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The panel on ‘Modeling of Multiphase Flow’ was convened by the first author (AP) and held on Monday, May

28. It was attended by well over 100 participants and the discussion could have easily gone on far beyond the 1 hr 40

mins allocated. Prof. Gad Hetsroni (Department of Mechanical Engineering, Technion, Haifa 32000, Israel) had to

cancel his participation due to a last-minute commitment. The summaries that follow have been contributed by Profs.

Joseph, Matsumoto, Prosperetti, and Theofanous; the summary of Prof. Hewitt’s presentation has been written by the

first author on the basis of notes and copies of Prof. Hewitt’s transparencies.

Modeling Approaches for Single and Multiphase Systems

(G.F. Hewitt)

While single and multiphase modeling exhibit many similarities, such as the use of a few exact solutions, empirical

correlations, and phenomenological and statistical models, the complexity due to the coexistence of many phases
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severely hampers the task of multiphase modeling. As a consequence, the field is considerably less developed than it

would be desirable and necessary for practical applications.

Most commercial nuclear safety and oil industry transient multiphase flow computer codes are based on the mul-

tifluid model and are mainly one-dimensional. These codes suffer from several problems:

� Appropriateness of the equations: How many equations should be used? Are all significant terms included? Is

ill-posedness significant?

� Validity of numerical methods: Do the discretized equations faithfully mirror the original differential formula-

tion? Are the numerical solutions grid- and time-step independent?

� Validity of the closure relationships: Do the closure methods have sufficiently generality and accuracy? Have

they been validated against data?

Unfortunately the answer to many (perhaps most) of these questions is in the negative. Many examples can be

made in which predictions of different codes differ substantially, and in which numerical results obtained after an

experiment exhibit a marked difference with the pre-test ones.

The conclusion is thus a pessimistic one. The multi-fluid method, as applied in current commercial computer

codes, is unlikely to give the right answer for several reasons:

� For economic and technical reasons, the numerical methods used in the codes may lead to results which do not

correspond to a solution of the original equations.

� The equations used may be at an insufficient level of detail to capture the important phenomena.

� The closure laws used within the equations cannot be of sufficient generality for reliable prediction.

In the short term, the risk of bad predictions could be reduced by considering ‘worst-case scenarios’, but this is

unlikely to be attractive in a competitive world.

A Computational Platform for Multiphase Flow and Heat Transfer

(T.G. Theofanous)

Multiphase flows are ‘complex’. The complexity derives from ‘collective’ behaviors of interacting entities within

such flows (bubbles, drops, interfaces), and manifests itself in their, often dynamic, spatial distributions - ‘patterns’.

Predicting multiphase flows means being able to predict these patterns – everything else follows. Understanding

multiphase flow means being able to capture in our mind the key mechanisms responsible for such pattern formation,
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and verify by experiment/theory that this is indeed so.This is the principal intellectual and practical content of the

subject.

The challenge of ‘complexity’ is compounded by the ‘variability’ of multiphase flows. Even pool boiling from a

horizontal flat plate exhibits enough of these both, to basically remain undecipherable after more than half a century

of study. Moreover, there is a chasm between ‘simple’ flows that are being (or presumably can be) studied, and

practical flows that need to be understood. Progress has been hampered by the lack of appropriate integrative tools.

Recent advances in Computational Fluid Dynamics (CFD), and explosion of computing power, offer an unprecedented

opportunity to satisfy this need. While institutional support of integrative efforts remains inadequate, much can be done

toward the development of such tools.

Consistent with their integrative role, such tools need to be centered at the Effective Field (EF) level of treatment.

Direct Numerical Simulations (DNS) can, and in fact then need to be, in a supportive role. Further down the scale,

we have available Molecular Dynamics (MD). In between, arguably, we can address mesoscopic scales with Discrete

Particle methods such as Lattice Gas, Dissipative Particle Dynamics, and the Lattice Boltzmann Method, although so

far applications have been limited to DNS. This hierarchy of tools is consistent with the multiscale nature of these

flows. The question is how to strategically approach their integration and use, toward understanding and prediction.

In fact, the key question is how to approach the Effective Field treatment. In general this would involve an appro-

priate sort of averaging (Ishii,1975; Drew and Passman, 1998; Zhang and Prosperetti, 1994), and a set of constitutive

laws that describe the interaction between the fields, as well as the evolution of interfacial area through which these

interactions occur. We found great value in such an approach, and brought it to practical use for a class of flows involv-

ing the mixing and thermal detonation of high-temperature melts poured into a pool of volatile liquid, such as water

(Theofanous et al., 1999a; 1999b). This experience taught us that the EF treatment provides only a high-level frame-

work that needs to be significantly embellished by the key physics relevant to a particular application. This brings us

to the general vision of a ‘computational platform’ from which one launches efforts addressing individual ‘classes of

problems’. This contrasts with the idea of a generally applicable multiphase flow ‘code’.From this experience we

also developed ideas suggesting that EF should not be regarded in the restrictive sense in which it has been clas-

sically developed/employed. In particular, this experience led us to an EF interpretation based on explicitly tracking

the ‘Large Scale Discontinuities’ (LSD) within the flow, and a quite general computational framework thereof. This is

the centerpiece of our approach toward a Computational Platform for Multiphase Flows as embodied in our Multiscale

Simulation Code (MuSiC) (Nourgaliev et al., 2000; 2001a; 2001b).

