ı		
2003 Submitted: Int. J. Multiphase Flow Editor:	Power Law and Composite Power Law friction factor correction for laminar and turbulent gas-liquid flow in horizontal pipelines F. Garcia, R. Garcia, J.C. Padrino, C. Mata, J.L. Trallero, D.D. Joseph	Record Place: 315
Vol: Issue: Pages: Accepted	Keywords: Abstract: Directory: Note:	
2003	Rise Velocity of Spherical Cap Bubble	Record Place:
Submitted:	D.D. Joseph	314
J. Fluid Mech.	Keywords:	
Editor:	Abstract:	
Vol: 488 Issue:	Directory:	
Pages: 213-223	Note:	n 1
2003	Universal correlation for the rise velocity of long gas bubbles in	Record Place:
Submitted: 2002	round pipes	313
J. Fluid Mech.	F. Viana, R. Pardo, R. Ya'nez, J. L. Trallero, D.D. Joseph	
Editor: Vol: Issue:	Keywords:	
Pages: Accepted	Abstract: We collected all of the published data we could find on the rise velocity of Taylor bubbles in stagnant fluids. Data from 255 experiments from the literature and 7 new experiments collected at PDVSA Intevep for fluids with viscosities ranging from 1 mPas up to 3900 mPas were assembled on spread sheets and processed in log-log plots of the normalized rise velocity, Fr =U/(gD)1/2 Froude velocity vs. Reynolds number, R = (D3g (rho_1 - rho_g) rho_1)1/2/mu for fixed ranges of the Eo"tvo"s number, Eo" = g rho_1 D2/sigma where D is the pipe diameter, rho_1, rho_g and sigma are densities and surface tension. The plots give rise to power laws in Eo"; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small Reynolds. Directory: archive/Intevep/2002/papers/TaylorBubbles/UnivCorrelation2 (with Appendix)	
2002		Record
2003 Submitted:	Particle-Laden Tubeless Siphon	Place:
J. Fluid Mech.	J Wang, D.D. Joseph Keywords:	312
Editor:	Abstract:	
Vol: 480 Issue:	Directory:	
Pages: 119-128	Note:	
2003	Viscous Potential Flow	Record Place:
Submitted:	D.D. Joseph	311
J. Fluid Mech.	Keywords:	
Editor:	Abstract:	
Vol: 479 Issue:	Directory:	
Pages: 191-197	Note:	ъ .
2003	The lattice Boltzmann equation method: theoretical interpretation,	Record Place:
Submitted: 2000	numerics and implications	310
Int. J. Multiphase Flow Editor:	R.R. Nourgaliev, T.G. Theofanous, D.D. Joseph	
Vol: 29 Issue: 1	Keywords:	
Pages: 117-169	Abstract: The Lattice Boltzmann Equation (LBE) method is reviewed and analyzed. The	
1 4505. 111	focus is on the fundamental principles of the approach; its 'pros' and 'cons' in comparison to other methods of the computational uid dynamics (CFD); and its perspectives as a	
	competitive alternative computational approach for uid dynamics	
	Directory: archive/DDJ/2001/papers/LBEmethod/csamp	
	Note:	
2003	Distributed Lagrange multiplier method for particulate flows with	Record
Submitted: 2000	collisions	Place: 309
Int. J. Multiphase Flow	P. Singh, T.I. Hesla, D.D. Joseph	
Editor:	Keywords:	
Vol: 29 Issue: 3 Pages: 495-509	Abstract: A modified distributed Lagrange multiplier/fictitious domain method (DLM) that allows particles to undergo collisions is developed for particulate flows. In the earlier versions of the DLM method for Newtonian and viscoelastic liquids described in Directory: /archive/DDJ/2001/papers/modDLM-collisions/ManuscriptNote: Singh at Dept Mech. Engrg, New Jersey Inst. Tech. Newark, NJ	
January 2003		Record
Submitted: 2002	Bi-power law correlations for sedimentation transport in pressure	Place: 308
DUDIIIIICU. 2002		306

		,
Int. J. Multiphase Flow Editor: Vol: 29 Issue: 3 Pages: 495-509	driven channel flows J. Wang, D.D. Joseph, N.A. Patankar, M. Conway and B. Barree Keywords: New data from slot experiments for fractured reservoir were collected Those correlations can be used as predictive tools in the fracturing industry but they are in implicit form. In this paper we find correlations for bed load transport of slurries as a composition of bi-power laws in the proppant and fluid Reynolds number with exponents and prefactors expressed as logarithmic functions of dimensionless sedimentation numbers Abstract: Directory: archive/DDJ/2002/papers/bi-powerCorr/Bi-Pwr-transport Note:	
