquid velocity,
because of the different relative permeability. Finally recombination of many large bubble
might lead to connected gas which flows, due to its low viscosity, much more rapidly than
the liquid phase. The gas saturation at which this happens is called the critical gas
saturation. Once connected gas is created, the oil reservoir stops producing oil without
artificial stimulation.

This explains the tight connection between critical gas saturation and  primary
recovery. When the gas becomes connected, the end of primary recovery becomes in sight.
The (critical) gas saturation is then approximately equal to the fraction of oil pushed out of
the reservoir, which is the primary recovery.

The distinct phases in the process of nucleation and bubble growth are schematically
depicted in figure 1.

 (d) (c) (b)
 τ1  τ3 τ2

 (a)

Figure 1 Schematical representation of nucleation and bubble growth in a porous
media (white is rock, dark grey is oil and light grey is gas): (a) only dissolved gas;
(b) bubbles small compared to average pore size; (c) bubbles of size comparable to

average pore size; (d) fully connected gas. Typical time scales of transformation between
the stages are indicated as τ1 , τ 2  and τ 3 .

It is thought that the precedent description applies to any oil reservoir, whether the
oil is light or heavy and independent of composition. The difference between foamy and
conventional oil reservoirs is however that the characteristic time scales at which the
processes occur are very different. In normal light oil reservoirs it is thought that the
transformation of small bubbles, through larger bubbles to connected gas, happens on a
time scale which is short compared to a characteristic time scale of the pressure draw-
down of the reservoir. In foamy oils however, this is probably not the case. Possible
reasons are the following
1. The viscosity of heavy oil is much higher than the viscosity of light oil and the diffusion

coefficients of dissolved gas molecules are much smaller. This means that if the
pressure is decreased, the transfer of gas from a dissolved state into a small bubbles
occurs slower in a heavy oil than in a light oil. Therefore super saturation might at a
same pressure decline be higher in heavy oil.

2. The transformation of small bubbles into large bubbles is governed by the coalescence
between two bubbles, which increases the mean bubble size. The coalescence process
involves the drainage of an oil film which is created between two bubbles which are in
near contact. This drainage takes more time when the viscosity of the oil is higher
(Chesters, 1991).
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3. Also the presence of surface active components such as, for example, asphaltenes or
other large chain molecules, might significantly increase drainage time by the so-called
Marangoni effect.

4. The coalescence of bubbles is however not only governed by a film drainage process
but also by a collision process which has to occur before film drainage can take place. It
might be expected that the collision rate between bubbles is lower when the viscosity of
the fluid is higher.

Thus the transformation of small bubbles into large bubbles and of large bubbles into
connected gas, will be slower in heavy oils than in light oils.

Within this framework, some of the typical foamy oil observations can be explained.
The low gas-oil ratio follows from the fact that the creation of connected gas is very slow,
so that gas moves with the oil, or even slower than the oil if some bubbles are trapped.
The high critical gas saturation is simply explained by the fact that coalescence between
bubbles is more difficult in a heavy than in a light oil, so that higher gas saturation can be
achieved without creating connected gas. The high production rates might be directly the
result of the fact that all the dissolved gas helps to push the oil out, and that none of this
gas escapes the reservoir by creating channels of connected gas.

The terminology “foamy oil” might however be somewhat misleading. At actual
reservoir pressures, gas saturation can be as low as 5 to 10%, far below the gas saturation
value of 70% at which bubbles are arranged in close packed arrays, something usually
associated with the onset of foaming. It might be possible that this bubbly liquid, that we
call foamy oil, actually behaves like a foam, when bubble sizes become large. In this case,
the thickness of the “oil lamellae” between the bubbles would be small compared to the
bubble sizes, which might be seen as a typical characteristic of foam.

It is also not quite clear from the previous description whether foamy oils display a
foaming threshold. That is to say, whether for example the rate of pressure draw-down is
determining for whether the oil “foams” or not. Eventually bubbles will always be
generated, but it might be that the actual bubble size depends on the pressure decline by
for example differences in achieved super saturating. This change in bubble size might then
influence the critical gas saturation and so couple back on achievable primary production.

