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Abstract

Movies of the breakup of viscous and viscoelastic drops in the high speed airstream behind a
shock wave in a shock tube have been reported by Joseph, Belanger and Beavers [1999]. A
Rayleigh-Taylor stability analysis for the initial breakup of a drop of Newtonian liquid was
presented in that paper. The movies, which may be viewed at http://www.aem.umn.edu/
research/Aerodynamic_Breakup, show that for the conditions under which the experiments
were carried out the drops were subjected to initial accelerations of orders 104 to 105 times the
acceleration of gravity. In the Newtonian analysis of Joseph, Belanger and Beavers the most
unstable Rayleigh-Taylor wave fits nearly perfectly with waves measured on enhanced images of
drops from the movies, but the effects of viscosity cannot be neglected. Here we construct a
Rayleigh-Taylor stability analysis for an Oldroyd B fluid using measured data for acceleration,
density, viscosity and relaxation time λ1. The most unstable wave is a sensitive function of the
retardation time λ2 which fits experiments when λ2/λ1= O(10-3). The growth rates for the most
unstable wave are much larger than for the comparable viscous drop, which agrees with the
surprising fact that the breakup times for viscoelastic drops are shorter. We construct an
approximate analysis of Rayleigh-Taylor instability based on viscoelastic potential flow which
gives rise to nearly the same dispersion relation as the unapproximated analysis.

1 Introduction

This paper is an extension of the paper by Joseph, Belanger and Beavers [1999] (hereafter

called JBB) on the breakup of a liquid drop suddenly exposed to a high-speed airstream behind a

shock wave in a shock tube. In JBB we presented several series of photographs taken from high

speed movies showing the breakup of various liquids in the flow behind Mach 2 and Mach 3

shock waves. We also presented a Rayleigh-Taylor stability analysis for drops of Newtonian

liquids. We extend that work in this paper to include a Rayleigh-Taylor stability analysis for

three viscoelastic drops for which measured data are given by JBB. The extensive literature

relevant to drop breakup in a high speed airstream is reviewed in JBB and will not be repeated

here. The recent and fairly extensive literature on atomization of Newtonian (not viscoelastic)

liquids is well represented in the papers by Hsiang and Faeth (1992), Hwang, Liu and Rietz
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(1996), Faeth (1996) and Liu and Rietz (1997). These results, and earlier drop breakup studies

such as Krzeczkowski (1980), Wierzba (1990), Kitscha and Kocamustafaogullari (1989), and

Stone (1994), are restricted to relatively low Weber and Reynolds numbers. The highest Weber

and Reynolds data for drop breakup was reported by Hsiang and Faeth (1992) who worked under

conditions for which the Weber numbers ranged from 0.5 to 1000 with Reynolds numbers from

300-1600. The excellent paper on Rayleigh-Taylor instability in elastic liquids by Aitken and

Wilson [1993] is directly relevant to our work here and was not reviewed by JBB.

Aitken and Wilson [1993] studied the problem of the stability of an incompressible elastic

fluid above a free surface to small disturbances. They derived dispersion relations for an Oldroyd

fluid in the case where the fluid is bounded below by a rigid surface. When the retardation time

and inertia are neglected the analysis predicts an unbounded growth rate at a certain Weissenberg

number. The addition of inertia or retardation smoothes this singularity. The work presented here

differs from that of Aitken and Wilson in the following ways; in our work the two fluids are

unbounded; we construct both an exact analysis and an approximate analysis based on potential

flow; we aim to apply the analysis of Rayleigh-Taylor instability of viscoelastic drops using

measured data; we compute and present dispersion relations emphasizing the role of the most

dangerous wave associated with the maximum growth rate and thereby emphasizing the role of

the huge acceleration in the drop breakup problem due to Rayleigh-Taylor instability; and we use

the maximum growth rate to define a breakup time.

Only a few studies of the breakup of viscoelastic drops have been published; Lane [1951],

Wilcox, June, Braun and Kelly [1961], Matta and Tytus [1982], and Matta, Tytus and Harris

[1983]. Matta and co-workers did studies at Mach numbers near one and less. They showed that

threads and ligaments of liquid arise immediately after breakup, rather than the droplets which

are seen in Newtonian liquids. We have verified these general observations for three different

viscoelastic liquids (2% aqueous solution of polyox; 2% aqueous solution of polyacrylamide;

2.6% solution of polystyrene butylacrylate in tributyl phosphate) in high speed air behind shocks

with shock Mach numbers as high as 3. Breakup sequences for these three liquids are presented

in figures in JBB, which show just a few frames from the respective movies on our web page.

The figures for polyox and polyacrylamide are reproduced here as figures 1-3. For comparison

we also reproduce here as figure 4 the breakup of 1 kg/m.sec silicone oil whose viscosity closely

matches that of the polyacrylamide solution (0.96 kg/m.sec).
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(a) (b)

 
(c) (d)

 
(e) (f)

Figure 1. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm ) in the flow
behind a Mach 2 shock wave.  Air velocity = 432 m/sec; dynamic pressure = 165.5 kPa; Weber no. = 15,200.
Time (microseconds):  (a) 0  (b) 55  (c) 95  (d) 290  (e) 370  (f) 435
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(a) (b)

(c) (d)

(e) (f)
Figure 2. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9mm) in the flow

behind a Mach 3 shock wave.  Air velocity = 755 m/sec; dynamic pressure = 587.2 kPa; Weber no. = 54,100.
Time (microseconds):  (a) 0  (b) 30  (c) 45  (d) 170  (e) 195  (f) 235
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 3. Stages in the breakup of a drop of 2% aqueous solution of polyacrylamide (Cyanamer N-300LMW; diameter

= 3.2 mm) in the flow behind a Mach 3 shock wave.  Air velocity = 771 m/sec; dynamic pressure = 578.1 kPa;
Weber no. = 82,200.
Time (microseconds): (a) 0  (b) 45  (c) 60  (d) 90  (e) 145  (f) 185  (g) 225
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(a) (b)

(c) (d)

(e) (f)
Figure 4. Stripping breakup of a drop of 1kg/m.sec silicone oil (diameter = 2.6 mm ) in the flow behind a Mach 3 shock

wave. Air velocity = 767 m/sec; dynamic pressure = 681.0 kPa Weber no. = 168,600.
Time (microseconds):  (a) 15  (b) 40  (c) 50  (d) 80  (e) 115  (f) 150
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2 Experiments

The experiments reported here are fully described in JBB. The drops were injected into the

test section of a shock tube and timed so that the shock wave passed over the drop as it fell under

gravity into the field of view of a Cordin model 377 rotating drum camera, operated at 200,000

frames per second. The individual frames from the filmstrips produced by the camera were

scanned into a PC as TIFF files using Adobe Photoshop and then composed into a movie

sequence using Alias Composer running on a Unix-based workstation.

