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Abstract

Movies of the breakup of viscous and viscoelastic drops in the high speed airstream behind a
shock wave in a shock tube have been reported by Joseph, Belanger and Beavers [1999]. A
Rayleigh-Taylor stability analysis for the initial breakup of a drop of Newtonian liquid was
presented in that paper. The movies, which may be viewed at http://mwww.aem.umn.edu/
resear ch/Aerodynamic_Breakup, show that for the conditions under which the experiments
were carried out the drops were subjected to initial accelerations of orders 10* to 10° times the
acceleration of gravity. In the Newtonian anaysis of Joseph, Belanger and Beavers the most
unstable Rayleigh-Taylor wave fits nearly perfectly with waves measured on enhanced images of
drops from the movies, but the effects of viscosity cannot be neglected. Here we construct a
Rayleigh-Taylor stability analysis for an Oldroyd B fluid using measured data for acceleration,
density, viscosity and relaxation time A;. The most unstable wave is a sensitive function of the
retardation time A, which fits experiments when A/A;= O(10°). The growth rates for the most
unstable wave are much larger than for the comparable viscous drop, which agrees with the
surprising fact that the breakup times for viscoelastic drops are shorter. We construct an
approximate analysis of Rayleigh-Taylor instability based on viscoelastic potential flow which
givesriseto nearly the same dispersion relation as the unapproximated anaysis.

1 Introduction

This paper is an extension of the paper by Joseph, Belanger and Beavers [1999] (hereafter
called JBB) on the breakup of aliquid drop suddenly exposed to a high-speed airstream behind a
shock wave in a shock tube. In JBB we presented several series of photographs taken from high
speed movies showing the breakup of various liquids in the flow behind Mach 2 and Mach 3
shock waves. We aso presented a Rayleigh-Taylor stability analysis for drops of Newtonian
liquids. We extend that work in this paper to include a Rayleigh-Taylor stability analysis for
three viscoelastic drops for which measured data are given by JBB. The extensive literature
relevant to drop breakup in a high speed airstream is reviewed in JBB and will not be repeated
here. The recent and fairly extensive literature on atomization of Newtonian (not viscoelastic)
liquids is well represented in the papers by Hsiang and Faeth (1992), Hwang, Liu and Rietz
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(1996), Faeth (1996) and Liu and Rietz (1997). These results, and earlier drop breakup studies
such as Krzeczkowski (1980), Wierzba (1990), Kitscha and Kocamustafaogullari (1989), and
Stone (1994), are restricted to relatively low Weber and Reynolds numbers. The highest Weber
and Reynolds data for drop breakup was reported by Hsiang and Faeth (1992) who worked under
conditions for which the Weber numbers ranged from 0.5 to 1000 with Reynolds numbers from
300-1600. The excellent paper on Rayleigh-Taylor instability in elastic liquids by Aitken and
Wilson [1993] is directly relevant to our work here and was not reviewed by JBB.

Aitken and Wilson [1993] studied the problem of the stability of an incompressible elastic
fluid above afree surface to small disturbances. They derived dispersion relations for an Oldroyd
fluid in the case where the fluid is bounded below by a rigid surface. When the retardation time
and inertia are neglected the analysis predicts an unbounded growth rate at a certain Weissenberg
number. The addition of inertia or retardation smoothes this singularity. The work presented here
differs from that of Aitken and Wilson in the following ways; in our work the two fluids are
unbounded; we construct both an exact analysis and an approximate analysis based on potential
flow; we aim to apply the analysis of Rayleigh-Taylor instability of viscoelastic drops using
measured data; we compute and present dispersion relations emphasizing the role of the most
dangerous wave associated with the maximum growth rate and thereby emphasizing the role of
the huge acceleration in the drop breakup problem due to Rayleigh-Taylor instability; and we use
the maximum growth rate to define a breakup time.

Only a few studies of the breakup of viscoelastic drops have been published; Lane [1951],
Wilcox, June, Braun and Kelly [1961], Matta and Tytus [1982], and Matta, Tytus and Harris
[1983]. Matta and co-workers did studies at Mach numbers near one and less. They showed that
threads and ligaments of liquid arise immediately after breakup, rather than the droplets which
are seen in Newtonian liquids. We have verified these general observations for three different
viscoelastic liquids (2% agueous solution of polyox; 2% aqueous solution of polyacrylamide;
2.6% solution of polystyrene butylacrylate in tributyl phosphate) in high speed air behind shocks
with shock Mach numbers as high as 3. Breakup sequences for these three liquids are presented
in figures in JBB, which show just a few frames from the respective movies on our web page.
The figures for polyox and polyacrylamide are reproduced here as figures 1-3. For comparison
we also reproduce here as figure 4 the breakup of 1 kg/m.sec silicone oil whose viscosity closely
matches that of the polyacrylamide solution (0.96 kg/m.sec).
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Figure 1. Sagesin the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm) in the flow
behind a Mach 2 shock wave. Air velocity = 432 mysec; dynamic pressure = 165.5 kPa; Weber no. = 15,200.
Time (microseconds): (a) 0 (b) 55 (c) 95 (d) 290 (e) 370 (f) 435



@ (b)

(e) ()
Figure 2. Sagesin the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9mm) in the flow
behind a Mach 3 shock wave. Air velocity = 755 nysec; dynamic pressure = 587.2 kPa; Weber no. = 54,100.
Time (microseconds): (a) 0 (b) 30 (c) 45 (d) 170 (e) 195 (f) 235



(9)
Figure 3. Stages in the breakup of a drop of 2% aqueous solution of polyacrylamide (Cyanamer N-300LMW. diameter