1.1 A model for bubbly oils
The creation of a model for the processes of nucleation and bubble growth assumes

that we know at which rates they take place. A detailed mathematical description appears
however to be extremely difficult. Nucleation modeling involves often quite a lot of
undetermined parameters, which are difficult to obtain in practically relevant situations.
Activation energies are not well known and neither are the role and distribution of
nucleation sites. Nucleation modeling often introduces extra time scales which make
reservoir simulation numerically more difficult to achieve. Film drainage and coalescence
between bubbles are processes on which still much work has to be done. Also the
dependence of relative permeabilities on bubble sizes and gas saturation are not fully
understood.

For these reasons, it seems wise to restrict potential models to the description of
situations where one transfer rate is much slower than all other transfer rates. Three
possibilities are indicated in table 1.
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determining time scale observed behavior
τ1 few bubbles, oil heavily supersaturated
τ 2 small bubbles (possibly moving with the oil)
τ 3 large (possibly trapped) bubbles

Table 1 Different observed behaviours for different determinant time constants

In this document we will try to set up a simple description for the case where the
transfer rate from small bubbles to large bubbles is much lower than the transfer rate for
dissolved gas to small bubbles. In this case only bubbles small compared to pore sizes are
present and it seems plausible to assume that these bubble move with the liquid flow. In
this case it is thus possible to relate gas saturation to the local concentration of dissolved
gas.

The proposed model does not require any microscale information about nucleation,
bubble growth, compressibility or forces which produce relative velocity. We put up a
mixture theory in which the dispersed gas is described by a gas saturation field in a single
fluid in which the viscosity, density and mobility in Darcy's law all depend on the gas
saturation. This fluid satisfies the usual Darcy law, and the continuity equation together
with a kinetic (constitutive) equation required by the condensation and outgassing of the
heavy crude. The theory depends only on three parameters which can be measured in a
PVT cell and sand pack experiments: a mobility, a solubility and a time constant for mass
transfer from a dissolved state to free gas. The virtue of the model is simplicity, but it can
only work if the gas is dispersed and moves with the oil. If the gas phase does not move
with the oil, no relation between local concentration of dissolved gas and local gas fraction
can be derived.

Certainly the theory could not be expected to give rise to a percolation threshold or
even to a critical gas fraction, but it might describe many features of solution gas drive of
foamy oils in the dispersed bubbly mixture regime.

It is our idea that the increased recovery and production are generated by the
pumping of nucleating and growing gas bubbles. The gas saturation increases the volume
of the composite fluid and it acts as a pump, the gas coming out of solution pumping the
fluid outward. This pumping action is well described by the continuity equation (2.22)
which implies that in a closed volume V with boundary S containing dispersed bubbles of
gas saturation Sg

1
1 −

= ⋅∫ ∫S
DS
Dt

dV
V

dS
Sg

g
mq n (1.1)

Where n is the outward normal on S and qm is the velocity of our composite fluid.

2 Model description

2.1 Solubility of gas in crude oil
In the following an equilibrium relation between pressure and void fraction is

derived by considering a hypothetical PVT experiment with a foamy crude oil. The
experiment consists of pulling out the piston of a PVT cell, which initially contains live oil
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at saturation pressure psat . In this process a volume Vg of gas is generated by dissolved
gas coming out of solution. Since the total mass of gas which comes out of solution is low
compared to the total liquid mass, it is supposed that in this process of nucleation and
bubble growth, the volume Vo and the density ρo  of the crude oil do not change.

