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The lift force on a circular particle in plane Poiseuille flow perpendicular to gravity is
studied by direct numerical simulation. The angular slip velocity γΩΩ �2

1+= ps ,

where ( )γ�2
1−  is the angular velocity of the fluid at a point where the shear rate is γ�

and pΩ  is the angular velocity of the particle, is always positive at an equilibrium
position at which the hydrodynamic lift balances the buoyant weight. The particle
migrates to its equilibrium position and adjusts pΩ  so that 0>sΩ  is nearly zero

because of γΩ �2
1−≈p . No matter where the particle is placed it drifts to an

equilibrium position with a unique, slightly positive equilibrium angular slip velocity.
The angular slip velocity discrepancy defined as the difference between the angular
slip velocity of a migrating particle and the angular slip velocity at its equilibrium
position is positive below the position of equilibrium and negative above it. This
discrepancy is the quantity that changes sign above and below the equilibrium
position for neutrally buoyant particles, and also above and below the lower
equilibrium position for heavy particles. The existence and properties of unstable
positions of equilibrium due to newly identified turning point transitions and those
near the centreline are discussed.

The long particle model of Choi & Joseph (2001) that gives rise to an explicit
formula for the particle velocity and the velocity profile across the channel through
the centreline of the particle is modified to include the effect of the rotation of the
particle. In view of the simplicity of the model, the explicit formula for Up and the
velocity profile are in surprisingly good agreement with simulation values. The value
of the Poiseuille flow velocity at the point at the particle's centre when the particle is
absent is always larger than the particle velocity; the slip velocity is positive at steady
flow.

_______________________________________________________________

1. Introduction
The experiments of Segré & Silberberg (1961, 1962) have influenced the fluid

mechanics studies of migration and lift. They studied the migration of dilute
suspensions of neutrally buoyant spheres in pipe flows at Reynolds numbers between
2 and 700. The particles migrate away from the wall and centreline and accumulate at
0.6 of a pipe radius.

The lift on heavier than liquid particles is also influenced by the factors that
determine the equilibrium position of neutrally buoyant particles. The heavy particles
must reach an equilibrium that balances the hydrodynamic lift and buoyant weight. If
the buoyant weight is very small, the equilibrium position of the particles will be
close to the value for the neutrally buoyant case. The effect of increasing the weight is
to lower the equilibrium position whose zero is established for the case of zero
buoyant weight.

Analysis of the lift of a neutrally buoyant, heavy and light particles may be framed
in a uniform way by looking for the equilibrium positions of particles evolving to
steady flow under the action of shear from the Poiseuille flow as positions for which
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the buoyant lift, the lift minus the buoyant weight, vanishes. Loosely speaking, these
equilibrium positions can be regarded as generalized Segré-Silberberg radii.

Most attempts to explain the Segré-Silberberg effects have been based on
linearized low-Reynolds-number hydrodynamics. Possibly the most famous of these
attempts is due to Saffman (1965), who found that the lift on a sphere in a linear shear
flow is given by

sorder termlower /6.46  
2/1

2 +�
�

�
�
�

�= vUaL s

�

γη , (1.1)

where pfs UUU −=  is the slip velocity, fU  is the fluid velocity and pU  is the
particle velocity, a is the sphere radius, fρην = , η  is the fluid viscosity, fρ  is the
fluid density and γ�  is the shear rate. The lower order terms are

( )[ ]γπΩπρ �2
1

8
223 −−− sfs  aU , (1.2)

where
γΩΩ �2

1+= ps (1.3)
is the angular slip velocity and pΩ  is the particle angular velocity. Slip velocities are
important because shear gradients define the local environment against which particle
translations are measured. There are a number of formulas like Saffman's that are in
the form of sU  multiplied by a factor, which can be identified as a density multiplied
by a circulation as in the famous formula ΓρU  for aerodynamic lift. A review of
such formulae can be found in McLaughlin (1991).

Formulae like Saffman's cannot explain Segré-Silberberg's observations, which
require migration away from both the wall and the centre. There is nothing in these
formulae to account for the migration reversal near 0.6 of a radius. Moreover the slip
velocity sU , the angular slip velocity sΩ , the particle velocity and the particle
angular velocity, which are functionals of the solution are prescribed quantities in
these formulae.

The fluid motion drives the lift on a free body in shear flow; no external forces or
torques are applied. If there is no shear, there is no lift. In Poiseuille flow, there is not
only a shear, but a shear gradient. Gradients of shear (curvature) produce lateral
forces. At the centreline of a Poiseuille flow the shear vanishes, but the shear gradient
does not. To understand the Segré-Silberberg effect, it is necessary to know that the
curvature of the velocity profile at the centre of Poiseuille flow makes the centre of
the channel an unstable position of equilibrium. A particle at the centre of the channel
or pipe will be driven by shear gradients toward the wall; a particle near the wall will
lag the fluid and be driven away from the wall. An equilibrium radius away from the
centre and wall must exist.