= 3.2 mm) in the flow behind a Mach 3 shock wave. Air velocity = 771 nvsec; dynamic pressure = 578.1 kPa;
Weber no. = 82,200.
Time (microseconds): (a) 0 (b) 45 (c) 60 (d) 90 (e) 145 (f) 185 (g) 225
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Figure 4. Sripping breakup of a drop of 1kg/m.sec silicone oil (diameter = 2.6 mm) in the flow behind a Mach 3 shock
wave. Air velocity = 767 m/sec; dynamic pressure = 681.0 kPa Weber no. = 168,600.
Time (microseconds): (a) 15 (b) 40 (c) 50 (d) 80 (e) 115 (f) 150



2 Experiments

The experiments reported here are fully described in JBB. The drops were injected into the
test section of a shock tube and timed so that the shock wave passed over the drop as it fell under
gravity into the field of view of a Cordin model 377 rotating drum camera, operated at 200,000
frames per second. The individua frames from the filmstrips produced by the camera were
scanned into a PC as TIFF files using Adobe Photoshop and then composed into a movie
sequence using Alias Composer running on a Unix-based workstation.

The data for the experiments discussed in this paper are listed in table 1. The Ohnesorge

number Oh, the Weber number We and the Reynolds number Re
2
Oh:%’ We:&, e:\/D_’O (21)
(04Dy)* y H

are defined in terms of theinitial drop diameter D, listed in the second column, drop viscosity f,
surface tension J; drop density py listed in columns 3,4, and 5 and the free stream values of the

velocity V, viscosity y, and density po.

LIQUID PROPERTIES
Liquid | Diameter | Viscosity Surface Density | Relaxation [ Ohn. No.
(mm) (kg/m.sec) | Tension (kg/m®) time (sec)
(N/m)
NEWTONIAN
SO 1000 2.6 1 0.021 969 43
SO 1000 2.6 1 0.021 969 43
VISCOELASTIC
2% PO 29 35 0.063 990 0.21 82.3
2% PO 29 35 0.063 990 0.21 823
2% PAA 3.2 0.96 0.045 990 0.039 25
Table 1(a)
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FREE STREAM CONDITIONS
Liquid | Velocity | Density | Pressure | Dynamic | T2 Temp |Weber No.| Reynolds | Shock M
(m/s) (kg/m®) (kPa) | Pressure (K) (10°x) [ No. (10°x)
(kPa)
NEWTONIAN
SO 1000 438.8 1.876 269.2 180.6 502 44.7 80.6 2.03
SO 1000 767.4 2.312 523.7 681.0 792 168.6 129.1 3.02
VISCOELASTIC
2% PO 431.7 1.776 252.3 165.5 497 15.2 84.2 2.01
2% PO 754.8 2.061 458.7 587.2 778 54.1 127.6 2.98
2% PAA 770.6 1.947 442.9 578.1 795 82.2 134.0 3.03

Table 1(b). Experimental parameters. Relaxation time for PO and PAA are computed from measured
val ues taken on the wave-speed meter, PO in the tables given by Joseph [1990] and PAA in the Ph.D
Thesis of Y.J. Liu [1995].

2.1 Displacement-time graphs and accelerations

Displacement vs. time graphs for the Mach 3 experiments discussed in this paper are shown in
figure 5. The Mach 2 graphs are of similar form. The distance refers to the slowest moving drop

fragment (the windward stagnation point); other parts of the fragmenting drop accelerate

Liquid Silicone Qil 2% Adqueous PO 2% Aqueous PAA
Viscosity (kg/m.sec) 1 35 0.96
Shock Mach No. 2 3 2 3 3
a (m/secz) 1.463E5 5.561E5 0.687E5 3.240E5 2.461E5
Xo(M) -28.5E-5 7.45E-5 -17.7E-5 -0.046E-5 -6.16E-5
to(sec) -3.43E-5 0.21E-5 -5.07E-5 -0.12E-5 -1.49E-5
Initial Acceleration 2.92E5 11.12E5 1.37E5 6.48E5 4.92E5
(m/sec?)
Max. Accel. From (3.2.8) 1.07E5 4.05E5 0.86E5 3.07E5 2.74E5
(c = 0) (m/sec?)
Mean Accel./M ax. Accel. 2.7 2.7 16 21 18
From (3.2.8)

Table2.  Curvefitting parameters and initial accelerations for the liquid drops specified in table 1.

from rest even more rapidly. The graphs are nearly perfect parabolas for about the first two

hundred microseconds of the motion, which alows the initial acceleration to be obtained by
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fitting a curve of the form x-x, = a (t-t,)>. Values of the parameters a, to, X, and the initial

acceleration are listed in table 2. It is noteworthy that in these graphs the acceleration is constant,
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independent of time for small times, and about 10%-10° times the acceleration of gravity
depending upon the shock wave Mach number. In genera there is a moderate drop-off of
acceleration with time over the course of the several hundred microseconds that it takes to totally
fragment the drop.

The initial accelerations are an increasing function of the shock Mach number; the dynamic
pressure which accelerates the drop increases with the free stream velocity. At a fixed free-
stream dynamic pressure there appears to be a tendency for the acceleration to decrease with
drop size. If we write that the drag on a spherical drop is proportional to the drop diameter
squared and the mass to the diameter cubed, then the acceleration is proportional to D™ and

decreases with increasing D.