Briefly, by LSD’s we mean the dynamic demarcation lines (surfaces) between rheologically homogeneous subdo-

mains (i.e., liquid-continuous vs vapor-continuous). The idea is that, in this way, we capture the major distinctions

in describing local mechanical and thermal non-equilibrium. Reflecting the extent of these domains explicitly would
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be a major step toward describing the internal systemic dynamics (the collective behavior noted above) of such flows.

Clearly, in this way we have the basic ingredients to describe patterns as well. Moreover, since transport across such

large-scale discontinuities is often critical to behavior, we should wish for explicit treatment along with their track-

ing. Most importantly, such ‘interfaces’ are susceptible to smearing by numerical diffusion and this capturing would

remove major difficulties with constitutive treatment in their neighborhood. All this applies to gas-liquid flows, and

other multiphase systems as well.

In MuSiC we track these LSD’s explicitly, including their generation or disappearance as dictated by the flow (and

heat transfer). The important implication is that this ‘localized’ EF treatment requires consideration of dispersed flows

only. This simplifies both the conceptual and practical aspects of averaging, as well as the constitutive treatment within

such dispersed flows. On the other hand, this requires the constitutive treatment of the LSD’s, and this is a new task.

Another advantage is that the numerical treatment of consistently coupling disperse flows, or even deforming/moving

solid boundaries across such LSD’s, is quite general, and we have shown it to be robust. So, automatically, we have

fluid-structure interaction capability as well, ability to model large number of objects moving though such flows (and

vice versa) and, at the DNS level, the capturing of physical interfaces.

The key technical aspect of the LSD approach is the use of a characteristics-based method of solution in the EF

regions, and a characteristic-base coupling across the LSD’s — this we call Characteristics-Based Matching (CBM)

(Nourgaliev et al., 2001b). Further, in implementation we found the additional benefit that this allows the proper

specification of boundary conditions, which allows us robust solutions that do not depend on numerical diffusion

for stability – that is to refine the grid,dr ! 0, with no ill effects. Along the same lines, we have a highly efficient

incompressible solver based on Numerical Acoustic Relaxation (NAR) (Nourgaliev et al., 2001c) that moreover allows

for conveniently coupling compressible and incompressible regions (Nourgaliev et al., 2001b). Further, NAR could be

applied to DNS with interface tracking (not LSD, but actual gas-liquid interfaces) robustly enough to handle realistic

density ratios (over 1,000 , as compared to�10 being the current state of the art for Eulerian-based methods).

All the components of this computational platform (which includes LBM and MD) and their status of verification

can be seen athttp://www.crss.ucsb.edu/music. We envisage that an appropriate subset of these tools will

be needed to be ‘assembled’ as required for any particular class of problems being examined. Initially constitutive

descriptions will be passed up this hierarchy (from MD and DNS to EF), ‘by hand’. Ultimately, all will communicate

while running in parallel, the DNS focusing on each particular region of the flow as needed.

We emphasize the importance of carefully thought-out experiments integrally connected to such efforts, and in

particular to the thus-created well-focused needs for constitutive laws at the Large Scale Discontinuities.
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Multi-Scale Analysis of Turbulent Bubbly Flows

(Y. Matsumoto)

Bubbly flow has multiple structures in time and spatial scales. The macro-scale flow structure is affected by both

meso-scale and micro-scale phenomena. The multi-scale analysis is required to solve a bubbly flows reasonably. It is
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Figure 1: Streamlines around a clean and a contaminated bubble.

well known that a very small amount of surfactant can drastically change the terminal velocity of a bubble. When the

liquid is contaminated, the bubble motion is affected by the Marangoni effect due to the variation of surface tension

along the bubble surface caused by the gradient of the contaminant concentration. Figure 1 shows the streamlines

around the clean bubble and the contaminated one. The numerical results reveal that the flow pattern around the

contaminated bubble becomes similar to that of a rigid particle and the drag coefficient increases from that of a clean

bubble to that of a rigid particle.