Ho & Leal (1974) were the first to combine these effects in an analysis of the
motion of a neutrally buoyant sphere rotating freely between plane walls so closely
spaced that the inertial lift can be obtained by perturbing Stokes flow with inertia.
They treated wall effects by a method of reflection and found an equilibrium position
at 0.69 from the centre. Vasseur & Cox (1976) used another method to treat wall
effects and their results are close to Ho & Leal’s near the centreline but rather
different than those of Ho & Leal near the wall. Feng, Hu & Joseph (1994) studied
the motion of solid circles in plane Poiseuille flow by direct numerical simulation
(DNS). The circle migrates to the 0.6 of a radius equilibrium position. They compared
their two-dimensional results with those of Ho & Leal and Vasseur & Cox.
Schonberg & Hinch (1989) analyzed the lift on a neutrally buoyant small sphere in a
plane Poiseuille flow using matched asymptotic methods. The same problem for
neutrally buoyant and non-neutrally buoyant small sphere has been studied using
asymptotic method by Asmolov (1999). The linearized analysis given so far takes the
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effect of inertia ( )uu ∇⋅  into account only in an Oseen linear system; the comparison
of the results of these analyses with experiments is far from perfect. The analysis is
heavy and explicit formulae for lift are not obtained.

Recent three-dimensional numerical studies by Kurose & Komori (1999) and
Cherukat, McLaughlin & Dandy (1999) focus on lift and drag on a stationary sphere
in a linear (not Poiseuille) shear flow. Issues related to equilibrium positions do not
arise in these studies. The recent DNS study of migration of a single liquid drop in
Poiseuille flow by Mortazavi & Tryggvason (2000) is relevant to our work. They
carried out mainly two-dimensional simulations and a few three-dimensional studies
at 10=R  using coarse grids. Though their methods have not been used for solids, the
migration to intermediate equilibrium positions is a shared feature. Their results
showed that the equilibrium position of the drops is close to the two-dimensional
predictions, and the two- and three-dimensional results were similar in other respects.

This paper approaches the problem of migration and lift in a different way. We
have used DNS as a diagnostic tool to analyse the role of the slip velocity and the
angular slip velocity on migration and lift. In this way, we are able to establish a
simple picture of lift and migration that, in particular, clarifies the role of the angular
slip velocity, and is not restricted to low Reynolds numbers. We also use DNS to
formulate and validate a long particle model that gives a very good, completely
explicit analytical approximation to the velocity and slip velocity of circular particles.
Our analysis is carried out in two dimensions, but should apply in principle to three
dimensions, which is at present under study.†

2. Mechanism for lift
First, we can look at formulae in a fluid without viscosity for which viscous drag is

impossible. The most famous formula for lift on a body of arbitrary shape moving
forward with velocity U  in a potential flow with circulation Γ  was given by

ΓρUL =′ (2.1)
where ρ  is the fluid density and L′  is the lift per unit length.

The lift on circular cylinder of radius a  is of special interest. A viscous potential
flow solution for a stationary cylinder rotating with angular velocity Ω  which
satisfies the no slip boundary condition is given by

aarar ΩΩ θθ eueu == )(,/)( 2 . (2.2)
The circulation for this viscous potential flow is

22 ad ΩπΓ � =⋅= xu . (2.3)

When this rotating cylinder moves forward it generates a lift L′ per unit length
Ωπρ UaL 22=′ . (2.4)

The direction of the lift can be determined by noting that the velocity due to rotation
adds to the forward motion of the cylinder at the top or bottom of the rotating cylinder
according  to  the  directions  of  Ω  and U . In figure 1, the velocity is smaller on the

                                                
† A referee called our attention to a paper by Zhao, Sharp & James (1998) on transverse lift

on a free circular particle in steady flow in a channel. The three main results of our paper, (i)
the stability of intermediate equilibrium positions arising from the dynamic resolution of the
initial value problem, (ii) the long body model, and (iii) the explanation of the Segré-
Silberberg effect by identification of the slip quantity, which changes the sign of the lift across
the equilibrium position, are not touched in their paper. Our results and theirs agree where
they overlap.
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FIGURE 1. The lift per unit length Ωπρ UaL 22=′  on a cylinder of radius a moving forward at
speed U  and rotating with angular velocity Ω  in such a way as to reduce the velocity at the
bottom and add at the top.

bottom of the cylinder; by the Bernoulli equation, the pressure is greater there and it
pushes the cylinder up.

Another formula for the lift off on a particle in an inviscid fluid in which uniform
motion is perturbed by a weak shear was derived by Auton (1987) and a more recent
satisfying derivation of the same result was given by Drew & Passman (1999). They
find that in a plane flow

ysf Ua eL Ωρπ 3
3
4−= (2.5)

where

y
u

f d
d2 −=−= γΩ � .

If 0dd >yu , the sphere is lifted against gravity when the slip velocity sU  is
positive; if sU  is negative, the sphere will fall. Particles which lag the fluid migrate to
streamlines with faster flow, particles which lead the fluid migrate to streamlines with
slower flow.