The data for the experiments discussed in this paper are listed in table 1. The Ohnesorge

number Oh, the Weber number We and the Reynolds number Re

( ) µ
ρ

γ
ρ

γρ
µ VDReDVWe
D

Oh
d

d =   ,   ,
2

2
1 == (2.1)

are defined in terms of the initial drop diameter D, listed in the second column, drop viscosity µd,

surface tension γ, drop density ρd listed in columns 3,4, and 5 and the free stream values of the

velocity V, viscosity µ, and density ρ.

LIQUID PROPERTIES

Liquid Diameter
(mm)

Viscosity
(kg/m.sec)

Surface
Tension
(N/m)

Density
(kg/m3)

Relaxation
time (sec)

Ohn. No.

NEWTONIAN

SO 1000 2.6 1 0.021 969 4.3

SO 1000 2.6 1 0.021 969 4.3

VISCOELASTIC

2% PO 2.9 35 0.063 990 0.21 82.3

2% PO 2.9 35 0.063 990 0.21 82.3

2% PAA 3.2 0.96 0.045 990 0.039 2.5

Table 1(a)
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FREE STREAM CONDITIONS

Liquid Velocity
(m/s)

Density
(kg/m3)

Pressure
(kPa)

Dynamic
Pressure

(kPa)

T2 Temp
(K)

Weber No.
(103 x)

Reynolds
No. (103 x)

Shock M

NEWTONIAN

SO 1000 438.8 1.876 269.2 180.6 502 44.7 80.6 2.03

SO 1000 767.4 2.312 523.7 681.0 792 168.6 129.1 3.02

VISCOELASTIC

2% PO 431.7 1.776 252.3 165.5 497 15.2 84.2 2.01

2% PO 754.8 2.061 458.7 587.2 778 54.1 127.6 2.98

2% PAA 770.6 1.947 442.9 578.1 795 82.2 134.0 3.03

Table 1(b). Experimental parameters. Relaxation time for PO and PAA are computed from measured
values taken on the wave-speed meter, PO in the tables given by Joseph [1990] and PAA in the Ph.D
Thesis of Y.J. Liu [1995].

2.1 Displacement-time graphs and accelerations

Displacement vs. time graphs for the Mach 3 experiments discussed in this paper are shown in

figure 5. The Mach 2 graphs are of similar form. The distance refers to the slowest moving drop

fragment (the windward stagnation point); other parts of the fragmenting drop accelerate

Liquid Silicone Oil 2% Aqueous PO 2% Aqueous PAA

Viscosity (kg/m.sec) 1 35 0.96

Shock Mach No. 2 3 2 3 3

αααα(m/sec2) 1.463E5 5.561E5 0.687E5 3.240E5 2.461E5

xo(m) -28.5E-5 7.45E-5 -17.7E-5 -0.046E-5 -6.16E-5

to(sec) -3.43E-5 0.21E-5 -5.07E-5 -0.12E-5 -1.49E-5

Initial Acceleration
(m/sec2)

2.92E5 11.12E5 1.37E5 6.48E5 4.92E5

Max. Accel. From (3.2.8)
(c = 0) (m/sec2)

1.07E5 4.05E5 0.86E5 3.07E5 2.74E5

Mean Accel./Max. Accel.
From (3.2.8)

2.7 2.7 1.6 2.1 1.8

Table 2. Curve-fitting parameters and initial accelerations for the liquid drops specified in table 1.

from rest even more rapidly. The graphs are nearly perfect parabolas for about the first two

hundred microseconds of the motion, which allows the initial acceleration to be obtained by
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fitting a curve of the form x-xo = α (t-to)2. Values of the parameters α, to, xo, and the initial

acceleration are listed in table 2. It is noteworthy that in these graphs the acceleration is constant,
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independent of time for small times, and about 104-105 times the acceleration of gravity

depending upon the shock wave Mach number. In general there is a moderate drop-off of

acceleration with time over the course of the several hundred microseconds that it takes to totally

fragment the drop.

The initial accelerations are an increasing function of the shock Mach number; the dynamic

pressure which accelerates the drop increases with the free stream velocity. At a fixed free-

stream dynamic pressure there appears to be a tendency for the acceleration to decrease with

drop size. If we write that the drag on a spherical drop is proportional to the drop diameter

squared and the mass to the diameter cubed, then the acceleration is proportional to D-1 and

decreases with increasing D.

3 Theory

3.1 Background

Rayleigh-Taylor instabilities (Taylor [1950]) always play a role in drop breakup. Rayleigh

showed that a heavy fluid over a light fluid is unstable, as common experience dictates. He

treated the stability of heavy fluid over light fluid without viscosity, and he found that a

disturbance of the flat free surface grows exponentially like exp (nt) where

n =
kg ρ2 − ρ1( )

ρ1 + ρ2

�

�

�

�

�

�

1
2

(3.1.1)

where 2ρ  is the density of the heavy fluid, ρ1 is the density of the light fluid, g is the acceleration

of gravity and /= π2  k =is the wavenumber and  is the wavelength. The instability described by

(3.1.1) is catastrophic since the growth rate n tends to infinity, at any fixed time, no matter how

small, as the wavelength tends to zero. The solutions are unstable to short waves even at the

earliest times. Such kinds of disastrous instabilities are called “Hadamard unstable” and the

initial value problems associated with these instabilities are said to be “ill posed” (Joseph & Saut

[1990]). Ill-posed problems are disasters for numerical simulations. Because such problems are

unstable to ever shorter waves, the finer the mesh, the worse the result.
Nature will not allow such a singular instability; for example, neglected effects like viscosity

and surface tension will enter the physics strongly at the shortest wavelength. Surface tension

eliminates the instability of the short waves; there is a finite wavelength depending strongly on

viscosity as well as surface tension for which the growth rate n is maximum. This is the



11 DDJ/1999/proposals/RT-Instability-pt2

wavelength that should occur in a real physical problem and would determine the wavelength on

the corrugated fronts of breaking drops in a high speed air flow.