The behavior of rising bubbles in quiescent contaminated water was calculated by Direct Numerical Simulation

(DNS), as an example of a bubbly flow, where meso-scale phenomena are clearly observed. The Navier-Stokes equa-

tion is solved by the finite difference method and the bubble motion is tracked on a rectangular grid system. The

relation between drag coefficient, Reynolds number, and void fraction is investigated at moderate Reynolds numbers.

Present results for the void fraction dependence on the drag coefficient show a good agreement with experimental and

theoretical ones. The flow around many spherical bubbles rising in a periodic box was simulated and information

on the turbulence structure in the bubbly flow was obtained. Using the DNS results of multi-bubble system, some

averaged quantities were extracted. The turbulent energy in the surrounding liquid increases with the void fraction.

To simulate a large-scale turbulent bubbly flows by Large Eddy Simulation (LES), a Sub-Grid Scale (SGS) model

was developed. The two-fluid simulation by LES was also carried out under the same conditions as the present DNS.

Constitutive equations, where not only the SGS stresses but also boundary conditions of the pressure and the vorticity
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Figure 2: One-dimensional vertical energy spectrum in bubbly flow with a void fraction of 0.833%.

on the interface are taken into account, were derived for the LES. Figure 2 shows a snapshot of a bubbly flow and

the one-dimensional vertical energy spectrum in bubbly flow with a void fraction of 0.833%. The energy spectrum

obtained by the present bubbly flow model reproduces the DNS result well, while the result by the conventional model,

where the SGS stress and the boundary conditions on the interface are neglected, shows considerable difference with

the DNS one. 20

Correlations from Numerical Experiments

(D.D. Joseph)

In my presentation and in the discussion that followed I took a too extreme position against modeling. I was motivated

to do so by my general impression that many models fail to achieve their stated goals and by our recent success with

the generation of correlations from direct numerical simulations of solid-liquid flow. (A list of papers is given in my

paper ‘Power law correlations for lift from direct numerical simulation of solid-liquid flow’ in the Proceedings of this

meeting.)

Generating correlations from experiments is an old method on which many industrial applications are based but

it has come to have a bad name, viewed as empirical and not fundamental. The great example is the Richardson-
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Zaki correlation which is the cornerstone of fluidized bed practice. My enthusiasm for correlations has to do with

the surprising emergence of correlations from the simplest kind of post-processing of our numerical experiments. We

have done lift correlations for single particles and for the bed expansion of many particles in slurries. The procedure

we follow is to plot the results of our simulations in log-log plots of the relevant variables. The surprise for us

is that these plots frequently come up as straight lines giving rise to power laws. For example, a single particle

will lift-off in a Poiseuille flow at a certain Reynolds numberR = pUd=� for a given settling Reynolds number

RG = �f (�p � rhoc)gd
3=�2. When we plotted the lift-off criterion from about 20 points we found that

R = aRnG ;

with an intercepta and slopen in the log-log plot. The straight lines are impressively straight and we generated such

correlations for lift to equilibrium, for the bed expansion of many particles and in non-Newtonian fluids. The existence

of such power laws is an expression of self-similarity, which has not been predicted from analysis or physics. The flow

of dispersed matter appears to obey those self-similar rules to a large degree.

We can get power laws when only two variables are at play; when there are three variables or more, it would appear

that we get different power laws separated by transition regions. This is certainly the case for the Richardson-Zaki

correlation; it has one power law relating the fluidization velocity to the solids fraction at low Reynolds number and

another at high Reynolds with a Reynolds number-dependent transition between. We got such correlations between

three variables for slurries, and from experiments (see ‘Power law correlations for sediment transport in pressure driven

channel flow,’ by Patankar, Joseph, Wang, Barree, Conway and Asadi, submitted to Int. J. Multiphase Flow).

We have generated 3D calculations from simulation for a fluidized bed with 1204 spheres (to appear in J. Fluid

Mech.), but it is very expensive. The direction of our work is to develop simulations to get efficient computation leading

to 3D correlations. This will happen. Then we will get real engineering correlations from numerical experiments. I

like this approach since it uses numerical simulations in a natural way evolving from their intrinsic properties rather

than trying to fit them into a more familiar frame. I think that processing of data for correlations, from experiments,

field data or simulations is a great new opportunity of the computer age and ought to be vigorously pursued.

The problem faced by models is how to get the various interaction terms right. Much of the time the guesses

made for these interaction terms are poor and the predictive power of the model is not there. Better models must also

make use of correlations for the interaction terms. For example, the Richardson-Zaki correlation gives an excellent

correlation for bed expansion, but leaves the modeling of the drag force needed for a mechanist’s model to imagination.