In order to estimate how the gas saturation depends on pressure, it is necessary to
know something about the solubility of gas in heavy oil. The concentration of a dissolved
gas in a liquid is normally characterized in terms of mole or mass fraction of gas in that
liquid. Note that these are not linearly related. For lightly soluble gases, the solubility is
characterized by Henry’s law, which states that the partial pressure p of a dissolved gas is
proportional to its mole fraction x in the liquid (see Denbigh, 1981, Chapter 8)

p K x K
N
NH H
g d= = , (2.1)

where KH  is Henry’s constant, Ng d,  the number of moles of dissolved gas in the liquid
and N the total number of moles in the liquid phase.

Denoting the molar mass of the live oil as Mo , the total number of moles N in the
liquid phase is expressed as

N
V

M
o o

o

= ρ
(2.2)

Inserting this in equation (2.1)

N
V

K M
pg d

o o

H o
, = ρ

(2.3)

The number of moles in the gas phase can be expressed by the ideal gas law as

N
RT

V pg f g, = 1
(2.4)

where R is the ideal gas constant and T the temperature. Combining the fact that the total
number of moles in the system is independent of pressure and that at saturation pressure
no free gas is present, we obtain summing (2.3) and (2.4)

p
K M p

RT
V
V

pH o

o

g

o
sat+ =

ρ
(2.5)

The gas saturation Sg  of gas is defined as

S
V

V Vg
g

g o

=
+

(2.6)

At low gas saturation ( Sg << 1) equation (2.6) approximates
V
V

Sg

l
g= (2.7)

Furthermore we suppose the gas is incompressible (see Appendix A) so that
pM
RT

g
g= ρ (2.8)

where Mg  is the molar mass of the gas and ρ g  the gas density. Substituting (2.7) and
(2.8) in (2.5) results
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p p Ssat g− − =γ 0 (2.9)
where γ  is a reciprocal solubility constant defined by

γ
ρ

ρ
=

K M
M
H o g

g o

(2.10)

For slightly soluble gases, it follows thus that the gas fraction is a linear function of the
pressure. This is valid as well in an oil reservoir, under the assumption that the local molar
composition of the mixture of live oil and gas bubbles does not change. The bubbles thus
have to move with the oil.

2.2 Dynamic constitutive equation
We propose to describe the evolution of the gas saturation Sg  by an evolution

equation with linear kinetics

( )a
DS
Dt

b
Dp
Dt

f p Sg
g+ = , (2.11)

where a and b are constant parameters and ( )f p Sg,  is to be determined from experiments.

The derivatives in (2.11) are material derivatives defined by
D
Dt t m= + ∇α ∂

∂
q . (2.12)

where α  is the porosity of the medium and qm the superficial velocity of mixture flow in
the porous medium.
The equilibrium case is defined for

( )f p Sg, = 0 (2.13)

The equilibrium solubility  relation (2.9) can be seen as a degeneration of (2.11). In
this case the gas saturation and the dissolved mass fraction of gas are in instantaneous
equilibrium with the pressure.

In many cases however, gas cannot come out of solution infinitely fast when
pressure is changed, so that equation (2.9) has to be violated. The rate at which gas can
come out of solution by nucleation of bubbles and diffusion of gas to these nucleated
bubbles might be predicted by a theory of nucleation and diffusion. These theories are
however complex and involve several constants which are difficult to quantify. Therefore
we suggest the that the dynamic behavior of solubility be described in terms of equation
(2.11). In the following we will concentrate on the special case

( )τ Dp
Dt

f p Sg= , (2.14)

(in appendix B another special case is discussed)
Assuming linear kinetics, we propose then from (2.9) and (2.14)

τ γDp
Dt

p p Ssat g= − − (2.15)

which is a rate equation of the Maxwell type.
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Dp/Dt = 0 when p and Sg  are at equilibrium and satisfy (2.9). When p is below this
value and Sg  at equilibrium, then dp/dt > 0 and the pressure will increase to its equilibrium
value. When Sg = 0 , p psat−  relaxes to zero exponentially.

Including of a term proportional to DS Dtg /  would lead to an Oldroyd B type of
model (see also appendix B) with a retardation as well as relaxation time.