3 Theory

3.1 Background

Rayleigh-Taylor instabilities (Taylor [1950]) always play a role in drop breakup. Rayleigh
showed that a heavy fluid over a light fluid is unstable, as common experience dictates. He
treated the stability of heavy fluid over light fluid without viscosity, and he found that a

disturbance of the flat free surface grows exponentialy like exp (nt) where

n= {kg(pz—_pl)}yz (3.1.1)
Pt P

where p, isthe density of the heavy fluid, o is the density of the light fluid, g is the acceleration
of gravity and k =277/ isthe wavenumber and ¢ isthe wavelength. The instability described by
(3.1.1) is catastrophic since the growth rate n tends to infinity, at any fixed time, no matter how
small, as the wavelength tends to zero. The solutions are unstable to short waves even at the
earliest times. Such kinds of disastrous instabilities are called “Hadamard unstable” and the
initial value problems associated with these instabilities are said to be “ill posed” (Joseph & Saut
[1990]). 1ll-posed problems are disasters for numerical simulations. Because such problems are

unstable to ever shorter waves, the finer the mesh, the worse the resullt.
Nature will not allow such a singular instability; for example, neglected effects like viscosity

and surface tension will enter the physics strongly at the shortest wavelength. Surface tension
eliminates the instability of the short waves; there is a finite wavelength depending strongly on
viscosity as well as surface tension for which the growth rate n is maximum. This is the
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wavelength that should occur in areal physical problem and would determine the wavelength on
the corrugated fronts of breaking dropsin ahigh speed air flow.

Taylor [1950] extended Rayleigh’sinviscid analysis to the case where a constant acceleration
of the superposed fluids other than gravity is taken into account. Assuming a constant value for
the acceleration, Taylor [1950] showed that when two superposed fluids of different densities are
accelerated in a direction perpendicular to their interface, this surface is unstable if the
acceleration is directed from the lighter to the heavier fluid. The Taylor instability depends
strongly on the value of the acceleration a; for example, if g in (3.1.1) is replaced by a = 10%g,
the growth rate n is increased by a factor of 100. 10%g to 10°g are representative values of the
acceleration of drops in our shock tube; moreover the acceleration is nearly constant for all liquid
drops at a given shock Mach number (see table 2 of JBB). A similar observation was made by
Engel [1958]. Since the acceleration is perpendicular to the air-liquid interface and directed from
gas to liquid, the accelerating liquid drop is unstable and is prey to the characteristic short wave
corrugation associated with this instability.

The corrugations at the front of an unstable drop are driven toward the drop equator by shear
flow of gas coming from the high pressure stagnation point. This shear flow may also be subject
to an instability of the Kelvin-Helmholz type. Since the tangential velocity is zero at the
stagnation point and small near the stagnation point, the Kelvin-Helmholz instability may not
interact too strongly with the Rayleigh-Taylor instability.

3.2 Acceleration

The acceleration of the drop is a mgjor factor in the Rayleigh-Taylor (RT) instability. It is

instructive to see how the acceleration enters into the equations of motion. Suppose the lab frame

isidentified with (X,t) and the drop velocity is v(X,t) . Then we refer the equations of motion

ov ov .

—+Ve =divT + pg,
,0( ax) A9
to an accelerating frame in which the mass center of the drop is stationary identified with

(x,t) and v(X,t) = U(x,t) + V(t), dX =dx + V(t) dt, df =dt . Then wefind that

0
*v=0 321
X (32.1)

p(a—U+U'an+pV:divT+pg, i-U:O (3.2.2)
ot 16)4 oX

where T isthe stress tensor.
Theterm

pla-V) (3.2.3)
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enters into Rayleigh-Taylor instability and V dominates in the drop breakup problem because the

initial velocity isvery small and theinitial acceleration isvery large.
The Rayleigh-Taylor instability occurs whenV is directed from the light to the heavy fluid as

when the initially stationary drop is accelerated to the free stream velocity in the high speed
airstream behind the shock in the shock tube or when a moving drop in a stagnant fluid is
decelerated by the air to zero velocity. The analysis works well in air and liquid where the
density and viscosity of air can be neglected with only small error; we get Rayleigh-Taylor
instability in a vacuum because it is the drop acceleration term and not the materia properties of
air which induces the instability.

In the present application the acceleration of the drop is roughly proportional to the dynamic
pressure which vanishes in avacuum. Drop breakup in a vacuum could occur by acceleration due
to gravity, say in ararified Jovian atmosphere.

At early times the drop flattens under high pressure at the front and back of the drop; very
soon thereafter the pressure recovery at the back of the drop falls due to the formation of a wake

with low pressures like those associated with high speed flow at the side of the drop. At these

early times we may estimate the terms in Newton’s formula F = mV . We approximate the drop
shape as hemispherical with radius R and volume %nRj The force is mainly due to the

pressure drop front to back; at the front we have the dynamic pressure

p, =pU?/2 (3.2.4)
whereas at the back
p, =coU?/2 (3.2.5)
with ¢ <1. Then theforce
F=(p, - p,)7R? = (1-¢) pUTR? /2 (32.6)
and
mv = p, %nRj\/ (3.2.7)
where pisthe density of the air and p,, the density of the liquid drops. Hence
2
v=3@1-¢) LY (3.2.8)
4 Po R,

This formula predicts that the drop acceleration scales with the reciprocal of the drop radius as

we mentioned before, and with the dynamic pressure. The acceleration V of the drop could be

reduced to very low valuesin alow pressure environment even when the airspeed U islarge.
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3.3 Stability Analysis

The undisturbednterface betweentwo fluids is locatedat = = 0, with a systemof Cartesian

coordinates = (z,vy, z) = (21, 2, £3) Moving with acceleratioru:

a=g-V = (O, —gq, —V) = (0, —g, —a). (3.3.1)

For the conditionsof the experimentsdescribedn this paperthedropmovesin a horizontalplane
andwe may neglect ¢ asat leastfour ordersof magnitudesmallerthanV’. The undisturbedest
stateis givenby the pressure (?) in theheary non-Nevtonianfluid (the Oldroyd B-fluid) in z > 0

andp () in thelight Newtonianfluid in z < 0:

P =po — paz, PV =po — praz, (3.3.2)

wherep, is the pressureat the interface, p, denoteghe densityof the heavy fluid, andp;, is the
densityof thelight fluid. Uponthe undisturbedstate smalldisturbancearesuperimposetb give
riseto the Rayleigh-TRylor instability, for which equationsn the heavy fluid (in 0 < z) aregiven
by