My position in the round table was too extreme; let it be said that the active pursuit of correlations is an excellent

direction for future research using computers in a new way with direct applications to both engineering practice and

model construction.
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The Systematic Derivation of Averaged Equations by Direct Numerical Sim-

ulation (A. Prosperetti)

Modern computational methods enable us to effect direct numerical simulations of relatively simple problems involv-

ing disperse particle flows. Certainly, what we can do still falls far short of realistic situations of practical interest.

Nevertheless, from the simulations that are currently feasible, it is possible to gain the insight and the quantitative

information necessary for a systematic closure of the averaged equations for such systems, at least in some situations.

We have studied the case of a suspension of equal spheres in (locally) Stokes flow (Marchioro et al. 2000, 2001;

Wang & Prosperetti 2001; Tanksley & Prosperetti 2001). Schematically, our procedure consisted of the following

steps: (1) Set up an ensemble of macroscopically equal systems; (2) Simulate the same physical process (e.g., sedi-

mentation, shear, etc.) for all the realizations of the ensemble; each such process will be characterized by a certain

number of parameters�1;�2; : : : (e.g., the applied force for sedimentation, the applied shear, etc.); (3) Take the en-

semble average of the results; all the average quantities will depend on the same parameters�1;�2; : : :; (4) Choose

some quantities as fundamental; in our case we take the mean volumetric fluxum, the mean particle velocityw,

the disperse-phase volume fraction�D and the mixture pressurepm; other average quantities of interest will be the

mean stress���, the mean inter-phase forcef, etc.; (5) Eliminate the parameters�1;�2; : : : between the dependent

variables���C , f, etc. and the primary variables. The result of this step is the formulation of constitutive relations such

as��� = ���(um;w; �D : : :), f = f(um;w; �D : : :), which are the required closure relations.

We have found that, in the case of spatially non-uniform systems, the mixture stress and the inter-phase force

acquire several new terms that happen to vanish identically in the uniform case previously considered in the literature.

Furthermore, the results show that the closure coefficients for sedimentation, imposed couple, and imposed uniform

shear are consistent among themselves (in the sense that, for example, the same effective viscosity is applicable to

all three situations), but are systematically different from those for flow through a porous medium or when the same

angular velocity is imposed on the particles. It thus appears that these latter two situations differ from the others in

an essential way that cannot be captured by a set of averaged equations formulated solely in terms of two velocities,

pressure, and volume fraction. Mathematically, the root of this difference is that, while the mobility matrix is the

exact inverse of the resistance matrix at the microscopic level, the same relation is not satisfied after averaging. In the

context of an averaged-equations description, this circumstance implies that at least one more quantity (and the related

evolution equation) is necessary for a unified description of all these cases. A likely guess for this additional “hidden

variable” is the “granular temperature” of the particles.

The previous results require a clear definition of the quantity to be identified with the mixture pressurepm, as

pm must be calculated from the averaged equations rather than closed. We have attacked this problem by using the
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fact that, at the microscopic level, the potential of the external forces (e.g., = ��x � g in the case of gravity)

can be eliminated from the equation of motion by replacing the continuous-phase pressurepC by a modified pressure

p̂C = pC +  . By defining the mixture pressure as that part of the average stress that transforms in the same way, one

is led to a unique expression forpm; in the case of a uniform system this is

pm = (1� �D) < pC > +�Dp
s

where< pC > is the ensemble-averaged continuous-phase pressure and

ps =
1

S

Z
dS pC ;

in which the integral is over the particle surfaceS and the overline indicates an average over all the particles (Marchioro

et al 1999). This quantity has appeared before in averaged equations analyses, where it is referred to asinterfacial

pressure. This result (complemented by additional terms that arise in the non-uniform case) is valid also at finite

Reynolds number, and even for non-Newtonian systems.
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Concluding Comments

The different tone of Prof. Hewitt’s remarks as compared with those of the other speakers reflects the split between

people who need reliable models for pressing practical needs and people involved in the development of models with
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a somewhat longer (although not necessarily long-term) time horizon. Similar differences were clear in the remarks

made by the audience: while some took issue with pessimistic statements, others apparently were attending the session

in the hope of obtaining very definite suggestions as to which models to use for the solution of their immediate practical

problems.

While it cannot be denied that accurate models are currently unavailable, except in special situations, the cautious

optimism expressed by several speakers appears to have a serious basis. In the first place, the progress in computational

hardware enables us to ‘interrogate’ more and more accurate direct numerical simulations to better understand the

physics and develop closure relations. Secondly, the ambition of developing general-purpose models and codes has

been recognized by and large as unrealizable and, indeed, dangerous. A variety of more specialized tools, each one

with its own applicability and capabilities, seems to represent a more realistic way to tackle various problems with

an acceptable degree of physical realism, at least for the foreseeable future. Even with this reduction in scope, great

difficulties remain which will be overcome more easily by synergizing the efforts of groups of investigators.
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