2003 Submitted: Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich Editor: Jerrold E. Marsden, L. Sirovich, Katepalli R. Sreenivasan, eds, Springer-Verlag Vol: Issue: Pages:	A Maxwell memory model for delayed weather response to solar heating D.D. Joseph, K.R. Sreenivasan Keywords: Abstract: A linear Maxwell-type viscoelastic model, relating seasonal variations of temperature at any given place on the Earth to variations in the length of the day, is proposed. Comparison with observations shows excellent agreement for midlatitudes, and the Directory: 95_7 Note:	Record Place: 307
2003 Submitted: 2002 J. Non-Newtonian Fluids Editor: Vol: 111 Issue: Pages: 87-105	Viscoelastic Potential Flow Analysis of Capillary Instability T. Funada, D.D. Joseph. Keywords: Abstract: Analysis of the linear theory of capillary instability of threads of Maxwell fluids of diameter D is carried out for the unapproximated normal mode solution and for a solution based on viscoelastic potential flow. The analysis here extends the analysis of viscous potential flow [Int. J. Multiphase Flow 28 (2002) 1459] to viscoelastic fluids of Maxwell type. The analysis Directory: Note: © Elsevier Science B.V. NEED TO SCAN IN	Place: 306
2002 Submitted: Editor: Vol: Issue: http://www.efluids.com/efluids/books/joseph.ht m Pages:	Interrogations of Direct Numerical Simulation of Solid-Liquid Flow D.D. Joseph Keywords: Abstract: In direct simulation the fluid motion is resolved numerically and the forces which move the particles are computed rather than modeled. This procedure opens new windows for understanding and modeling. Numerical methods are discussed based on body fitted moving unstructured grids and another on a fixed grid in which the portions of the Directory: http://www.efluids.com/efluids/books/joseph.htm Note:	Record Place: 305
2002 Submitted: 2001 Proceedings of the 14 th International Conf. on Domain Decomposition Methods, Mexico (January). Editor: Vol: Issue: Pages:	Direct Simulation of the motion of settling ellipsoids in Newtonian fluid TW. Pan, R. Glowinski, D.D. Joseph, R. Bai. Keywords: Abstract: Directory: Note:	Record Place: 304
2002 Submitted: 2002 Int. J. Multiphase Flow Editor: Vol: Issue: Pages: accepted	Modeling Foamy Oil Flow in Porous Media II: Nonlinear Relaxation Time Model of Nucleation D.D. Joseph, A. Kamp, T. Ko, R. Bai Keywords: Abstract: In a previous communication (Jospeh, Kamp and Bai 2002, hereafter called Part I) we presented a model of the flow of foamy oil in porous media in situations in which the bubbles do not coalesce to produce the percolation of free gas so that the gas moves	Record Place: 303

2002 Submitted: 2001 Int. J. Multiphase Flow Editor: Vol:28 Issue:10 Pages: 1659-1686	with the oil as it evolves. A central role in that theory is an equation of state, called the solubility isotherm, Directory: archive/Intevep/2002/papers/FoamyOil-II/nucleation Note: Modeling Foamy Oil Flow in Porous Media D.D. Joseph, A. Kamp, R. Bai Keywords: Abstract: Certain heavy oils which foam under severe depressurization give rise to increased recovery factor and an increased rate of production under solution gas drive. These oils not only stabilize foam, but also stabilize dispersion of gas bubbles at lower Directory: archive/Intevep/2001/papers/foamy-oils_01/foamyOils3 Note: revision of paper pubd by IMA, see Intevep/2000/papers/foamy-oils2/	Record Place: 302
Submitted: 2001 Int. J. Multiphase Flow Editor: Vol:28 Issue: 8 Pages: 1249-1268	Stability of stratified gas-liquid flows C. Mata, E. Pereyra, J. L. Tallero, and D.D. Joseph Keywords: Abstract: We have computed stability limits for Kelvin Helmholtz instability of superposed gas-liquid flow, comparing theories of Taitel and Dukler (1976), Lin and Hanratty (1986), Barnea and Taitel (1993) and Funada and Joseph (2001). The theories are compared with literature data on air-water flow and with new data from a 0.0508 m I.D. flow loop at PDSVA-Intevep, using a 0.480 Pa.s oil and air. Directory: archive/Intevep/2001/papers/StratifiedFlow/KHandothers.doc. Note:	Record Place: 301