)
o 6’(,; =-Vp? 4+ v.7r3 (3.3.3a)
V-u® =0, (3.3.3b)
or? de!?
(I AC)
@ _ 1 (0u  ou 3.3.3d
ez] 2<8$]+6$Z>’ ( )

whereu® = (u®,v® w?@) = (u@, ul?, u§2)) is the velocity disturbancethe viscousstress
tensorTi(jQ) of the Oldroyd B-fluid is expresseasthe constitutve equation(3.3.3c)with the strain

tensorez(;) andtheviscosity y; A; is therelaxationtime and \, the retardatiortime; the corven-
tionaltensomotationis usedhere.Then,equationgor disturbance thelight fluid (in z < 0) are

givenby
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P = —vp +v.r0 (3.3.4a)
V-ut =0, (3.3.4b)
Ti(jl) - 2,“165]1')’ (3.3.4c)
W gy
e =3 (a_x] + a;i ) , (3.3.4d)

Wheretheviscousstressiensorrig.l) of the Newtonianfluid is expresseds(3.3.4c)with the strain
tensore.}) andtheviscosity, .
Boundaryconditionsat the interfacewith its displacement (atz = h ~ 0) aregivenby the

continuity of velocity, thekinetic conditionandthe continuity of the stress:

, Oh

u(l) — u( s a = w(l) = ’U}(Q), (335&, b)
A=, o) =, (3:35¢,0)
_p(z) + 73(32,) + poah — (_p(l) +T§§) + pmh) = —vAh, (3.3.5€)

wherey is the surfacetensionandA is the horizontalLaplacian:

0? 0?

Further the boundaryconditionsrequirethatthe disturbancesanish respectrely, asz — +oo.

Thesolutionto the systemof the disturbancesnaytake thefollowing form:

[u®, p h,u®), pV] = [a@)(z),ﬁ@) (2), b, a(l)(z)’ﬁ(l)(z)] exp (nt + thot +1k,y) + c.c.,
(3.3.7)
wheren denoteshe comple growth rate, (k,, &, 0) is thewavenumbewectorof magnitudet =
\/W, andc.c. standdor the complex conjugateof the precedingexpression.Using (3.3.7),

the constitutve equation(3.3.3c)is now written as

7P = 2ae, (3.3.82)
with & definedby
n 1+ /\gn
&= oy Nn’ (3.3.8b)
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Takingthis into accountandtakingrotationof (3.3.3a)and(3.3.4a),usingV x V x u = —V?u

for incompressibldéluid, we getthefollowing equations:

<v2 _ %) V2u® = 0 inz <0, (v2 _ @) Vi@ =0 inz>0, (3.3.9a,b)

M1 «Q
for which the boundaryconditionsat thedisturbednterfacearewritten, in termsof w® andw®,

as

ow®  ow®  9h

owT O ) — @ 3.10a.b
o 5 o =Y w'? (3.3.10a, b)
&\, &\ o
7 (A - ﬁ) w' =a (A - @> w', (3.3.10c)
0?w® 5 Ow? ow® 92w ow Ow
— | pp—==——ad 26A _— = 2 -
<p2 ooz Y a2 ) TeasT (pl ao. MY g ) ey,
+ (pa — p1) aAh + yA%h = 0, (3.3.10d)
andthe conditionsaway from theinterfaceare
w -0 asz— —oo, w? =0 asz— . (3.3.10e, f)

Thesolutionsto Eqs(3.3.9}o satisfy(3.3.10e,flareexpresseds
w = AW exp(kz) + BY exp(qr2), w® = AP exp(—kz) + B® exp(—q2), (3.3.11a,b)

with ¢; andg,, definedby

o= e+ = s (3.3.12a,b)
Ha @

After substituting(3.3.11)into the boundaryconditions(3.3.10a-d),we get an inhomogeneous
systemof linearequationgor A, BM | A2 and B® whichis solvableif andonly if the deter
minantof the coeficient matrix vanishesAfter a straightforvardbut tediousanalysiswve have the

dispersiorrelation:

1 k.3
N [1 * n? <(a1 — oz)ak + oL+ pg)} (2q1 + 1ge — k) — 4kazor
k2w — & B (o — 2
Y - — o) k] + 45 —k) (g2 —k) =0, (3.3.13
+ o1t po [oqr — a1go + (o1 — a2) K] + 2 <,01 +,02> (¢ ) (g2 — k) , ( )
where
P1 P2

aq

= , Qg = : (3.3.14a, b)
p1+ P2 p1+ P2
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Figure6: Schematicof a dispesionrelation for Rayleigh-aylor instability. The curvedepends
stronglyon viscosity relaxationandretardationtimesasshownin figures7, 8 and9. k is thewave

numberof themostdangrouswave

Thenthe experimentshows p; > p,, for whicha, — 1 anda; — 0. Moreover u; < @& in the
experimentsothat(3.3.13)reducedo
- [1+% (—ak+7p—lj)] —4%2%+4z—z (%)2(@—1@ = 0. (3.3.15)
Theequation3.3.15)approximate$3.3.13)with only asmallerror;it is appropriatdor Rayleigh-
Taylorinstability in a vacuum.
The solutionof (3.3.13)givesrise to a dispersiorrelationof the type shavn in figure 6. The
borderof stability is givenby a critical wavenumbemvith stability only when
k>k.= v (3.3.16)
Y
independenof viscosity relaxationor retardatiortime. Dispersionrelationsfor our experiments

arepresentedh figures7—-9(beginningon pagel9).
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3.4 Viscoeastic Potential Flow Analysisof Stability

Thetheoryof viscoelastigotentialflows hasbeenconsideredy JosephandLiao [1994]. They
examinedthe conditionsunderwhich potentialflows satisfythe equationgyoverningviscoelastic
fluids. In viscoelastigpotentialflows the velocity is givenasthe gradientof a potentialu = V¢
and V2?¢ = 0; this is an enormoussimplification of analysis. Of course,the continuity of the
velocity and shearstressat the interfacemustbe sacrificed;the stressin a viscoelastigpotential
flow is evaluatedon u = V¢ andis, in generalnot zero. Thefailure of potentialflows to satisfy
no slip conditionsis fatal in problemswith solid surfacesand boundarylayer analysismustbe
used. However, the boundarylayersat air-liquid surfacesresole a discontinuityin the gradient
of velocity ratherthanthe velocity andthe effectsof theselayersget smallerandsmallerasthe
Reynoldsnumbergyetlarger. In ary caseit is never necessarpr usefulto consideiinviscid fluids
wheninvoking potentialflow.