2.3 Governing equations
In addition to the constitutive equation (2.15), the flow is described by a mass

conservation equation for the mixture of gas and liquid
D
Dt

m
m m

ρ ρ+ ∇ ⋅ =q 0 (2.16)

where ρm  is the mixture density defined by

( )ρ ρ ρm g o g gS S= − +1  (2.17)

The mixture velocity qm , which is the mixture flow rate divided by the total cross
sectional area of the porous medium, is supposed to be well represented by Darcy’s law

( )qm gS p= − ∇λ (2.18)

Here the mobility λ  is the ratio between permeability κ  and mixture viscosity µ m

( )λ φ κ
µ

=
m

(2.19)

It is not expected that the mixture viscosity µ m  is very different from the oil viscosity µ o ,
because the bubbles are assumed small and the gas saturation low. Since the oil viscosity
increases as the quantity of dissolved gas decreases, µ o  and thus µ m  are expected to be
some increasing function of the gas saturation. Based on this argument, λ  would decrease
as the gas saturation increases.
If it further assumed that the gas density is small compared to the oil density ρ ρg o<< ,
then (2.17) can be approximated by

( )ρ ρm g oS≈ −1 (2.20)

After substitution of the definition of the material derivative (2.12), the mixture
density (2.20) and the mixture velocity (2.18) in equation (2.15) and (2.16), we obtain

α ∂
∂

λ
γ

τ
p
t

p
p p Ssat g− ∇ =

− −2 (2.21)

( ) ( )α
∂
∂

λ∇ λ∇
S
t

p S S pg
g g− ⋅∇ = − ∇ ⋅ −1 (2.22)

which are the two fundamental equations of the model.
It is possible to eliminate the gas saturation from the problem, which gives rise to a

very non-linear partial differential equation in pressure.

2.4 Dimensionless analysis
In order to make numerical solution of the equations easier and to determine the

number of independent constants in the problem, it is convenient to write the equations in
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a dimensionless form. Therefore we choose a typical length scale L and a typical pressure
difference ∆p . The most rigorous choice (the one which does not degenerate for τ = 0 ) is
then given by

∇ = ∇*: L (2.23a)

t t
p

L
* := λ

α
0

2

∆
(2.23b)

p
p p

p
sat* := −
∆

(2.23c)

S
S
pg
g* =

γ
∆

(2.23f)

γ γ* /= ∆p (2.23d)

( ) ( )λ λ λ* , , /x S x Sg g= 0 (2.23e)

where λ 0  is a characteristic mobility, chosen such that ( ) ( )λ* x O= 1 .
The model equations (2.21) and (2.22) can then be written as

( )∂
∂

λp
t

p
N

p Sg

*

*
* * * * *+ ∇ = −2

1

1
(2.24a)

( ) ( )∂
∂

λ λ
S
t

p S N S pg
g g

*

*
* * * * * * * * * *+ ∇ ⋅∇ = − ∇ ⋅ ∇2 (2.24b)

The model involves thus 2 dimensionless numbers:

N
p

L1
0

2= λ τ∆
(2.25a)

N
p2 = γ

∆
(2.25b)

the first is a ratio between the time constant for gas mass transfer and a typical transport
time and the second is a dimensionless (reciprocal) solubility. Furthermore, the model
needs a closure relation for the mobility function λ* .

In some cases it is convenient to choose

t
t* =

ατ
(2.26)

which however is not possible for equilibrium solubility considerations when τ = 0 . This
choice of time scale results in

∂
∂

λp
t

N p p Sg

*

*
* * * * *+ ∇ = −1

2
(2.27a)

( ) ( )1

1
2N

S
t

p S N S pg
g g

∂
∂

λ*
* * * * * * * * *+ ∇ ⋅∇ = − ∇ ⋅ ∇ (2.27b)

3 Numerical solution and perturbation analysis
In order to validate the proposed approach we have chosen to perform comparisons

between the proposed model, i.e. equations (2.21) and (2.22), and data from laboratory
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core flow experiments. It is supposed that the core length is much larger than its diameter
and that a one dimensional description in the axial co-ordinate x is sufficient.