There are striking differences between (2.5) and (2.4); first, (2.4) depends on the
angular velocity of the particle, but (2.5) depends on the angular velocity of the fluid.
Both formulae, leave the slip velocity undetermined, sU  appears in (2.5) because of
the shear, in (2.4), 0=fU . The slip velocities have to be prescribed in these theories
because the particle velocity is not determined by viscous drag. Similarly, the angular
velocity of the particle cannot arise from torques arising from viscous shears. The
effects of particle rotation cannot be obtained by the method of Auton (1987).

The lift formula (2.1) captures the essence of the mechanism in which the motion
of the particle relative to the fluid is such as to increase the pressure on the side of the
particle as it moves forward.

The lift on a spherical or circular neutrally buoyant particle in a shear flow is
different; there is no exterior agent to move and rotate the freely moving particle.
Instead the particle is impelled forward and rotated by the shear flow. Previous
theoretical studies and our simulations show that the relevant velocity is the slip
velocity and the relevant circulation is proportional to an angular slip velocity
discrepancy sess ΩΩΓ −∝  where seΩ  is the angular slip velocity in equilibrium
(steady flow) and

ssCUL Γ=′ (2.6)
where C  is a to-be-determined function of fluid and flow parameters. This
conclusion will be established in the sequel. For now we simply note that in our
simulations  the  angular slip velocity discrepancy 0<− ses ΩΩ  when the cylinder is
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FIGURE 2. Migration and lift of a single particle in a plane Poiseuille flow.

above the equilibrium (Segré-Silberberg) position and 0>− ses ΩΩ  when it is below
the equilibrium (figure 10).

3. Governing equations, problem formulation
The simulation method used in this paper is described in Joseph (2000), Choi &

Joseph (2001), and Patankar et al. (2001). A circular particle of diameter d  is placed
in a plane Poiseuille flow in a channel of height W  where it moves forward in the
direction x  and migrates up or down in the direction y  under the action of
hydrodynamic forces (figure 2).

The undisturbed Poiseuille flow (no particle) is given by
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Flows are indexed by a Reynolds number

fw vvdR ρηγ == ,2
�

(3.2)

based on the wall shear rate w

�

γ .

3.1. Governing equations

The fluid-particle system is governed by the Navier-Stokes equations for the fluid and
Newton's equations for rigid body motions. The fluid satisfies

xf pp
t

euuuu +∇+−∇=�
�

�
�
�

� ∇⋅+
∂
∂ 2ηρ , (3.3)

where p  is the constant pressure gradient. The particle satisfies Newton's equations
of motion: The motion pU  of the mass centre is governed by

( ) { } Sp
V

pg
t p

xyfp
p

p d][21
d

d
nuD1ee

U
⋅+−++−−= � ηρρρ , (3.4)

where 2aVp π=  is the volume of the particle and [ ]( ) nuD1 ⋅+− η2p  is the stress on

the surface S  of the particle that is a circle of radius da 2
1=  and

( ) ( )�� ⋅=⋅
π

θ
2

0
dd aS . (3.5)

The angular velocity around the mass centre at Xx =  is governed by

( ) ( )[ ] Sp
t

I d][2
d
Ωd
� ⋅+−∧−= nuD1Xx η , (3.6)
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where 4aI pπρ=  is the moment of inertia.
In steady (equilibrium) flow the forward motion of the particle is given by

{ } 0d][21 2

0
=⋅+−⋅+ � θη

π

π

rx p
a

p euD1e . (3.7)

The pressure gradient force on the particle is balanced by the resultant of the stress
traction vector. The long particle model discussed by Joseph (2000), Choi and Joseph
(2001) and here in section §4 is a realization of (3.7).

3.2. Dimensionless parameters

A dimensionless form of these equations was given in Joseph (2000), Choi & Joseph
(2001), and Patankar et al. (2001). The parameters at play are the channel width
diameter ratio dW  which is fixed at 12 here, the density ratio fp ρρ  and the
gravity Reynolds number

( ) 23 /ηρρρ gdR fpfG −= . (3.8)
Thus, there are four dimensionless parameters at play; the density ratio parameter

fp ρρ  does not enter when the accelerations vanish, reducing the number of
parameters to three. The case 12=dW  used here is representative of the asymptotic
condition W/d > 12 (Patankar et al. 2001), only R  and GR  enter. Here, we compute
for poise0.1=η , -3cmg1=fρ , -2scm980=g , cm1=d with 1=fp ρρ  or

01.1=fp ρρ . For these two conditions 0=GR  or
8.9=GR (3.9)

We are going to work with dimensional variables in CGS units, but we do specify R.
Hence, when we compute for -3cmg01.1=pρ , we understand that 8.9=GR . The
results at steady flow do not depend on fp ρρ  so that lift in steady flow results with

01.1=fp ρρ  are valid when 8.9=GR , independent of pρ .