Taylor [1950] extended Rayleigh’s inviscid analysis to the case where a constant acceleration

of the superposed fluids other than gravity is taken into account. Assuming a constant value for

the acceleration, Taylor [1950] showed that when two superposed fluids of different densities are

accelerated in a direction perpendicular to their interface, this surface is unstable if the

acceleration is directed from the lighter to the heavier fluid. The Taylor instability depends

strongly on the value of the acceleration a; for example, if g in (3.1.1) is replaced by a = 104g,

the growth rate n is increased by a factor of 100. 104g to 105g are representative values of the

acceleration of drops in our shock tube; moreover the acceleration is nearly constant for all liquid

drops at a given shock Mach number (see table 2 of JBB). A similar observation was made by

Engel [1958]. Since the acceleration is perpendicular to the air-liquid interface and directed from

gas to liquid, the accelerating liquid drop is unstable and is prey to the characteristic short wave

corrugation associated with this instability.

The corrugations at the front of an unstable drop are driven toward the drop equator by shear

flow of gas coming from the high pressure stagnation point. This shear flow may also be subject

to an instability of the Kelvin-Helmholz type. Since the tangential velocity is zero at the

stagnation point and small near the stagnation point, the Kelvin-Helmholz instability may not

interact too strongly with the Rayleigh-Taylor instability.

3.2 Acceleration

The acceleration of the drop is a major factor in the Rayleigh-Taylor (RT) instability. It is

instructive to see how the acceleration enters into the equations of motion. Suppose the lab frame

is identified with )ˆ,( tX  and the drop velocity is )ˆ,( tXv . Then we refer the equations of motion

0,divˆ =•
∂
∂+=��

�

�

∂
∂•+

∂
∂ v

X
gT

X
vvv ρρ

t
(3.2.1)

to an accelerating frame in which the mass center of the drop is stationary identified with

),( tx and dttddttddttt =+=+= ˆ,)(),(),()ˆ,( VxXVxUXv . Then we find that

0,div =•
∂
∂+=+��

�

�

∂
∂•+

∂
∂ U

x
gTV

x
UUU ρρρ �

t
(3.2.2)

where T is the stress tensor.
The term

( )Vg �−ρ (3.2.3)
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enters into Rayleigh-Taylor instability and V� dominates in the drop breakup problem because the

initial velocity is very small and the initial acceleration is very large.
The Rayleigh-Taylor instability occurs when V� is directed from the light to the heavy fluid as

when the initially stationary drop is accelerated to the free stream velocity in the high speed

airstream behind the shock in the shock tube or when a moving drop in a stagnant fluid is

decelerated by the air to zero velocity. The analysis works well in air and liquid where the

density and viscosity of air can be neglected with only small error; we get Rayleigh-Taylor

instability in a vacuum because it is the drop acceleration term and not the material properties of

air which induces the instability.

At early times the drop flattens under high pressure at the front and back of the drop; very

soon thereafter the pressure recovery at the back of the drop falls due to the formation of a wake

with low pressures like those associated with high speed flow at the side of the drop. At these

early times we may estimate the terms in Newton’s formula VmF �= . We approximate the drop

shape as hemispherical with radius oR and volume 3

3
2

oRπ . The force is mainly due to the

pressure drop front to back; at the front we have the dynamic pressure

2/2Up f ρ= (3.2.4)

whereas at the back

2/2Ucpb ρ= (3.2.5)

with 1<c . Then the force

( ) 2/)1( 222
oobf RUcRppF πρπ −=−= (3.2.6)

and

VRVm oD
�� 3

3
2 πρ=    (3.2.7)

where ρ is the density of the air and Dρ  the density of the liquid drops. Hence

( )
oD R

UcV
2

1
4
3

ρ
ρ−=�  . (3.2.8)

This formula predicts that the drop acceleration scales with the reciprocal of the drop radius as

we mentioned before, and with the dynamic pressure. The acceleration V� of the drop could be

reduced to very low values in a low pressure environment even when the airspeed U is large.



3.3 Stability Analysis

The undisturbedinterfacebetweentwo fluids is locatedat ��� � , with a systemof Cartesian

coordinates� �����
	��	�������������	�����	������ moving with acceleration� :

� ��� � !" �$#��%	&�('	���!)+* �,�-�%	&�('	&�/.0�21 (3.3.1)

For theconditionsof theexperimentsdescribedin thispaperthedropmovesin a horizontalplane

andwe mayneglect ' asat leastfour ordersof magnitudesmallerthan !) . Theundisturbedrest

stateis givenby thepressure3465 �87 in theheavy non-Newtonianfluid (theOldroyd B-fluid) in �:9;�
and 34 5 �<7 in thelight Newtonianfluid in �>=?� :