Rayleigh-TRylor instability at anair-liquid or vacuume-liquidsurfaceis oneof the mary cases
in whichaccurateesultsmaybeobtainedusingpotentialflow. For viscouspotentialflow theonly
placewherethe viscosityenterss in the normalcomponentf the viscousstress.Thedispersion
relationsfor viscousflow andviscouspotentialflow dervedin JBB, thoughdifferent,give values
for the wave numberandthe growth rateof the mostdangerousvave thatarein goodagreement.
Viscouspotentialtheoryyields valuesfor the wave numberthat are about2 percenthigher and
valuesfor the growth ratethatare about8.8 percenthigher thanthe correspondingaluesfrom
fully viscoustheory(JBB, table3). This shavs thatthe mainphysicaleffect of viscosityis onthe
normalstresdalance.

Theresultsgivenin JBB carry over to viscoelastigotentialflows aswe now shav. We now
requirefor eachfluid thatthe potentialy givesthevelocity disturbancéu = V¢) andsatisfieghe
Laplaceequation

Vi =0, (3.4.1)

andthepressuralisturbances givenby Bernoulli's equation

0¢ P 2
-2 =_£ ~ 4.2
P TP+ paz=—3|Vo =0, (3.4.2)

againsthe sameundisturbedstatethatwasgivenin 3.3. Thenthe boundaryconditionsaregiven

by (3.3.5b,eat thedisturbednterfaceand(3.3.10e,f)away from theinterface. The normalstress
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balancg3.3.5e)is now written, using(3.4.2), as

pzag—f) + ng) + poah — (plag—f) + 7'3%) + plah> = —vAh, (3.4.3)
where )
;i:: 33:%227? (3.4.4)
Thusthesolutionsto (3.4.1)thatvanishrespectrely asz — +oo maybeexpresseds
wV = AW exp (kz) inz <0, w? =A% exp(—kz) inz > 0. (3.4.5a,b)

Substitutionof theseinto the boundaryconditionsusing(3.3.10b)leadsto the dispersiorrelation:

Oy — 01 k?”}/ 2k% & + 1
1= —ka— — - — .
n n? (ps + p1) n p2+p1

(3.4.6)

Without muchlossof generalitywe mayputa; = 0, ap = 1 andéa > u4, sothatthedispersion
relationbecomes

jo ke Ky 2674 (3.4.7)

which canthenbewritten asa cubicequatiorfor the growth raten.
It is interestingto note herethat(3.4.7)for viscoelastigpotentialflow givesthe samegrowth
rate thatis given from the dispersionrelation (3.3.15)for fully viscousflow if ¢, involvedin

(3.3.15)is approximateas

np np2
—k=4/k? — k= A.
i.e.,underthe conditionthat
np2
1. 3.4.9
2ké& < ( )

Thus,underthis condition,the theoryof viscoelastigpotentialflow may provide a goodapproxi-

mationof thefully viscoustheory

3.5 Comparison of the Exact and Potential Flow Analysis

Basedon the datafor the experimentalconditionscited in tablesl and2, the dispersiorrelation
(3.3.15)is usedto calculatethe stability conditions,andtheresultsaredepictedn figure 7: 2%PO
(M, = 2); figure8: 2%PO(M; = 3); andfigure9: 2%FAA (M, = 3). In eachof thefiguressereral
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plots of the dispersionrelation (3.3.15)are shavn for a fixed (known) value of the relaxation
time andvariousassumed/aluesof the retardationtime ;. The growth ratesare computedat
incrementsn thewavenumbenf 200m~! from k£ = 0 to thecritical value. Thedispersiorrelation
(3.4.7)from viscoelastigpotentialtheorygivesrise to graphsthat arenearlyidenticalto thosein
figures7-9.

For comparisorof (3.4.7)and(3.3.15),valuesof thewavenumbert, wavelength? andgrowth
raten of themostdangerousvave areshovn in table3, 2%PO(M, = 2); table4, 2%PO(M, = 3);
andtable5, 2%FAA (M, = 3). Theseresultsshawv thatthe setof valuesof the growth rateand
the wavenumbemiven by the viscoelastigpotentialanalysisandthe correspondingetof values
obtainedfrom the exact stability analysisareat the samelevel of goodagreemenasin the New-
toniancase. The wave numberpredictedfrom viscoelastigpotentialanalysisis greaterthanthe
correspondingaluefrom fully viscoelastidheoryby betweerD and5.4% (with two exceptions);
the growth ratesfrom viscoelastigpotentialanalysisarebetweer8.5%and9.0%higherthanpre-

dictedby fully viscoelastidheory exceptatthe smallestvaluesof ;.

2% Aqueous Poly Ox Ms=2 A; =021 sec

50000
45000
40000
35000
30000

% N\
/ NN

20000 / N\
15000 A A, =\ *(1E-4) \

10000 / B A, =A*Q2.11E4) —
/ C A, =% *(3.92E-4)

n(sec?)