3.3. Stable and unstable equilibria

It may be helpful to frame the problem in terms of the lift-off of a heavier than liquid
particle. A qualitative description of the levitation to equilibrium particle can be
framed as follows: the particle rests on the bottom wall when there is no flow. As the
pressure gradient is increased, the circular particle starts to slide and roll. At critical
speed, the particle lifts and finally rises to a height in which the lift balances the
buoyant weight. It then moves forward freely under zero net force and torque; the
particle does not accelerate. After the particle lifts off, it rises to the equilibrium
height ey  where the lift balances the buoyant weight. The slip velocity pf UU −  and

angular slip velocity γΩΩΩ �2
1+=− pfp  can be computed during migration and at

equilibrium.
For certain Reynolds numbers, heavier than liquid particles undergo ‘turning point

transitions’ leading to multiple equilibrium solutions with different values of ey ,

peU  and peΩ  (see figure 3). These transitions do not occur for neutrally buoyant
particles; the conditions under which ‘turning point transitions’ occur will be the
subject of a future paper.

For the present study, it is essential to maintain a sharp distinction between
unstable and stable equilibria. The behavior of particles at unstable equilibria is in a
sense  the  opposite  of  stable  equilibria  (c.f. figures 12 and 13)  and  there  are more
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FIGURE 3. (Patankar et al. 2001). Equilibrium height as a function of shear Reynolds number
for -3cmg01.1=pρ . This curve was found first in the dynamic simulations of Choi & Joseph
(2001). The turning points and the unstable branch were determined by the method of
constrained simulation (see §4). The solutions are unique for 13<R  and 22<R ; between,
there are two stable and one unstable solutions.
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FIGURE 4. Family of lift curves at steady state for different values of R . The lift curves can be
anti-symmetrically extended into cm12cm6 << py . The equilibrium points for 7.12=GR
on these lift curves are those satisfying (4.1) for which the hydrodynamic lift balances the
buoyant weight. The locus of such equilibrium points Rvsye .  are represented in the curve
shown in figure 5.

subtle differences. We will indicate the unstable equilibria by dotted lines as in
figures 4 and 5.

Neutrally buoyant particles are also in a buoyant-weight / lift balance, but both are
zero. Freely moving neutrally buoyant particles also migrate to an equilibrium (Segrè
Silberberg) position, which is determined by wall effects and shear gradients. It is
very important to frame the analysis of migration and lift relative to the position of
equilibrium, a point at which the lift must change its sign.
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FIGURE 5. Lift vs. py  for 20=R  and 8.9=GR  for the steady forward motion of a circular
particle in Poiseuille flow. The equilibrium points are the places where the lift balances the
buoyant weight for fp ρρ 01.1= ; there are two stable points and one unstable. The picture is
anti-symmetric with respect to the centreline and the graph shows that a region near the centre
is unstable.

4. Constrained and unconstrained dynamic simulation
In numerical experiments, we can examine the physical effects one at a time; this

cannot be done in real experiments. In a constrained simulation, we let the motion of
a particle evolve to steady state while holding some variable fixed; for example, we
could require that the angular velocity of the particle is zero and monitor the
migration to its equilibrium position, or we could fix the position of the particle and
see how the particle velocity, angular velocity and lift L  evolve to steady state. The
fixed position will be an equilibrium when the lift L  balances the buoyant weight

( ) gVL pfpe ρρ −= ; that is, when

gV
L

p

e
fp += ρρ . (4.1)

For other values of pρ , the fixed position simulation will evolve to a different steady
state, independent of fp ρρ  multiplying acceleration, in which L  is greater or less
than eL .

The method of constrained simulation was used by Patankar et al. (2001) to
analyse turning-point transitions. The results of such simulations are shown in figure
3. We start a particle from rest at a fixed y  and R  and let the simulation run to
steady flow. At steady flow, we compute L  giving the triplet ( )LyR ,, ; now varying
y at a fixed R we get a curve L vs. y at a fixed R. A family of such curves for different
R is shown in figure 4. The straight line intersecting the curves represents a fixed
value of 7.12=GR . There is a value pρ  given by (4.1) for which L balances the
buoyant weight; for all other values of pρ , the particles will migrate.
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FIGURE 6. Rise vs. time for R =5.4. Compare rise of freely rotating and non-rotating particles.
Non-rotating particles rise more. A neutrally buoyant, freely rotating particle rises closer to
the centreline at cm6=py  than the particle for which γΩ �

2
1−=p ; the non-rotating particle

rises even more. Models which ignore particle rotation overestimate lift. A yet smaller lift is
obtained when the angular slip velocity is entirely suppressed ( )0=sΩ , but the particle does
rise. The greater the angular slip velocity, the higher the particle will rise.

In an unconstrained dynamic simulation, we introduce a circular particle with a
prescribed particle velocity pU  and angular velocity pΩ  at a point py  at the particle
centre into a fully developed Poiseuille flow, (3.1). The particle will migrate to an
equilibrium position ey  and will attain an equilibrium velocity peU  and angular
velocity peΩ . It is possible to consider migration for different initial conditions; we
are computing solutions of initial-value problems. In the study of lift, steady solutions
are important because of the absence of complicating effects of particle acceleration.