A comparison with two types of core flow experiments is performed, which are both
described by (2.21) and (2.22), but with different boundary conditions:
1. Core depressurisation of a core closed at one end (x = 0) and with given pressure at the

other end (x = L) (Sheng et al., 1996, Pooladi-Darvish & Firoozabadi, 1997,
Firoozabadi, 1992, Huerta et al., 1996);

2. Core through flow with a given pressure gradient over the core (Maini & Sharma,
1994, Maini et al., 1993).

In numerical terms, these two cases correspond to the following boundary
conditions:
1. one  Neumann boundary condition ∂ ∂p x x/ = =0 0  and a Dirichlet boundary condition

( ) ( )p L p p tsat= − ∆
2. two Dirichlet boundary conditions: ( )p psat0 = , ( )p L p psat= − ∆

Several solution strategies are possible, which will de discussed in the following.

3.1 Perturbation analysis
The equations (2.21) and (2.22) admit constant state solutions p p= 0  and S Sg g= ,0

which are solutions of the equilibrium solubility relation (2.9)
p S pg sat

0 0+ =γ (3.1)
If we perturb these equilibrium solutions

p p p= + ′0 (3.2a)
S S Sg g g= + ′0 (3.2b)

and we neglect the terms which are quadratic in the perturbation variables, we obtain

ατ ∂
∂

γ′+ ′+ ′=p
t

p Sg 0 (3.3a)

( )α
∂
∂

λ∇
′

+ − ′=
S
t

S pg
g1 00 2 (3.3b)

where ( )λ λ= Sg
0 . The gradient cross term ∇ λ ⋅∇ ′p  has herein bee neglected. We

may eliminate ′p  or ′Sg  from (3.3); in both cases we find a telegrapher’s equation

( )∂
∂ ατ

∂
∂

λγ
τα

2

2

0

2
21 1′+ ′=

−
∇ ′p

t
p
t

S
pg (3.4)

The same equation is satisfied by ′Sg . Equation (3.4) gives rise to a wave equation with a
wave speed

( )
c

Sg=
−











1 0

2

1 2
λγ

τα

/

(3.5)

The waves are damped which is a result of the second term in (3.4). If the relaxation time
τ → 0 , then the effects of wave propagation gives way to diffusion
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( )∂
∂

λγ
α

′=
−

∇ ′p
t

S
pg1 0

2 (3.6)

Let us consider the solution of the telegraph equation (3.4) for “Stokes 1st problem” (see
Joseph, 1990, pp. 582-584). The pressure ′p at the boundary x = 0 of a semi-infinite
region is suddenly raised and held at value ′p0 . We must solve (3.4) in one dimension

( )∂
∂ ατ

∂
∂

λγ
τα

∂
∂

2

2

0

2

2

2

1 1′+ ′=
− ′p

t
p
t

S p
x

g (3.7)

satisfying the initial conditions
( )′ = ≤ ≥p x t t x, ,0 0 0  and  (3.8)

and the boundary conditions
( ) ( )′ =p t pH t0, ∆ (3.9)

where H (t) is Heaviside's step function, and
( )′ → ∞ →p x t, 0

Equation (3.7) can be written in a dimensionless form, using the wave speed (3.5), a
length scale L, time scale ατ  and pressure scale ∆p

∂
∂

∂
∂

ατ ∂
∂

2

2

2 2

2

p
t

p
t

c
L

p
x

*

*

*

*

*

*
+ = 



 (3.10)

Denoting
( ) ( )[ ]$ , ,*p s t p x t= L (3.11)

and applying the Laplace transform L to (3.7)

( )c
L

p
x

s s p
ατ ∂

∂




 = +

2 2

2 1
$

$  (3.12)

which has solution

( ) ( ){ }[ ]c
L

p x s
s

s s x
ατ



 = − +

2
1 21

1$ , exp /  (3.13)

From inverse Laplace transform

( ) ( ){ }[ ]p x t
L

c s
s s x* * * /, exp= 



 − +



ατ

2
1 1 21

1L-  (3.14)

A full analytical solution of (3.14) is difficult, although not impossible. Numerical
evaluation of (3.14), using the technique of de Hoog et al (1982) can however easily be
done by  a readily available routine in the MATLAB programming language.