2002 Submitted: Int. J. Multiphase Flow Editor: Vol:28 Issue: 9 Pages: 1459-1478	Viscous potential flow analysis of capillary instability T. Funada, D.D. Joseph Keywords: Abstract: Capillary instability of a viscous fluid cylinder of diameter D surrounded by another liquid is determined by a Reynolds number J=V D rho_l/mu_l, a viscosity ratio m=mu_a/mu_l and a density ratio l=rho_a/rho_l. Here V=gamma/mu_l is the capillary collapse velocity based on the more viscous liquid Directory: archive/DDJ/2001/papers/Capillary/C-InstabSh.tex Note:	Record Place: 300
Submitted: 2000 IMA Volumes in Mathematics and its Applications, Volume 131: Resource Recovery, Confinement, and Remediation of Environmental Hazards Editor: J. Chadam, A. Cunningham, R.E. Ewing, P. Ortoleva, M. Wheeler, Springer-Verlag Vol: Issue: Pages: 81-113	Foamy Oil Flow in Porous Media D.D. Joseph, A.M. Kamp, R. Bai Keywords: Abstract: Certain heavy oils which foam under severe depressurization give rise to increased recovery factor and an increased rate of production under solution gas drive. These oils not only stabilize foam, but also stabilize dispersion of gas bubbles at lower volu Directory: REVISED in 2000/papers/foamy-oils2/foamyOils2, archive/Intevep/1999/papers/FoamyOilsLTX/ Note: M Huerta was co-author in earlier version submitted to JFM	Record Place: 299
August 2002 Submitted: 2001 Int. J. Multiphase Flow Editor: Vol: 28 Issue: 8 Pages: 1269-1292	Power law correlations for sediment transport in pressure driven channel flows N.A. Patankar, D.D. Joseph, J. Wang, R. Barree, M. Conway, M. Asadi Keywords: Abstract: Lift forces acting on particles play a central role in many cases, such as sediment transport, proppant transport in fractured reservoirs, removal of drill cuttings in horizontal drill holes and cleaning of particles from surfaces. We study the problem of lift using 2D direct numerical simulations and experimental data. Directory: archive/DDJ/2001/papers/P-LawSediment/expt_corr_pap.doc Note:	Record Place: 298
2002 Submitted: 2002 Int. J. Multiphase Flow Editor: Vol: 28 Issue:7	Finite element method simulation of turbulent wavy core-annular using a k-\omega turbulence model method T. Ko, H. G. Choi, R. Bai, D.D. Joseph Keywords: Abstract: A numerical simulation of wavy core flow was carried out by Bai, Kelkar and	Record Place: 297

Pages: 1205-1222	Joseph. (1996) In our present simulation, the SST (shear stress transport) turbulence model is used to solve the turbulent kinetic energy and dissipation rate equations and a splitting method is used to solve Navier-Stokes equations for the wave shape, pressure gradient and the profiles of velocity and pressure in turbulent wavy core flows. *Directory:archive/DDJ/2002/papers/Ko-FiniteTurbulent/Final_turb_paper_small.doc Notes:	
2002 Submitted: 2001 J. Fluid Mech. Editor: Vol: 454 Issue: Pages: 263-286	Slip velocity and lift D.D. Joseph, D. Ocando Keywords: Abstract: The lift force on a circular particle in plane Poiseuille flow perpendicular to gravity is studied by direct numerical simulation. The angular slip velocity Omega_s=gamma/2-Omega_p, where gamma/2 is the angular velocity of the fluid at a point where the	Record Place: 296
	Directory: archive/DDJ/2000/papers/SlipVelocity/SV-Lift-REV.doc Note: PY Huang was co-author, dropped in revised versions.	Dogged
2002 Submitted: 2001 J. Fluid Mech. Editor: Vol: 451 Issue: Pages: 169-191	Fluidization of 1204 spheres: simulation and experiment T.W. Pan, D.D. Joseph, R. Bai, R. Glowinski, V. Sarin Keywords: Abstract: In this paper we study the fluidization of 1204 spheres at Reynolds numbers in the thousands using the method of distributed Lagrange multipliers. The results of the simulation are compared with a real experiment. Directory: archive/DDJ/2001/papers/Fluidization1204/sim-experiment.doc Note:	Record Place: 295