In a different kind of constrained simulation, we look at the effect on particle
migration of controlling the angular velocity of the particle. In figure 6, we plotted the
rise to equilibrium of a neutrally buoyant particle for three different values of the
angular slip velocity

{ }0,,2
1

2
1

seps ΩγγΩΩ �� =+= , (4.2)
in an unconstrained dynamic simulation. The rise is the greatest when the particle
angular velocity 0=pΩ  and the least when the particle angular velocity is equal to

the local rate of rotation γΩ �2
1−=p . The rise of a heavier than liquid 01.1=fp ρρ

circular particle is plotted in figure 6 for Reynolds number 4.52 == νγ dR w�  and for
2.16=R  in figure 7. The angular slip velocity 0>seΩ  is the equilibrium value that a

free circular particle takes in torque-free motion when the angular acceleration
vanishes. We call attention to the fact that 0>seΩ  is very small, and at equilibrium

γΩΩγ �� 2
1

2
1 , −≈> pepe . (4.3)
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FIGURE 7. Rise vs. time for a circular particle 01.1=fp ρρ  when 2.16=R . The rise of the

particle is an increasing function of the angular slip velocity in the range γΩ �
2
10 ≤≤ s  and is

a maximum when the particle angular velocity is suppressed. The freely rotating particle has a
small positive angular slip velocity.
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FIGURE 8. Migration of a neutrally buoyant particle in an unconstrained simulation at 10=R .

5. Slip velocities, angular slip velocities, and lift for neutrally buoyant
circular particles

Multiple equilibrium solutions do not appear at moderate numbers when fp ρρ = ,
0=GR ; the equilibrium solutions are unique. Figures 8, 9 and 10 show the evolution

to equilibrium, at 10=R , of a neutrally buoyant particle started at the wall and at the
centreline from an initial condition of rest. No matter where the particle is released it
will migrate to a unique equilibrium solution at cm18.4=ey .
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FIGURE 9. Evolution of the slip velocity of the particle whose trajectory is shown in figure 8.
The slip velocity evolves to zero through positive values whether the particle is started above
or below the equilibrium position. The slip velocity discrepancy 0>− ses UU ,

-1scm148.0=seU .
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FIGURE 10. Evolution of the angular slip velocity of a neutrally buoyant particle at 10=R  to
equilibrium (see figure 8). The angular slip velocity function evolves without crossing the
equilibrium value. When the angular slip velocity is below the equilibrium value, the particle
moves downward. When the angular slip velocity is above the equilibrium value, the particle
moves upward.

In figure 9, we show the evolution of the slip velocity to equilibrium. The slip
velocity is positive and of course the greatest for a particle released from rest at the
centreline.

In figure 10, we show that the angular slip velocity is smaller than its equilibrium
value when the particle is above the equilibrium position and, is larger than its
equilibrium value when it is below the equilibrium position. The angular slip velocity
discrepancy

ses ΩΩ −
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FIGURE 11. (a) Lift and (b) angular slip velocity in constrained simulations of a particle fixed
above and below equilibrium. The sign of the lift correlates perfectly with the sign of the
angular slip velocity discrepancy. 10=R , 16.4=py and 4.19 cm, cm18.4=ey .
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FIGURE 12. Evolution of the lift on a particle at a fixed position at 10=R  slightly above,
cm05.6=py and below, cm95.5=py , the centreline. The lift pushes the particle away from

the centreline.
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FIGURE 13. Evolution of the angular slip velocity in a constrained simulation for particles at
cm95.5=py and 6.05 cm when 10=R . The evolution is to a steady state with the following

properties: when the angular slip velocity is below the equilibrium value, the particle moves
upward. When the angular slip velocity is above the equilibrium value, the particle moves
downward. This behavior is the opposite of the previous cases, because the previous cases
were stable equilibrium positions, and therefore, the force field around them is the opposite.
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FIGURE 14. Slip velocities and lift for neutrally buoyant particle at 20=R . Steady-state
relative values for the lift force and the slip velocities. Dotted lines correspond to unstable
equilibria. In the region close to the wall, the lift force and the slip velocity have a similar
nonlinear behaviour. In the region close to the centreline, the lift force appears to be
proportional to the angular slip velocity.

where seΩ  is the angular slip velocity at equilibrium, changes sign with the lift
across the equilibrium.

In figure 11, we carry out a constrained simulation in which the circular particle is
fixed at a position slightly above and slightly below the value of equilibrium. This
figure shows that the sign of the angular slip velocity discrepancy changes with the
sign of the lift, which is positive for particles below and negative for particles above
the equilibrium.

In figures 12 and 13 are shown the evolution of the lift and angular slip velocity,
respectively, from constrained simulations at fixed positions slightly above and
slightly below the channel centreline. Figure 13, shows that the angular slip velocity
discrepancy is negative when the particle is above the centreline and is positive when
it is below the centreline. The discrepancy changes sign in both the stable and
unstable cases, but the sign of the discrepancy is opposite in the two cases.
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(cm)ey

fp ρρ Starting at
centreline

Starting close
 to wall

1.000 4.560 4.560

1.005 3.834 3.834

1.010 3.165 1.323

TABLE 1. Position of equilibrium when 20=R .
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FIGURE 15. Particle height about equilibrium for a heavier-than-fluid particle ( 01.1=fp ρρ ,
10=R ). The initial condition was the steady state solution from a constrained simulation at

the initial height.