34 5 �87 �@4BAC�ED���.F�%	 34 5 �<7 �E4GAC�HD%��.0�I	 (3.3.2)

where4GA is the pressureat the interface, D�� denotesthe densityof the heavy fluid, and D%� is the

densityof thelight fluid. Upontheundisturbedstate,smalldisturbancesaresuperimposedto give

riseto theRayleigh-Taylor instability, for which equationsin theheavy fluid (in �J=K� ) aregiven

by

D��FLGM 5 �87LBN ���POQ4 5 �87�R O�S�T 5 �87 	 (3.3.3a)O�S M 5 �87 ���I	 (3.3.3b)T 5 �87UWV RYX � L T 5 �87UWVLBN ��Z\[��^]`_ 5 �87UWV R;X � L _ 5 �87UWVLBNba 	 (3.3.3c)_ 5 �87UWV �dcZ ] LGe 5 �87UL � V R LGe 5 �87VL � U a 	 (3.3.3d)

where M 5 �87 � f e 5 �87 	�g 5 �87 	�h 5 �87�i � # e 5 �87� 	 e 5 �87� 	 e 5 �87� * is the velocity disturbance,the viscousstress

tensorT 5 �87UWV of theOldroyd B-fluid is expressedastheconstitutiveequation(3.3.3c)with thestrain

tensor_ 5 �87UWV andtheviscosity [�� ; X � is therelaxationtime and
X � theretardationtime; theconven-

tional tensornotationis usedhere.Then,equationsfor disturbancesin thelight fluid (in �>=?� ) are

givenby

13



D%� LGM 5 �<7LBN ���POQ4 5 �<7 R O�S�T 5 �<7 	 (3.3.4a)O�S M 5 �<7 ���I	 (3.3.4b)T 5 �<7UWV ��Zj[k�l_ 5 �<7UWV 	 (3.3.4c)_ 5 �<7UWV �dcZ ] LGe 5 �<7UL � V R LGe 5 �<7VL � U a 	 (3.3.4d)

wheretheviscousstresstensorT 5 �<7UWV of theNewtonianfluid is expressedas(3.3.4c)with thestrain

tensor_ 5 �<7UmV andtheviscosity [n� .
Boundaryconditionsat the interfacewith its displacemento (at �p� orq � ) aregivenby the

continuityof velocity, thekineticconditionandthecontinuityof thestress:M 5 �<7 � M 5 �87 	 L oLBN �sh 5 �<7 ��h 5 �87 	 �<t%1ut%1wvyx%	�z��T 5 �<7�-� ��T 5 �87�-� 	{T 5 �<7�|� �sT 5 �87�|� 	 �<t%1ut%1wvj}y	�~G���4 5 �87 R T 5 �87�|� R D���. o � # ��4 5 �<7 R T 5 �<7�|� R D%��. o * ���(��� o 	 �<tI1wt%1wvj���
where� is thesurfacetensionand � is thehorizontalLaplacian:��� L �L � � R L �L � � 1 �-t%1wtI1w���
Further, theboundaryconditionsrequirethatthedisturbancesvanish,respectively, as �+� �^� .

Thesolutionto thesystemof thedisturbancesmaytake thefollowing form:� M 5 �87 	�4 5 �87 	 o 	 M 5 �<7 	<4 5 �<7�� ���\�M 5 �87 �<����	 �4 5 �87 �-����	 �o 	�M 5 �<7 �<����	 �4 5 �<7 �-���8�����I����� N R��<�y� � R@�<��� �%� RY� 1 � 1�	�-t%1wtI1¡ ��
where � denotesthecomplex growth rate, � �y� 	 �y� 	���� is thewavenumbervectorof magnitude

� �¢ � �� R;� ��
, and

� 1 � 1 standsfor thecomplex conjugateof theprecedingexpression.Using(3.3.7),

theconstitutiveequation(3.3.3c)is now writtenasT 5 �87UmV ��Z �£n_ 5 �87UWV 	 �<tI1wt%1u¤�x��
with �£ definedby �£¥�¦[`�Bc R;X ���c R;X �8� 1 �-t%1wtI1w¤yzG�

14



Takingthis into accountandtakingrotationof (3.3.3a)and(3.3.4a),using O$§¨O©§ M �ª�6O � M
for incompressiblefluid, wegetthefollowing equations:« O � � �`D%�[n�¬ O � h 5 �<7 �¦�¯®±°��>=?�%	 #²O � � �`D���£ * O � h 5 �87 �s�¯®³°´�µ9b�%	 �<t%1ut%1u¶�x%	�z��
for which theboundaryconditionsat thedisturbedinterfacearewritten, in termsof h 5 �<7 and h 5 �87 ,
as L h 5 �<7L � � L h 5 �87L � 	 L oLBN �¦h 5 �<7 �¦h 5 �87 	 �-t%1ut%1 c ��x%	�z��[n� « �·� L �L � � ¬ h 5 �<7 � �£ « ��� L �L � � ¬ h 5 �87 	 �<t%1ut%1 c �y}��� « D�� L � h 5 �87LBNlL � � �£�O � L h 5 �87L �¸¬ R Z �£n� L h 5 �87L � R « D%� L � h 5 �<7LBNlL � �E[n�lO � L h 5 �<7L �¸¬ ��Z\[n�l� L h 5 �<7L �R �-D����¹D%���B.F� o R ��� � o �¦�%	 �<t%1ut%1 c �y~��
andtheconditionsaway from theinterfaceareh 5 �<7 � �ºxy»��´� �P��	 h 5 �87 � �¼xy»½�´� ��1 �<t%1ut%1 c �y�j	�¾��
Thesolutionsto Eqs(3.3.9)to satisfy(3.3.10e,f)areexpressedash 5 �<7 �s¿ 5 �<7 ���I�k� � ��� R�À 5 �<7 ���I�n�-ÁÂ�l����	{h 5 �87 �s¿ 5 �87 ���%�k�8� � ��� R�À 5 �87 ���I�k�l�ÁÃ������	Ä�-t%1ut%1 cyc x%	�z��
with Á\� and ÁÅ� , definedby Á\���ªÆ � � R ��D%�[n� 	ÇÁÃ�&� Æ � � R ��D���£ 1 �-t%1ut%1 c Zyx%	�z��
After substituting(3.3.11)into the boundaryconditions(3.3.10a-d),we get an inhomogeneous

systemof linearequationsfor ¿ 5 �<7 , À 5 �<7 , ¿ 5 �87 and
À 5 �87 which is solvableif andonly if thedeter-

minantof thecoefficientmatrixvanishes.After astraightforwardbut tediousanalysiswehave the

dispersionrelation:�ªÈ c R c� � « �<£��½�E£k���B. �QR � � �D%� R D�� ¬ÊÉ �<£
��ÁÂ� R £��lÁÅ�C� � �½�EË � £��l£k�R Ë � �� [n�n� �£D%� R D��6Ì £
��Á\�½�@£��|ÁÃ� R �<£��½�E£k��� �0ÍIR Ë � �� � « [k��� �£D%� R D���¬ � ��Á\�½� � �2�-ÁÅ�C� � �����%	s�<tI1wt%1 c t��
where £���� D%�D%� R D�� 	Ä£k�&� D��D%� R D�� 1 �-t%1ut%1 c Ë�x%	�z��

15



ÎÐÏ|ÑÅÒÔÓ�Õ�ÓÖ�×�Ø�Ù2ÚwÛnÜ Ï ÚÞÝß½à�á�â�ã2äuåæç äÞè

é2êÃëWì èíá�î ç8ï²ðIñ ä�ò�â�óôóõôê�ö è�÷²è êÃö è ê ä\â�ó�ø ë î-ùlâÅî ë äuú

û á�â�÷ ö�ë¡çíü èíäôèíá�îã�å ë ùíå ç á�èùlâ ü ÷ ï èíäôè ï ú�î³ä ç�ýÃï èGäÞâæFþÿëÔê î ä çíýÃëwïuë äuú ç á�èï è�î<î�äwå çíê �������	��
���

���
� ���

�
���

������� �"!$#&%
' � �"!$#&%

(
()

Figure6: Schematicof a dispersion relation for Rayleigh-Taylor instability. Thecurvedepends

stronglyonviscosity, relaxationandretardationtimesasshownin figures7, 8 and9.
*�

is thewave

numberof themostdangerouswave.

Thentheexperimentshows D��,+ D%� , for which £k�+� c and £��6� � . Moreover [n�.- �£ in the

experiment,sothat(3.3.13)reducesto� È c R c� � « �/. �QR � � �D�� ¬(É �EË � �� �£D�� R Ë � �� � « �£D�� ¬ � �-ÁÃ��� � �����I1 �<tI1wt%1 c v��
Theequation(3.3.15)approximates(3.3.13)with only asmallerror;it is appropriatefor Rayleigh-

Taylor instability in a vacuum.

Thesolutionof (3.3.13)givesrise to a dispersionrelationof the typeshown in figure6. The

borderof stability is givenby acritical wavenumberwith stabilityonly when� 9 �0/ � D>!)� �<tI1wt%1 c ���
independentof viscosity, relaxationor retardationtime. Dispersionrelationsfor our experiments

arepresentedin figures7–9(beginningonpage19).
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3.4 Viscoelastic Potential Flow Analysis of Stability

Thetheoryof viscoelasticpotentialflows hasbeenconsideredby JosephandLiao [1994]. They

examinedtheconditionsunderwhich potentialflows satisfytheequationsgoverningviscoelastic

fluids. In viscoelasticpotentialflows thevelocity is givenasthegradientof a potential M � O21
and O � 1 �º� ; this is an enormoussimplificationof analysis. Of course,the continuity of the

velocity andshearstressat the interfacemustbe sacrificed;the stressin a viscoelasticpotential

flow is evaluatedon M ��O31 andis, in general,not zero.Thefailureof potentialflows to satisfy

no slip conditionsis fatal in problemswith solid surfacesandboundarylayer analysismustbe

used. However, the boundarylayersat air-liquid surfacesresolve a discontinuityin the gradient

of velocity ratherthanthe velocity andthe effectsof theselayersget smallerandsmallerasthe

Reynoldsnumbersgetlarger. In any caseit is nevernecessaryor usefulto considerinviscidfluids

wheninvokingpotentialflow.

Rayleigh-Taylor instability at anair-liquid or vacuum-liquidsurfaceis oneof themany cases

in whichaccurateresultsmaybeobtainedusingpotentialflow. For viscouspotentialflow theonly

placewheretheviscosityentersis in thenormalcomponentof theviscousstress.Thedispersion

relationsfor viscousflow andviscouspotentialflow derivedin JBB, thoughdifferent,givevalues

for thewave numberandthegrowth rateof themostdangerouswave thatarein goodagreement.

Viscouspotentialtheoryyields valuesfor the wave numberthat areabout2 percenthigher, and

valuesfor the growth ratethat areabout8.8 percenthigher, thanthe correspondingvaluesfrom

fully viscoustheory(JBB, table3). This shows thatthemainphysicaleffect of viscosityis on the

normalstressbalance.

Theresultsgivenin JBB carryover to viscoelasticpotentialflows aswe now show. We now

requirefor eachfluid thatthepotential1 givesthevelocitydisturbance( M ��O31 ) andsatisfiesthe

Laplaceequation O � 1J���I	 �-t%1uË%1 c �
andthepressuredisturbanceis givenby Bernoulli’sequationD L 1LBN R 4 R DF.0�+��� D Z54 O31 4 � q �%	 �-t%1uË%1¡Z��
againstthesameundisturbedstatethatwasgivenin 3.3. Thentheboundaryconditionsaregiven

by (3.3.5b,e)at thedisturbedinterfaceand(3.3.10e,f)away from theinterface.Thenormalstress
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balance(3.3.5e)is now written,using(3.4.2), asD�� L 1 5 �87LBN R T 5 �87�|� R D���. o � « D%� L 1 5 �<7LBN R T 5 �<7�|� R D%��. o ¬ ���(�`� o 	 �-t%1uË%1wt��
where TÃ�|�Zj[ �¦_��|�Ê� L hL � � L � 1L � � 1 �-t%1uË%1uËF�

Thusthesolutionsto (3.4.1)thatvanishrespectively as �+� �^� maybeexpressedash 5 �<7 �s¿ 5 �<7 ���%�´� � ����®³°´�:=b�I	{h 5 �87 �s¿ 5 �87 ���I���8� � ���K®³°��>9?�%1 �<t%1ÔËB1wvyx%	�z��
Substitutionof theseinto theboundaryconditionsusing(3.3.10b)leadsto thedispersionrelation:c � £
�C�¹£��� � � .^� � � �� � �-D�� R D%�l� � Z � �� �£ R [n�D�� R D%� 1 �-t%1uË%1w���
Without muchlossof generality, we mayput £��(�·� , £
�6� c and �£6+ [n� , sothat thedispersion

relationbecomes c � � .� � � � � �� � D�� � Z � �� �£D�� 	 �-t%1uË%1¡ ��
whichcanthenbewrittenasacubicequationfor thegrowth rate � .