5000
0 T \ :
0 10 20 . 30 40
k(mm™)
0.6283 0.3142 0.2094 0.1571
#(mm)

Figure7: Thegrowthrate n versusthe wavenumberk from(3.3.15)for 2% PO (M, = 2). The

average wavelengtrandscatterfroma veryearly timein the experimentare indicated.
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2% Aqueous Poly Ox Ms=3 A, =0.21 sec
140000
120000
> A, =)\*1E-3
100000 2 =M(E3)
B A, =A,*(1E-2)
80000
/ s
60000 /
40000 //\
20000
B
0 T T T T T
0 20 40 60 80 100 120
k(mm-t)
0.3142 0.1571 0.1047 0.0785 0.0628 0.0524
£(mm)

Figure8: Thegrowthrate n versusthe wavenumberk from(3.3.15)for 2% PO (Mg = 3). The

average wavelengtrandscatterfroma veryearly timein the experimentare indicated.
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2% Aqueous PAA  Ms=3 A, =0.034 sec
160000
¢ —————— »>
140000 vaf—o
120000 A A=A *(1.0E2) |
—_ /_——\ B }\’2: 7\,1*(0.5E-1)
78 100000 / \ C ;2=};MIZ(11.(;E—1)1
D = 25E-
E 80000 \ »=M*(125E-1) |
60000
40000
20000
0
0 20 40 60 80 100 120
k(mm™)
0.3142 0.1571 0.1047 0.0785 0.0628 0.0524
A(mm)

Figure 9: The growth rate n vs the wavenumbek from (3.3.15)for 2% PAA (Mg = 3). The
average wavelengtrandscatterfromaveryearly timein theexperimentareindicated.Alsoshown
by dottedlines are the avelage wavelengthand scatterfor the setof wavesof small wavelength

which appearto be superimposedn thelong wavelengtiwaves.
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Fully Viscoelastic Viscoelastigotential Percentdifference

Xo[1/sec] || k[m~1] | ¢[mm] | n[1l/sec]| k[m~'] | ¢mm] | n[1l/sec] k n
A1/5 600| 10.472| 6331.7 800 | 7.8539| 6870.9 33.3 8.5

A1/8 1000| 6.2832| 7425.1 1000| 6.2832| 8077.7 0 8.8

A1/10 1000| 6.2832| 7991.5 1200| 5.2359| 8684.8 20.0 8.2
A1/20 1800 3.4907| 10061.5 1800 3.4907| 10945.9 0 8.8
A1/100 4800| 1.3090| 17000.0|f 5000| 1.2566| 18489.8 4.2 8.8
A1/1000 15000 0.4189| 32238.7|| 15800| 0.3977| 34849.6 5.3 8.1
A1/10000 | 22400| 0.2805| 43036.2| 23600| 0.2662| 45074.9 5.4 4.7
0 24200| 0.2596| 45697.3| 25000| 0.2513| 47119.7 3.3 3.1

Table3: 2% PO (M, = 2). Valuesof the wavenumbek, wavelength¥ and growth rate n of
the mostdangerouswavefor the experimentalconditionsgivenin tablesl and 2; theretardation
time )\, is changedagainsttherelaxationtime \,. Thevaluesof k andn predictedby viscoelastic
potentialtheoryare higherthanthe correpsondindully viscoelastigredictions. Thedifferences

are indicatedasa percentage of thefully viscoelastiovalues.

22



Fully Viscoelastic Viscoelastigotential Percentdifference

Xo[1/sec] || k[m~1] | ¢[mm] | n[1l/sec]| k[m~'] | ¢mm] | n[1l/sec] k n
A1/5 1200 5.2359| 17925.3 1200 5.2359| 19496.0 0 8.8

A1/8 1600| 3.9269| 20968.4 1600| 3.9269| 22801.0 0 8.7

A1/10 1800| 3.4907| 22584.4 1800| 3.4907| 24549.0 0 8.7
A1/20 3000| 2.0944| 28424.1 3000| 2.0944| 30915.1 0 8.8
A1/100 8200| 0.7662| 48320.5] 8400| 0.7480| 52541.6 24 8.7
A1/1000 29200| 0.2152| 96037.0| 30600| 0.2053| 103960 4.8 8.2
A1/10000 || 49400| 0.1272| 138925| 51600| 0.1218| 145138 4.5 4.4
0 55600| 0.1130, 152570| 56600| 0.1110| 155111 1.8 1.7

Table4: 2% PO (M, = 3). Valuesof the wavenumbek, wavelength¥ and growth rate n of
the mostdangerouswavefor the experimentalconditionsgivenin tablesl and 2; theretardation
time )\, is changedagainsttherelaxationtime \,. Thevaluesof k andn predictedby viscoelastic
potentialtheoryare higherthanthe correpsondindully viscoelastigredictions. Thedifferences

are indicatedasa percentage of thefully viscoelastiovalues.
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Fully Viscoelastic Viscoelastigotential Percentdifference
Xo[1/sec] || k[m~1] | ¢[mm] | n[1l/sec]| k[m~'] | ¢mm] | n[1l/sec] k n
A1/5 11200| 0.5610| 49081.4|| 11400| 0.5512| 53350.0 1.8 8.7
A1/8 14800| 0.4245| 57009.4|| 15200| 0.4134| 61948.0 2.7 8.7
A1/10 17000| 0.3696| 61112.1| 17400| 0.3611| 66389.7 24 8.6

A1/20 24400| 0.2575| 75051.4|| 25400| 0.2474| 81393.6 4.1 8.5
A1/100 43200| 0.1454| 108441| 45400| 0.1384| 115536 5.1 6.5
A1/1000 56400| 0.1114| 133671| 57800| 0.1087| 136333 2.5 2.0
A1/10000 | 59000| 0.1065| 138403| 59400| 0.1058| 139290 0.7 0.6

0 59400 0.1058| 139007| 59800| 0.1051| 139633 0.7 0.5

Table5: 2% PAA (M, = 3). Valuesof the wavenumbek, wavelength¥ and growth rate n of
themostdangerouswavefor the experimentalconditionsgivenin tablesl and 2; theretardation
time )\, is changedagainsttherelaxationtime \,. Thevaluesof k andn predictedby viscoelastic
potentialtheoryare higherthanthe correpsondindully viscoelastigredictions. Thedifferences

are indicatedasa percentage of thefully viscoelastiovalues.