3.2 Steady state solution
The one-dimensional steady state equations obtained from (2.21) and (2.22) are

− 



 =

− −
λ

γ
τ

dp
dx

p p Ssat g
2

(3.15)

( )d
dx

S
dp
dxg1 0− −











=λ (3.16)

The second equation integrates to
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( )
dp
dx

q
Sg

= −
−

0

1λ
(3.17)

where q0 is a integration constant.
A second integration gives

( )p p
q

S
dxsat

g

x

− =
−∫ 0

0 1λ
(3.18)

Substituting (3.17) and (3.18) in (3.15) we obtain

( ) ( )γ τ
λ λ

S
q

S

q
S

dxg

g g

x

−
−

=
−∫0

2

2
0

01 1
(3.19)

which differentiates to

( ) ( )γ τ
λ λ

−
−












=

−
2

1 1
0
2

3
0q

S

dS
dx

q
S

g

g

g

(3.20)

Using the oil saturation instead of the gas saturation S So g= −1  and integrating

{ }γλ τS q S dS q dxo o o

S xo

− = −−∫ ∫2 0
2 2

1
0

0

(3.21)

which leads to the result

( )S
q

x S
q

o0
3 0

2
0
2

1
4

1
4

0− − +







+ =τ
λγ

τ
λγ

* (3.22)

where ( )x x q* : /= 2 0τ
This third order polynomial has an analytical solution.

3.3 Equilibrium solution
If the gas can come out of solution infinitely fast, then τ = 0  and the equilibrium

solubility (2.9) replaces the constitutive equation (2.14). Equation (2.9) states that the gas
saturation is high where the pressure is low. The bubbles and the oil flow from regions
with higher pressure to regions with lower pressure and thus to regions with higher gas
saturation. From (2.9) the gas saturation can be expressed in the pressure as

S
p p

g
sat= −

γ
(3.23)

Substituting this expression in (2.22) a non-linear diffusion equation is obtained

( ) ( )− + ∇ = + − ∇ ⋅ −α ∂
∂

λ γ λ∇p
t

p p p psat
2 (3.24)

Prof. G.I. Barenblatt has noted that (3.24) can be rearranged in

( )( )α ∂
∂
p
t

D p p= ∇ ⋅ ∇ (3.25)

with diffusion coefficient
( ) ( )D p p psat= + −λ γ (3.26)

If we define
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$:p p psat= + −γ (3.27a)

( )ψ λ: $ $
$

= ∫ x pdp
p

(3.27b)

then (3.25) can be written as

α ∂
∂

ψ$p
t

= ∇ 2 (3.28)

which for constant λ  simplifies to the well-known Boussinesq equation (Kalashnikov,
1987)

α ∂
∂

λ$
$p

t
p= ∇

2
2 2 (3.29)

... complete numerical method description and insert solutions ...

3.4 Full numerical solution
... all this work still has to be done....

4 Results

4.1 Perturbation analysis
The solutions of the perturbation equations in the dimensionless co-ordinates
( )( )p p p L c* / /= ∆ ατ 2  and x x L* /=  do not depend on any parameters other than those

embedded in the non-dimenzionalisation. The solution of (3.14) is shown in figure 5.1.