In figure 14, we have plotted the resultant constrained dynamical simulation
comparing distributions of the normalized slip velocity, the angular slip velocity and
lift for a neutrally buoyant particle are computed at each fixed position py  for

20=R .

6.  Slip velocities, angular slip velocities and lift for non-neutrally
buoyant circular particles

The qualitative results, which were established in §5 hold for heavier and lighter
than fluid particles. The slip velocity and angular slip velocity are positive and the
angular slip velocity discrepancy changes sign across ey , where ey  is the place
where the lift discrepancy

ℒ ( ) gdL fp
2

4
1 πρρ −−= (6.1)

in two dimensions vanishes. For heavier than liquid particles, the position of
equilibrium moves closer to the bottom wall, and for values of fp ρρ  larger than a
critical two equilibrium heights exist (table 1).
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Figure 16. Angular slip velocity discrepancy about equilibrium for a heavier than fluid particle
( 01.1=fp ρρ , 10=R ). The evolution on the angular slip velocity discrepancy is consistent
with the evolution on the particle height.
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FIGURE 17. Migration from steady flow of a heavy particle 01.1=fp ρρ  starting at rest near
the wall and centreline at 10=R  ( 8.9=GR ). The particle starting at the centreline crosses the
equilibrium position and then moves upward.

Figures 15 and 16 are plots of the migration to equilibrium of particles starting
above and below but near to equilibrium when 10=R  and 8.9=GR  corresponding

01.1=fp ρρ . Figure 15 shows that the particle migrates to the same equilibrium
whether it starts from above or below the position of equilibrium. Figure 16 is a plot
of the angular slip velocity discrepancy versus time; it shows that the angular slip
velocity discrepancy changes sign across the position of the equilibrium.
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FIGURE 18. Evolution of the particle angular slip velocity of a heavier than fluid particle
01.1=fp ρρ  starting at rest near the wall and centreline at 10=R , 8.9=GR . For the

particle starting at the centreline, the angular slip velocity function crosses the equilibrium
value. When the angular slip velocity is below the equilibrium value, the particle moves
downward. When the angular slip velocity is above the equilibrium value, the particle moves
upward. A change in the sign of the angular slip velocity discrepancy is evident at early times
when the particle falling from the centreline crosses the equilibrium; after this both particles
are below the equilibrium and have essentially the same angular slip velocity.
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FIGURE 19. Analysis on the angular slip velocity discrepancy in the case of multiple
equilibrium ( 01.1=fp ρρ , 20=R ). Case (a) particle released close to the wall:
( ( ) 0.10 ==ty p cm). Case (b) particle released at the centreline: ( ( ) 0.60 ==ty p cm). For this
data, the buoyant weight intersects the lift force at three points, and two of them yield stable
solutions (figure 5, table 1). For case (a), the particle travels from a position close to the wall
to the equilibrium height closer to the wall 323.1=ey cm, whereas for case (b), the particle
travels from the centreline to the equilibrium height far from the wall 165.3=ey cm. The
discrepancy changes sign at the equilibrium ep yy =  where the lift balances the buoyant
weight.
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FIGURE 20. Analysis on the angular slip velocity discrepancy in the case of unique equilibrium
( 005.1=fp ρρ , 20=R ). Case (a), particle released close to the wall: ( ( ) 0.10 ==ty p cm).
Case (b) particle released at the centreline: ( ( ) 0.60 ==ty p cm). For this data the buoyant
weight intersects the lift force at only one point (figure 5, table 1). Therefore, no matter where
the particle started it will reach the same equilibrium height at 834.3=ey cm. The
discrepancy is positive if the local value is greater than the equilibrium value, and it is
negative for the opposite condition. The angular slip velocity discrepancy changes its sign as
the particle height discrepancy does. Note: the initial condition for all the cases was the
following: First, to get a fully developed velocity profile, a simulation at the initial height
( ( ) 0.10 ==ty p cm or ( ) 0.60 ==ty p cm) was performed using a constrained motion on the
vertical direction. Secondly, the vertical motion constrain is released, and therefore the
particle travels to a preferential equilibrium height.

Figures 17 and 18 treat the same problem as in figures 15 and 16 but with a
different initial condition. In figure17, the particle is started from rest near the wall
and the centreline

Figure 19 treats the problem of slip velocity and lift for the case 20=R  and
8.9=GR  ( 01.1=fp ρρ ) in which there are two stable equilibrium heights (figures

3 and 5). In the dynamical simulation of a particle started from steady flow near the
centreline, the particle migrates downward to the higher position of equilibrium and
the angular velocity discrepancy is negative. When the particle is started from the
wall it migrates upward to the lower position of equilibrium and the slip angular
velocity discrepancy is positive, consistent with our hypothesis about the lift and the
slip angular velocity discrepancy.