It is interestingto noteherethat (3.4.7)for viscoelasticpotentialflow givesthesamegrowth

rate that is given from the dispersionrelation (3.3.15)for fully viscousflow if Á½� involved in

(3.3.15)is approximatedas ÁÅ�C� � � Æ � � R �`D���£ � � q �`D��Z � �£ 	 �-t%1uË%1w¤��
i.e.,undertheconditionthat �`D��Z � �£ - c 1 �-t%1uË%1w¶��
Thus,underthis condition,thetheoryof viscoelasticpotentialflow mayprovide a goodapproxi-

mationof thefully viscoustheory.

3.5 Comparison of the Exact and Potential Flow Analysis

Basedon thedatafor theexperimentalconditionscited in tables1 and2, the dispersionrelation

(3.3.15)is usedto calculatethestabilityconditions,andtheresultsaredepictedin figure7: 2%PO

( 798 �KZ ); figure8: 2%PO( 7:8 ��t ); andfigure9: 2%PAA ( 7:8 ��t ). In eachof thefiguresseveral
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plots of the dispersionrelation (3.3.15)are shown for a fixed (known) value of the relaxation

time andvariousassumedvaluesof the retardationtime
X � . The growth ratesarecomputedat

incrementsin thewavenumberof 200m ; � from
� �s� to thecritical value.Thedispersionrelation

(3.4.7)from viscoelasticpotentialtheorygivesrise to graphsthatarenearlyidenticalto thosein

figures7–9.

For comparisonof (3.4.7)and(3.3.15),valuesof thewavenumber
�
, wavelength< andgrowth

rate � of themostdangerouswaveareshown in table3,2%PO( 7:8 ��Z ); table4,2%PO( 798 �¦t );
andtable5, 2%PAA ( 7:8 �{t ). Theseresultsshow that the setof valuesof the growth rateand

the wavenumbergivenby the viscoelasticpotentialanalysisandthe correspondingsetof values

obtainedfrom theexactstability analysisareat thesamelevel of goodagreementasin theNew-

toniancase.The wave numberpredictedfrom viscoelasticpotentialanalysisis greaterthanthe

correspondingvaluefrom fully viscoelastictheoryby between0 and5.4%(with two exceptions);

thegrowth ratesfrom viscoelasticpotentialanalysisarebetween8.5%and9.0%higherthanpre-

dictedby fully viscoelastictheory, exceptat thesmallestvaluesof
X � .
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Figure7: Thegrowthraten versusthewavenumberk from(3.3.15)for 2% PO ( 7:8 � Z ). The

averagewavelengthandscatterfroma veryearly timein theexperimentare indicated.

19



»²¼¾½À¿[Á�Â�Ã[ÁqÄÆÅÇÃ$È�ÉËÊÍÌ ÎÏÄÑÐÓÒ ÔÖÕ�×ÙØÛÚ ÜÑÝ�Þ{ßXà

Ø
Ü²Ø²Ø$Ø$Ø
á Ø²Ø$Ø$Ø
â Ø²Ø$Ø$Ø
ã Ø²Ø$Ø$Ø

ÝyØ$Ø$Ø$Ø²Ø
ÝäÜ²Ø$Ø$Ø²Ø
Ý á Ø$Ø$Ø²Ø

Ø Ü²Ø á Ø â Ø ã Ø Ý¯Ø$Ø ÝäÜ�Ø
ØuÚ Ø²å	Ü áæ�çéèêèìë

íÏîÛïÛðòñÖó ô[õyöä÷ùøú²û
üþýuÿ��������	��
�������

�

�

����
�����
 ����
�����
� �� ! #"%$'&

(�) (+*�,�-(�) .0/2143 (�) (65�3�,

Figure8: Thegrowthraten versusthewavenumberk from(3.3.15)for 2% PO ( 787 � t ). The

averagewavelengthandscatterfroma veryearly timein theexperimentare indicated.
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Fully Viscoelastic Viscoelasticpotential PercentdifferenceX � [1/sec]
�
[m ; � ] < [mm] � [1/sec]

�
[m ; � ] < [mm] � [1/sec]

� �X �ÈÇ�v 600 10.472 6331.7 800 7.8539 6870.9 33.3 8.5X �ÈÇy¤ 1000 6.2832 7425.1 1000 6.2832 8077.7 0 8.8X �ÉÇ c � 1000 6.2832 7991.5 1200 5.2359 8684.8 20.0 8.2X �ÉÇ�Zj� 1800 3.4907 10061.5 1800 3.4907 10945.9 0 8.8X �ÉÇ c �y� 4800 1.3090 17000.0 5000 1.2566 18489.8 4.2 8.8X �ÈÇ c ���y� 15000 0.4189 32238.7 15800 0.3977 34849.6 5.3 8.1X �ÉÇ c ���y��� 22400 0.2805 43036.2 23600 0.2662 45074.9 5.4 4.7� 24200 0.2596 45697.3 25000 0.2513 47119.7 3.3 3.1

Table 3: 2% PO ( 7:8 � Z ). Valuesof the wavenumberk, wavelength< and growth rate n of

themostdangerouswavefor theexperimentalconditionsgivenin tables1 and2; theretardation

time
X � is changedagainsttherelaxationtime

X � . Thevaluesof k andn predictedby viscoelastic

potentialtheoryare higher thanthecorrepsondingfully viscoelasticpredictions.Thedifferences

are indicatedasa percentageof thefully viscoelasticvalues.
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Fully Viscoelastic Viscoelasticpotential PercentdifferenceX � [1/sec]
�
[m ; � ] < [mm] � [1/sec]