24



3.6 Theeffect of acceleration on instability

The value of the acceleration Vis a maor factor in Rayleigh-Taylor instability. The
wavelength of the most rapidly growing disturbance decreases and the growth rate increases
strongly as the acceleration V is increased (Figure 8). The discussion of acceleration given in
section 3.2 suggests that the force producing acceleration at early times is the pressure difference
across the drop measured basically by the dynamic pressure. The breakup of a drop even at high
speed may be very retarded or even suppressed when the air density is small, as at high altitudes.
The analysis suggests also that the acceleration does not depend strongly on the rheology of the
drop even though rheology affects the growth rate strongly.

2% Aqueous Poly Ox Ai=021sec  Ar= A, (3.3E-4)

45000

40000 - A a=1.37E5 m/s?
B a=1.0E4 m/s?
35000 C a=1.0E3 m/s2

30000 A
225000 -

sec

Z 20000 ~
=

15000 -
10000 -

5000 A

O T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50
k (mm-1)
0.6283 0.3142 0.2094 0.1571 0.1257
¢ (mm)

Figure 10. The effect of acceleration on the dispersion relation for 2% PO.

4  Comparison of theory and experiment

We now compare the Rayleigh-Taylor stability theory with experiments on drop breakup for
the three viscoelastic cases discussed in Section 2. For comparison, we repeat results from JBB

for a 1.0 kg/m.sec silicone oil whose viscosity nearly matches the 0.96 kg/m.sec polyacrylamide.
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Figure 11, taken from JBB, shows the waves on drops of this Newtonian liquid at very early
times in the motion at shock Mach numbers of 2 and 3.
Silicone Oil 1000

predicted
wavelength

Figure 11. Rayleigh-Taylor wavesin silicone oil (1 kg/m.sec). (From Joseph, Belanger, and
Beavers 1999. )

The waves on both the polyox and polyacrylamide were smaller and more difficult to identify
than the waves on the Newtonian liquids shown, for example, in Engel [1958, Fig. 9], Hwang et
al [1996, Fig. 8], and in JBB. For example, the measured average wavelengths for the 1.0
kg/m.sec silicone oil (Figure 11) are about 2.0 mm and 1.25 mm for shock Mach numbers of 2
and 3 respectively, while the corresponding values for the 2% polyox solution are 0.39 mm and
0.20 mm. In an attempt to identify the waves more clearly on the computer screen Adobe
Photoshop™ was used to exaggerate the contrast. We then measured the lengths of the waves by
first locating the troughs across the front of the drop on the computer screen, and then measuring
the distance between troughs in pixels which were finally converted to millimeters using a
predetermined scaling factor for each frame. The enhanced contrast images are shown in Figure
12 for the 2% agueous polyox and Figure 13 for the 2% polyacrylamide. The tick marks identify

the wave troughs. Like the Newtonian liquids in JBB, the troughs are easier to identify on the
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2% PolyOx

Ms

I
N

Ms

I
w

Figure 12. Rayleigh-Taylor waves in 2% aqueous polyox.

PAA Ms=3
Long Wavelength Short Wavelength

NPT A

Figure 13. Rayleigh-Taylor waves in 2% aqueous polyacrylamide.
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@ (b)

(©) (d)

Figure 14(i). Rayleigh-Taylor waves in 2% aqueous polyox in the flow behind a Mach 2.9
shockwave. Time (in microseconds) after passage of shock: (a) 30 (b) 35 (c) 40 (d) 45.

@ (b)

(© (d)
Figure 14(ii). Movie frames corresponding to the contrast-enhanced images of Figure 14(i).

computer screen than in the printed figure. The length of the waves increases with time because

the waves are ultimately forced apart by high pressures in the wave troughs; from this it follows
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that the length of unstable waves should be measured at the earliest times for which all the waves
can be identified.

The early appearance and short life of distinctly identifiable Rayleigh-Taylor waves is
illustrated in Figure 14(i), which shows contrast-enhanced images from a repeat movie of the
breakup of a drop (2.9 mm diameter) of 2.0% agueous solution of polyox at a shock Mach
number of 2.9 made several months after the earlier work. The four images in Figure 14(i) show
the drop at 5 microsecond intervals starting at 30 psec after the passage of the shock wave. As
before, the images are clearer and the waves are much easier to identify on the computer screen
than in the printed version where they appear pixelated. The waves have wavelengths of 5 pixels,
which trandlates to 0.2 mm on the scaling used for this movie, in frames (a), (b), and (c) but in
(d) the waves are becoming less distinct and only a few 5-pixel wavelengths could be found. For
times greater than that of frame (d) the front face of the drop becomes very irregular as the drop
sheds liquid and beginsto break up.

The time interval in which the waves can be identified appears to correspond to the interval
in which the origina amost-spherical drop is undergoing severe deformation as the front and
back faces are being flattened and the cross-sectional area to the flow is increasing. This
deformation is shown in Figure 14(ii) which presents the movie images corresponding to the
contrast-enhanced images of Figure 14(i). When the drop of polyox is injected into the test
section of the shock tube it leaves a thin, trailing thread of liquid connecting it to the injection
needle. The disintegration of the thread is visible in the frames of Figure 14(ii). The dark area
that moves downstream from the top of the drop is the liquid that formed the small web at the top
of the drop where the thread was attached. Figure 14(ii) also indicates that liquid starts to be torn
from the equator of the drop about 30 psec after exposure to the high speed flow.