2002 Submitted: 2000 J. Fluid Mech. Editor: Vol: 453 Issue: Pages: 109-132	Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers D.D. Joseph, G.S. Beavers, T. Funada Keywords: Abstract: Movies of the breakup of viscous and viscoelastic drops in the high-speed airstream behind a shock wave in a shock tube have been reported by Joseph, Belanger and Beavers 1999. A Rayleigh-Taylor stability analysis for the initial breakup of a drop of Newt Directory: archive/DDJ/1999/papers/RT_Instability/RTI_We2001 Note: Toshio Funada at Numazu College of Technology, Ooka 3600, Namazu, Shigouka, Japan	Record Place: 294
2001 Submitted: 2001 Math Models Methods Appl. Sci. Editor: Vol: 12 Issue: 11 Pages: 1653-1690	Orientation of symmetric bodies falling in a second-order liquid at nonzero Reynolds number G.P. Galdi, M. Pokorny, A. Vaidya, D.D. Joseph, J. Feng Keywords: sedimentation, orientation, second-order fluid, torque, tilt angle Abstract: We study the steady translational fall of a homogeneous body of revolution around an axis a, with fore-and-aft symmetry, in a second-order liquid at nonzero Reynolds (Re) and Weissenberg (We) numbers. We show that, at first order in these parameters, only Directory: archive/DDJ/2001/papers/Galdi/nonzeroRe.pdf Note: Giovanni Paolo Galdi is corsp author. Galdi and Vaidya at Dept Mech. engrg, Univ. Pittsburgh, PA. Pokorny at Palacky Univ., Dept of Mathematical Analysis and Num Math. Olomouc, 772000, Czech Republic. Feng at CUNY City College, Levich Inst. NY, NY.	Record Place: 293
2001 Submitted: Proc. of Caribbean congress of Fluid Mechanics (LACAFLUM 2001) Editor: Vol: Issue: Pages:	Lift correlations from direct numerical simulation of solid-liquid flow D.D. Joseph Keywords: Abstract: Lift forces acting on a fluidized particle plays a central role in many important applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surf Directory: archive/DDJ/2001/papers/LiftCorrelations/LACAFLUM.doc Note:	Record Place: 292
2001 Submitted: 2000 Colloids and Surfaces A, Physicochemical and Engineering Aspects Editor: Vol: 180 Issue:1-2	Adsorption of Intan-100 at the Bitumen/Aqueous Solution Interface Studied by Spinning Drop Tensiometry M. Di Lorenzo, H.T.M. Vinagre, D.D. Joseph Keywords: Abstract: We present an experimental study on the adsorption behaviour of Intan-100, a non-ionic surfactant, at the bitumen/water interface when the density difference between the two phases is increased by diluting the crude oil with 10% Xylene by weight or using Directory: archive/DDJ/2000/papers/adsorption-Intan-100/adsorption	Record Place: 291

Pages: 121-130	Note:	
2001	Fluidization by lift of 300 circular particles in plane Poiseuille flow by	Record Place:
Submitted: 2000	direct numerical simulation	290
J. Fluid Mech.	H.G. Choi, D.D. Joseph	
Editor: Vol: 438 Issue:	Keywords:	
Pages: 101-128	Abstract: We study the transport of a slurry of heavier than liquid circular particles in a plane pressure driven flow in a direct simulation. The flow is calculated in a	
8	prince pressure driven now in a direct simulation. The now is calculated in a periodic domain.	
	Directory: archive/DDJ/2000/papers/300particles-A.doc + -B.doc (2 parts)	
	Note:	
2001	A correlation for the lift-off of many particles in plane Poiseuille	Record Place:
Submitted: 2001 J. Fluid Mech.	flows of Newtonian fluids	289
Editor:	N.A. Patankar, T. Ko, H.G. Choi, D.D. Joseph	
Vol: 445 Issue:	Keywords: Abstract: Choi & Joseph (2000) reported a two-dimensional numerical investigation We	
Pages: 55-76	perform similar simulations. Particles heavier than the fluid are initially placed in a	
	closely packed ordered configuration at the bottom of a periodic channel.	