�
[m ; � ] < [mm] � [1/sec]

� �X �ÈÇ�v 1200 5.2359 17925.3 1200 5.2359 19496.0 0 8.8X �ÈÇy¤ 1600 3.9269 20968.4 1600 3.9269 22801.0 0 8.7X �ÉÇ c � 1800 3.4907 22584.4 1800 3.4907 24549.0 0 8.7X �ÉÇ�Zj� 3000 2.0944 28424.1 3000 2.0944 30915.1 0 8.8X �ÉÇ c �y� 8200 0.7662 48320.5 8400 0.7480 52541.6 2.4 8.7X �ÈÇ c ���y� 29200 0.2152 96037.0 30600 0.2053 103960 4.8 8.2X �ÉÇ c ���y��� 49400 0.1272 138925 51600 0.1218 145138 4.5 4.4� 55600 0.1130 152570 56600 0.1110 155111 1.8 1.7

Table 4: 2% PO ( 7:8 � t ). Valuesof the wavenumberk, wavelength< and growth rate n of

themostdangerouswavefor theexperimentalconditionsgivenin tables1 and2; theretardation

time
X � is changedagainsttherelaxationtime

X � . Thevaluesof k andn predictedby viscoelastic

potentialtheoryare higher thanthecorrepsondingfully viscoelasticpredictions.Thedifferences

are indicatedasa percentageof thefully viscoelasticvalues.
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Fully Viscoelastic Viscoelasticpotential PercentdifferenceX � [1/sec]
�
[m ; � ] < [mm] � [1/sec]

�
[m ; � ] < [mm] � [1/sec]

� �X �ÈÇ�v 11200 0.5610 49081.4 11400 0.5512 53350.0 1.8 8.7X �ÈÇy¤ 14800 0.4245 57009.4 15200 0.4134 61948.0 2.7 8.7X �ÉÇ c � 17000 0.3696 61112.1 17400 0.3611 66389.7 2.4 8.6X �ÉÇ�Zj� 24400 0.2575 75051.4 25400 0.2474 81393.6 4.1 8.5X �ÉÇ c �y� 43200 0.1454 108441 45400 0.1384 115536 5.1 6.5X �ÈÇ c ���y� 56400 0.1114 133671 57800 0.1087 136333 2.5 2.0X �ÉÇ c ���y��� 59000 0.1065 138403 59400 0.1058 139290 0.7 0.6� 59400 0.1058 139007 59800 0.1051 139633 0.7 0.5

Table5: 2% PAA ( 7:8 � t ). Valuesof the wavenumberk, wavelength< and growth rate n of

themostdangerouswavefor theexperimentalconditionsgivenin tables1 and2; theretardation

time
X � is changedagainsttherelaxationtime

X � . Thevaluesof k andn predictedby viscoelastic

potentialtheoryare higher thanthecorrepsondingfully viscoelasticpredictions.Thedifferences

are indicatedasa percentageof thefully viscoelasticvalues.
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3.6 The effect of acceleration on instability

The value of the acceleration V� is a major factor in Rayleigh-Taylor instability. The

wavelength of the most rapidly growing disturbance decreases and the growth rate increases

strongly as the acceleration V� is increased (figure 8). The discussion of acceleration given in

section 3.2 suggests that the force producing acceleration at early times is the pressure difference

across the drop measured basically by the dynamic pressure. The breakup of a drop even at high

speed may be very retarded or even suppressed when the air density is small, as at high altitudes.

The analysis suggests also that the acceleration does not depend strongly on the rheology of the

drop even though rheology affects the growth rate strongly.

2% Aqueous Poly Ox l1 = 0.21 sec l 2 = l   (3.3E-4)
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Figure 10.  The effect of acceleration on the dispersion relation for 2% PO.

4 Comparison of theory and experiment

We now compare the Rayleigh-Taylor stability theory with experiments on drop breakup for

the three viscoelastic cases discussed in section 2. For comparison, we repeat results from JBB

for a 1.0 kg/m.sec silicone oil whose viscosity nearly matches the 0.96 kg/m.sec polyacrylamide.
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Figure 11, taken from JBB, shows the waves on drops of this Newtonian liquid at very early

times in the motion at shock Mach numbers of 2 and 3.

Silicone Oil 1000
Ms = 2 Ms = 3

  

Figure 11.  Rayleigh-Taylor waves in silicone oil (1 kg/m.sec). (From Joseph, Belanger, and
Beavers 1999. )

The waves on both the polyox and polyacrylamide were smaller and more difficult to

identify than the waves on the Newtonian liquids presented in JBB. For example, the measured

average wavelengths for the 1.0 kg/m.sec silicone oil (Figure 11) are about 2.0 mm and 1.25 mm

for shock Mach numbers of 2 and 3 respectively, while the corresponding values for the 2%

polyox solution are 0.39 mm and 0.20 mm. In an attempt to identify the waves more clearly on

the computer screen Adobe Photoshop™ was used to exaggerate the contrast. We then measured

the lengths of the waves by first locating the troughs across the front of the drop on the computer

screen, and then measuring the distance between troughs in pixels which were finally converted

to millimeters using a predetermined scaling factor for each frame. The enhanced contrast images

are shown in figure 12 for the 2% aqueous polyox and figure 13 for the 2% polyacrylamide. The

tick marks identify the wave troughs. Like the Newtonian liquids in JBB, the troughs are easier to

predicted
wavelength
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2% PolyOx
Ms = 2 Ms = 3

Figure 12.  Rayleigh-Taylor waves in 2% aqueous polyox.

PAA Ms = 3
Short WavelengthLong Wavelength

Figure 13.  Rayleigh-Taylor waves in 2% aqueous polyocrylamide.
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identify on the computer screen than in a printed figure. The length of the waves increases with

time because the waves are ultimately forced apart by high pressures in the wave troughs; from

this it follows that the length of unstable waves should be measured at the earliest times.