0.0
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0.4

0.6

0.8

1.0

0 2 4 6 8 10

x *

p
*

0.1000

0.4642

1.0000

4.6416

2.1544

10.000

21.544

46.416

100.00

Figure 5.1 Numerical evaluation of equation (3.14): pressure versus distance in the
core at different times; a discontinuity in the derivative propagates into the core

The pressure disturbance propagates into the core, resulting in a discontinuity in the
space derivative of the pressure which propagates at a speed c and an attenuation given by

( )′ = ′ 



p x x c p

x
c

, / exp0 2
ατ

(4.1)
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If the result is plotted versus a similarity co-ordinate x t* */ , we observe that at large
times a similarity solution can be found.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

x * /t *0.5

p
*

0.1000

0.2154

0.4642

1.0000

2.1544

4.6416

10.000

Figure 5.2 Numerical evaluation of equation (3.14): pressure versus similarity
co-ordinate x t* */  at different times; at large times a similarity solution can be observed

4.2 Steady state solution

4.3 Equilibrium solution

4.4 Full numerical solution

5 Conclusions

Acknowledgements: Prof. G.I. Barenblatt (University of California) is
acknowledged for some useful comments.

6 Appendix A: Neglect of gas compressibility
If gas compressibility is taken into account, then (2.5) writes for low gas saturation

( )S
RT

K M p
p pg

o

H o
sat= −ρ

(A.1)

It follows that the relative change in void fraction, if pressure is changed, is
∂ ∂S p

S p p p
g

g sat

/
= − −

−
1 1

(A.4)

The first term on the right hand side gives the influence of compressibility and the second
term on the right hand side the influence of gas coming out of solution. It follows thus that
the criterion for neglect of compressibility is
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p p
p

sat − << 1 (A.5)

so that the pressure should be ( )p O psat= .

7 Appendix B: an alternative form of the constitutive equation
A general constitutive law of type

( )a
DS
Dt

b
Dp
Dt

f p Sg
g+ = , (B.1)

has been assumed in section 2.2, where the special case a = 0 has been investigated in
detail. If we choose b = 0, equation (B.1) can be written as

τγ γ
DS
Dt

S p pg
g sat+ = − (B.2)

which is a statement that the volume fraction relaxes toward the equilibrium value, with
time constant τ . Using definition (2.12) of the material derivative in (B.2) yields

τγ
∂
∂

τγλ∇ γ
S
t

p S S p pg
g g sat− ⋅∇ + = − (B.2)

Equations (B.2) and (2.22) are the basic governing equations in this form of the theory.
Clearly, when τ  = 0, we recovery exactly the same equilibrium theory as was derived
above.  It is also clear that this version of the theory supports steady uniform states as
solution, again exactly as found above.  The governing equations for small perturbations
around these steady states are however different, as we shall now show.  As before,
introduce small perturbation quantities defined by (3.2) where equilibrium demands that
(3.1) holds. Substituting these quantities into (B.2) and (2.22), neglecting quantities of
second order in perturbations and treating the mobility as a constant, we obtain

ατγ
∂
∂

γ
′

+ ′= − ′
S
t

S pg
g (B.3)

( )α
∂
∂

λ
′

+ − ∇ ′=
S
t

S pg
g1 00 1

2
, (B.4)

where ( )λ λ1 1
0= Sg . If we now take the time derivative of (B.3), and use (B.4) to replace

∂ ∂′S tg /  by the Laplacian of ′p , we find

( ){ } ( )α τ λ γ∇ ∂
∂

λ γ∇1 1 10
1

2 0
1

2− − ′= − ′S
p
t

S pg g (B.5)

The perturbation volume fraction satisfies an identical equation.  Initial and boundary
conditions on the perturbation pressure are the same here as for the model presented
above.

The evolution equation for the perturbation pressure, (B.5),  is very different in
character from the telegraph equation found for the pressure relaxation form of the
constitutive law.  It is lower order in time, and, from Laplace transform solutions, appears
not to exhibit wave propagation;  rather, the solutions are diffusive in character although
similarity solutions in x t/ /1 2  do not exist (except as an asymptotic state at large t).  The
rate of advance of the pressure perturbation front is found from these Laplace transform
solutions to be faster in early time than would be the case for classical diffusion.
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