In figure 20, we consider the case of heavier than fluid particles 005.1=fp ρρ
migrating at 20=R . For this relatively lightweight particle the equilibrium solutions
are unique at 20=R  and the angular slip velocity discrepancy changes with the lift as
the particle approaches ep yy =  from above or below.

7.  Long particle model
Joseph (2000) proposed a model problem for the velocity of a long particle in

Poiseuille flow (also see Choi and Joseph, 2001). We replaced the circular particle of
diameter d with a long rectangle whose short side is d. The rectangle is so long that
we  may  neglect  the effects of the ends of the rectangle at sections near the rectangle
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FIGURE 21. Sketch of flow field under consideration and variables involved in the long particle
model. dhhW BA ++=  is the channel height.

centre. In that model the long particle was assumed to be rigid but it was noted that a
more realistic model could be obtained by letting the long particle shear. We could
choose this shear to be the same as the shear rate of the circular particle in the
approximation in which γΩ �2

1−=p  (figure 21).
The long particle model is meant to represent the constrained forward motion with
py  fixed after transients have decayed and steady flow is achieved. The model may

be compared with the numerical simulation satisfying the fluid equations (3.3) with
0=∂∂ tu , the x-component of (3.4) with 0dd =tu

{ }� =⋅+−+ 0][21 Γη dyp
V

p
p

xx nD1ee

and (3.6) with 0dd =tΩ . The y-component of (3.4) gives the balance of buoyant
weight and lift; the particle density enters into this balance through the buoyancy
term. It follows that buoyancy and the particle density do not enter into the
constrained simulations, which determine the steady motion of the fluid and the
forward motion of the particle, and they do not enter into the long particle model,
which approximates the simulation.

The model leads to an explicit expression for the particle velocity and slip velocity
in which vertical migration is suppressed. Since the simulation and the model do not
depend on pρ , there is a sense in which the results given here are universal.
However, each constrained simulation is realizable for a density given by (4.1) in
which the y-component of (3.4) is satisfied.

The forces acting on the long particle are the force due to pressure acting on the
sides perpendicular to the flow, and the force due to shear stress acting on the sides
parallel to the flow (figure 7.1). The former force is always positive, while the latter
may be positive or negative depending if the fluid is faster than the particle or vice
versa,

( ) ( ) 021 =−++ dpplBA ττ (7.1)

0=++ dpBA ττ ,
( )

l
ppp 21 −

= (7.2)

where the shear stresses are defined by

)( A
A

A h
yd

du
′

−= ητ , )( B
B

B h
dy

duητ −= (7.3)

The velocity profiles above and below the long particle are given by

( ) ( )
A

A
AA h

yUyhypyu
′

+′−′=′
η2

(7.4)
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( ) ( )
B

B
BB h

yUyhypyu +−=
η2

(7.5)

where different velocities ( )BA UU ,  were assumed for the top and bottom walls to
take into account the angular speed of the circular particle. The relation between them
is given by

( )ddhUU BBA 2
1

2
1 +=− γ� , (7.6)

where ( )yγ�  is the shear rate for the undisturbed flow (without the particle), given by

( )yWp
dy
uy 2

2
d)( −==

η
γ� . (7.7)

The shear rate on the particle’s sides parallel to the flow may be evaluated from (7.4),
(7.5) and (7.6),

( ) ( )
A

B

A

B
AA

A

h
ddh

h
U

hph
y
u

22d
d 2

1+
++−=

′
γ

η
�

(7.8)

( )
B

B
BB

B

h
U

hph
y

u
+−=

η2d
d

. (7.9)

Substituting, recursively, (7.8) and (7.9) in (7.3), and then the resultant equation in
(7.2), we find that at the top and bottom of the long particle (diameter d):

( )( )
( )BA

ABBABA
A hh

dhdhhhhhdp
U

+
++++

=
2

)2(2 γη �
(7.10)

( )( )
( )BA

BBBABA
B hh

dhdhhhhhdp
U

+
+−++

=
2

)2(2 γη �
(7.11)

The average particle velocity is:

( ) ( )( )
( )BA

ABBBABA
BAp hh

dhhdhhhhhdp
UUU

+
−+−++

=+=
2

)()2(2 2
1

2
1

γη �

. (7.12)

The undisturbed flow field (without the particle) can be written as:

( )yWypyu −=
η2

)( (7.13)

At the position where the centre of the particle is located )( 2
1 dhy Bp += , the

undisturbed fluid velocity is:

)()(
2

)( 2
1

2
1

2
1 dhdhpdhu ABB ++=+

η
(7.14)

The particle slip velocity can be defined as:
pBs UdhuU −+= )( 2

1 (7.15)
which can be written as:

( ) ( )[ ] ( )
( )BA

ABBBABAABBA
s hh

dhhdhhhhhddhdhhhp
U

+
−++++−+++

=
2

)(2))()(( 2
1

2
1

2
1

2
1 γη �

(7.16)
The channel height W and the position hA and hB satisfy the following conditions:

�
�
�

−=+
+−=

,
),(

dWhh
dhWh

BA

BA dhy Bp 2
1+=

and the shear rate at the particle centre is

( ) ( )BB hdWpdh 2
22

1 −−=+
η

γ� (7.17)

Then the slip velocity can be simplified:
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FIGURE 22. Velocity profiles through the centre py  of a particle and the particle velocity at
20=R . The velocity profiles of the undisturbed flow, of the DNS simulation and the long

particle model are compared: (a) centreline 0.6=py cm, (b) the unique equilibrium position
when 005.1=fp ρρ  ( 834.3=py cm), (c) the higher equilibrium position when

01.1=fp ρρ  ( 165.3=py cm), (d) 0.3=py cm, (e) the lower equilibrium position when
01.1=fp ρρ  ( 323.1=py cm), (f) 75.0=py cm. The centreline of (a) is unstable.
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when 0→d , we can get 0→sU .
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FIGURE 23. Velocity profiles at steady state on a line through the centre of a particle at
75.0=py cm, 20=R . (a) reference size ( 0.1=d cm), (b) small particle ( 5.0=d cm). As the

particle is smaller, the difference between disturbed and undisturbed velocity profiles is
smaller.
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FIGURE 24. Particle velocity vs. particle position.

A comparison of the long particle model with DNS for a circular particle is given
in figure 22 and 23. In these constrained simulations we fix the y position of the
particle and compute the dynamic evolution to equilibrium at 20=R . The diameter
of the particle in figure 22 is 1 cm and in figure 23 it is 0.5 cm. The profiles in the
figures are at equilibrium and on a cross-section through the centre of the particle.
The agreement is rather better than might have been anticipated given the severe
assumptions required in the model. The agreement is quite good away from the
centreline, even close to the wall. Equations (7.2-7.6) can be recommended for an
analytical approximation for the velocity of a circular particle in Poiseuille flow.

In figure 24, we compare the particle velocity from the simulation with the long
particle model. In figure 25, we compare the slip velocity, and in Figure 26 we show
how nearly the particle angular velocity is given by ( )pyγ�2

1− .
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evaluated using DNS results vs. slip velocity in the long particle model. These are relative
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FIGURE 26. Particle angular velocity, pΩ  at 20=R . The angular velocity of the particle is
approximated in the long particle model as half the value of the shear rate on the undisturbed
flow evaluated at particle’s centre position ( )pLPMp yγΩ �

2
1−= .

8.  Summary and conclusion
The lift and migration of neutrally buoyant and heavier-than-liquid circular

particles in a plane Poiseuille flow was studied using direct numerical simulation. The
study looks at the relation of slip velocity and angular slip velocity to lift and
migration. No matter where the neutrally bouyant particle is released, it will migrate
to a unique equilibrium height and move forward with a unique steady particle
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velocity and rotate with unique steady angular velocity. Neutrally buoyant particles
migrate to a radius which can be called the "Segré Silberberg" radius. This radius is a
reference; heavier-than-liquid particles also migrate to an equilibrium radius that is
close to the Segré-Silberberg radius if the particle density is close to the fluid density.
The particles migrate to an equilibrium position ey  with shear rate eγ�  such that the
local fluid rotation eγ�2

1−  is slightly greater than the particle angular velocity pΩ .

The angular slip velocity, eps γΩΩ �2
1+=  is always positive but at equilibrium it is

very small; ep γΩ �2
1−≈  can be proposed as an approximation. The slip velocity at

equilibrium pfes UUU −=  is always positive and slowly varying.
Since the shear rate and slip velocities are one signed they do not explain why the

lift changes sign across the equilibrium radius. We found that the quantity, which
does change sign at ey , is the angular slip velocity discrepancy; the angular slip
velocity minus the equilibrium angular slip velocity ses ΩΩ − . 0>− ses ΩΩ  when

ep yy <  and 0<− ses ΩΩ  when ep yy > . The adjustment of the angular velocity of
a free particle is very critical to lift. One might think of the angular velocity
discrepancy as a shear flow analogue to the circulation in aerodynamic lift.

We derived a shear version of our long particle model. The long particle model
arises when the circular particle is replaced with a long rectangle of the same
diameter as the circle, but so long that we may neglect end effects. In the shear
version we allow the rectangle to shear at the rate γ�2

1−  of the local rotation. Using
this model we can find explicit expressions for the fluid rotation in which the velocity
on either side of the long particle is matched by the fluid velocity; then we satisfy the
particles equation of motion in which the shear stress force balances the pressure drop
force. This leads to explicit expression for the velocity of the particle (7.12) and the
slip velocity (7.16) that is always positive. The shear version of the long particle
model is in good agreement with the results of numerical computation of the motion
of a free circular particle at points of stable equilibrium, both with respect to the
particle velocity and the fluid velocity on the cross-section containing the centre of
the circular particle.

The results given in this paper are for two dimensions. It remains to be seen how
such results carry over to three dimensions. We note that the celebrated lift formula
(2.1) is a two-dimensional result.
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