Returning to Figure 13, there is some uncertainty in the measurements of the wavelengths
from the 2% PAA picture because there appeared to be two sets of waves, a distinct set of waves
with an average wavelength of 0.70 mm with a second set of smaller waves superimposed on the
larger waves. The wavelengths of the smaller waves were very irregular, with values between
approximately 0.05 mm and 0.24 mm. Smaller, but less distinct, waves could also be identified

over parts of the front face of the polyox drops.
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On Figures 7-9 we graph dispersion relations corresponding to measured data given in tables
1 and 2. The retardation time A, is a fitting parameter. The dispersion graphs are sensitive to
values of A, asis shown in Figures 7-9, where for each figure values for A, have been chosen to
yield curves such that the wavel engths of maximum growth are close to the interval of instability
defined from the experiments, which is aso included on the figures. From these we may estimate
a A2 which centers the wavelength of maximum growth in the interva of instability. The
estimated values of A, needed to achieve agreement are uniformly small ranging from A, = A3
/5000 for 2% agueous polyox at Ms = 2, to A, = A1 /100 for 2% agueous PAA at Ms=3.
Boltzman has described the viscosity of a fluid as an effect of relaxed elastic modes and it is
given as the area under the shear relaxation modulus. Joseph [1990, chapter 18] interpreted the
retardation time as representing the effect of the most rapidly relaxing modes; it depends on the
time of observation as well as the material. The small value of the retardation time which
matches theory and experiment reported here is just what might be expected in such an explosive
and short time (10-50 psec) event as produces Rayleigh-Taylor waves on drops suddenly exposed
to ahigh speed airstream.

In the previous paragraph we have argued that A, is not given once and for al but depends at
least on some conditions of external excitation and that Rayleigh-Taylor disturbances are so fast
that the response of the dropsis highly elastic (small values of A,).

Following the approach adopted in JBB we arbitrarily defined a ‘ breakup’ time as the time fb

taken for the initial amplitude A, of an unstable disturbance A(t) = Ae™ to grow to M times its

initia value:
M = A(fb) - entb
A
t, SEINY
n 4.2

which implies that higher growth rates n lead to faster breakup. The values for n given in table 4
suggest that for a fixed shock Mach number, the viscoelastic liquids appear to start to ‘breakup’
faster than purely viscous liquids of about the same viscosity. This effect is illustrated in Figure
15 which shows the configuration of drops of the test liquids at a time of 170 psec from the

passing of the shock wave over the drop under the same experimental conditions (Ms = 3.0). The

30 DDJ/1999/papers/RT_Instability_pt4.doc



Silicone Qil

Polyacrylamide

2% PolyOx Silicone Qil

Figure 15. Droplet configurations for 2% PAA, 2% PO, and two different silicone oils at 170
psecs after passing of the shock over the drop under the same conditions (Ms = 3). The
top pair of photographs compares PAA with a silicone oil of approximately the same
viscosity (1 kg/m.sec). The bottom pair compares 2% PO (viscosity = 35 kg/m.sec) with a
silicone oil that has a viscosity of about one-third that of the PO (10 kg/m.sec).

Liquid Shock Mach Approx. n Timefor Experimental blow-
No. (M/sec) A=10A, off time (usec)
(usec)

SO 1000 8 48769 47 40
2% PO 3 90,000 25 30
2% PO 2 38,000 60 50
2% PAA 3 35

Short 110,000 20

Long 75,000 30

Table 6. Comparison of measured breakup times (defined as the time at which liquid first starts
to ‘blow-off’ the perimeter of the drop) with predicted times cal culated from equation
(4.1) with M = 10 and using values of n from the fully viscoelastic analysis.
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top two figures compare 2% PAA with SO 1000 silicone oil (viscosities close to 1 kg/m.sec).
The PAA drop has broken up completely at this stage, whereas part of the original silicone drop
can still be identified. At higher viscosities the difference in breakup is more pronounced, as
shown in the lower two photographs. The 2% PO is completely broken up whereas the silicone
oil remains as a distorted drop. This faster start to breakup of the viscoelastic liquids compared
with the purely viscous liquid is aso evident by comparison of the times listed in table 6 for

liquid to begin to 'blow off' at the equator of the drop.

Conclusions

We compare the breakup of two viscoelastic liquids with the breakup of a purely viscous
liquid of about the same viscosity under the same experimental conditions using a high-speed
rotating drum camera. As described in JBB, bag-and-stamen in bag breakup occurs routinely at
Weber numbers of 0 (10* - 10°) in the higher viscosity drops and even in viscoelastic drops
showing that the presently accepted classification of breakup events, based mainly on water, does
not hold generally. The early events of breakup (< 100us), flattening, and the accumulation of
fluid driven away from the stagnation points, followed by fingering are universal and apply
equally to low and high viscosity fluids and to viscoelastic fluids. At later times the drop
fragments in viscoelastic fluid are much more stringy than in Newtonian fluids of comparable
viscosity. This confirms that the stringiness of drop fragments persists in high speed, high Weber
number flows. The movies generate time-displacement data from which accelerations of the drop
may be computed in these experiments. The accelerations were 10*~10° times the acceleration of
gravity, putting the drops at risk to Rayleigh-Taylor instabilities. The Rayleigh-Taylor
instabilities were computed with an exact viscous theory and with a simplified theory based on
viscous potential flow. It is assumed that the most dangerous wave is the one whose length gives
the maximum growth rate. The simplified viscoelastic potential theory gives the critical wave
length and growth rate within less than 10 percent of the exact theory. The border of instability to
Rayleigh-Taylor fingersis given by acritical wave number, with stability only when

k>k = 2
y

independent of viscous and viscoel astic parameters.
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