 

Polyacrylamide Silicone Oil

2% PolyOx Silicone Oil

Figure 14.  Droplet configurations for 2% PAA, 2% PO, and two different silicone oils at 170
µsecs after passing of the shock over the drop under the same conditions (Ms = 3). The
top pair of photographs compares PAA with a silicone oil of approximately the same
viscosity (1 kg/m.sec). The bottom pair compares 2% PO (viscosity = 35 kg/m.sec) with a
silicone oil that has a viscosity of about one-third that of the PO (10 kg/m.sec).

There is some uncertainty in the measurements of the wavelengths from the 2% PAA picture

because there appeared to be two sets of waves, a distinct set of waves with an average

wavelength of 0.70 mm with a second set of smaller waves superimposed on the larger waves.

The wavelengths of the smaller waves were very irregular, with values between approximately
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0.05 mm and 0.24 mm. Smaller, but less distinct, waves could also be identified over parts of the

front face of the polyox drops.

On figures 7—9 we graph dispersion relations corresponding to measured data given in

tables 1 and 2. The retardation time λ2 is a fitting parameter. The dispersion graphs are sensitive

to values of λ2 as is shown in figures 7—9, where for each figure values for λ2 have been chosen

to yield curves such that the wavelengths of maximum growth are close to the interval of

instability defined from the experiments, which is also included on the figures. From these we

may estimate a λ2 which centers the wavelength of maximum growth in the interval of

instability. The estimated values of λ2 needed to achieve agreement are uniformly small ranging

from λ2 ≈ λ1 /5000 for 2% aqueous polyox at Ms = 2 to λ2  ≈ λ1 /100 for 2% aqueous PAA at

Ms = 3.  The retardation time measuring viscous response has been interpreted as representing the

effect of relaxed elastic modes (see Joseph [1990], chapter 18). Its value may change from zero,

say for disturbances of duration 10-13 sec, to one for very long disturbances in which the viscosity

is given by the area under the relaxation curve representing the decay of the shear modulus. The

small value of the retardation time which matches theory and experiment reported here is just

what might be expected in such an explosive and short time (10-50µs) event as produces

Rayleigh-Taylor waves on drops suddenly exposed to a high speed airstream.

In the previous paragraph we have argued that λ2 is not given once and for all but depends at

least on some conditions of external excitation and that Rayleigh-Taylor disturbances are so fast

that the response of the drops is highly elastic (small values of λ2).

Following the approach adopted in JBB we arbitrarily defined a ‘breakup’ time as the time

bt̂  taken for the initial amplitude Ao of an unstable disturbance A(t) = Aoent to grow to M times its

initial value:

M    ,
n

t

e
A
tAM

b

nt

o

b b

ln1ˆ

)ˆ(

=

==

(4.1)

which implies that higher growth rates n lead to faster breakup. The values for n given in table 4

suggest that for a fixed shock Mach number, the viscoelastic liquids appear to start to ‘breakup’



30 DDJ/1999/proposals/RT-Instability-pt4

faster than purely viscous liquids of about the same viscosity. This effect is illustrated in figure

14 which shows the configuration of drops of the test liquids at a time of 170 µsecs from the

passing of the shock wave over the drop under the same experimental conditions (Ms = 3.0). The

top two figures compare 2% PAA with SO 1000 silicone oil (viscosities close to 1 kg/m.sec).

The PAA drop has broken up completely at this stage, whereas part of the original silicone drop

can still be identified. At higher viscosities the difference in breakup is more pronounced, as

shown in the lower two photographs. The 2% PO is completely broken up whereas the silicone

oil remains as a distorted drop. This faster start to breakup of the viscoelastic liquids compared

with the purely viscous liquid is also evident by comparison of the times listed in table 6 for

liquid to begin to 'blow off' at the equator of the drop.

Liquid Shock Mach
No.

Approx. n
(1/sec)

Time for
A = 10 Ao

(µµµµsec)

Experimental blow-
off time (µsec)

SO 1000 3 48769 47 40

2% PO 3 90,000 25 30

2% PO 2 38,000 60 50

2% PAA 3 35

Short 110,000 20

Long 75,000 30

Table 6. Comparison of measured breakup times (defined as the time at which liquid first starts
to ‘blow-off’ the perimeter of the drop) with predicted times calculated from equation
(4.1) with M = 10 and using values of n from the fully viscoelastic analysis.

Conclusions

We compare the breakup of two viscoelastic liquids with the breakup of a purely viscous

liquid of about the same viscosity under the same experimental conditions using a high-speed

rotating drum camera. As described in JBB, bag-and-stamen in bag breakup occurs routinely at

Weber numbers of 0 (104 − 105) in the higher viscosity drops and even in viscoelastic drops

showing that the presently accepted classification of breakup events, based mainly on water, does

not hold generally. The early events of breakup (< 100µs), flattening, and the accumulation of

fluid driven away from the stagnation points, followed by fingering are universal and apply
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equally to low and high viscosity fluids and to viscoelastic fluids. At later times the drop

fragments in viscoelastic fluid are much more stringy than in Newtonian fluids of comparable

viscosity. This confirms that the stringiness of drop fragments persists in high speed, high Weber

number flows. The movies generate time-displacement data from which accelerations of the drop

may be computed in these experiments. The accelerations were 104−105 times the acceleration of

gravity, putting the drops at risk to Rayleigh-Taylor instabilities. The Rayleigh-Taylor

instabilities were computed with an exact viscous theory and with a simplified theory based on

viscous potential flow. It is assumed that the most dangerous wave is the one whose length gives

the maximum growth rate. The simplified viscoelastic potential theory gives the critical wave

length and growth rate within less than 10 percent of the exact theory. The border of instability to

Rayleigh-Taylor fingers is given by a critical wave number, with stability only when

γ
ρakk c =>  ,

independent of viscous and viscoelastic parameters.
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