	Directory: archive/DDJ/2000/papers/300part-lift/300_part_lift.doc	
0004	Note: Pub Ref: FM11-454	Record
2001 Submitted: 2000	Lift-off of a single particle in Newtonian and viscoelastic fluids by	Place:
J. Fluid Mech.	direct numerical simulation N.A. Patankar, P.Y. Huang, T. Ko, D.D. Joseph	200
Editor:	Keywords:	
Vol: 438 Issue:	Abstract: In this paper we study the lift-off to equilibrium of a single circular particle in	
Pages: 67-100	Newtonian and viscoelastic fluids by direct numerical simulation. A particle heavier than	
	the fluid is driven forward on the bottom of a channel by a plane Poiseuille flow	
	Directory: archive/DDJ/1999/papers/singleParticle/SinglePart-Lift.pdf Note: Reply to comments by Reviewers for Lift-off of a single particle by Patankar,	
	Huang, Ko and Joseph. /archive/DDJ/1999/papers/singleParticle/SinglePart_Rev.pdf.	
2001	Lift-off of a single particle in an Oldroyd-B fluid	Record Place:
Submitted:	T. Ko, N.A. Patankar, D.D. Joseph	287
Phys. Fluids Editor:	Keywords:	
Vol: Issue:	Abstract: In this note we study the lift force on a circular particle near a wall in a plane Poiseuille flow of an Oldroyd-B fluid. Two-dimensional numerical simulations are	
Pages: Submitted	performed.	
	Directory: archive/DDJ/2000/papers/note-lift-off/VE-single-lift.doc	
	Note:	Record
2001 Submitted: 2000	Modeling and numerical simulation of particulate flows by the	Place: 286
Int. J. Multiphase Flow	Eulerian-Lagrangian approach N.A. Patankar, D.D. Joseph	200
Editor:	Keywords:	
Vol: 27 Issue: 10	Abstract: In this paper we present an Eulerian-Lagrangian numerical simulation (LNS)	
Pages: 1659-1684	scheme for particulate flows. The overall algorithm in the present approach is a variation	
	of the scheme presented earlier by N. Patankar and Joseph (1999). In this numerical scheme	
	Directory: archive/DDJ/2001/papers/ModelingE-L/MOD_pap.doc and MOD_figs.pdf	
	Note: Prev title: Modeling and numerical simulation of particulate flows by the Eulerian-	
	Lagrangian TECHNIQUE. ISSN 0301-9322	
Oct 2001	Lagrangian numerical simulation of particulate flows	Record Place:
Submitted: 2000 Int. J. Multiphase Flow	N.A. Patankar, D.D. Joseph Keywords:	285
Editor:	Abstract: The Lagrangian numerical simulation (LNS) scheme presented in this	
Vol: 27 Issue: 10	Directory: archive/DDJ/2001/papers/LagrangianNS/LNS_pap.doc	
Pages: 1685-1706	Note	D.
Oct 2001	Viscous potential flow analysis of Kelvin-Helmholtz instability in a	Record Place:
Submitted: 2000 J. Fluid Mech.	channel	284
Editor:	T. Funada, D.D. Joseph	
Vol: 445 Issue:	Keywords: Abstract: We study the stability of stratified gas-liquid flow in a horizontal rectangular	
Pages: 263-283	channel using viscous potential flow. The analysis leads to an explicit dispersion relation	
	in which the effects of surface tension and viscosity on the normal stress are not	
	Directory: archive/DDJ/2000/papers/KHinstable/khinstabl (long version)	

	khinstabL (pub'd version) Note:	
2001 Submitted: 1999 J. Fluid Mech. Editor:	Modeling Rayleigh-Taylor instability of a sedimenting suspension of several thousand circular particles in direct numerical simulation T.W. Pan, D.D. Joseph, R. Glowinski Keywords:	Record Place: 283
Vol: 434 Issue: Pages: 23-37	Abstract: In this paper we study the sedimentation of several thousand circular particles in 2D using the method of distributed Lagrange multipliers for solid-liquid flow. The simulation gives rise to	
	Directory: /archive/DDJ/2000/papers/RTI-severalThou/RTI-thou [DDJ/1999/papers/ModelingRTI_DNS/] Note: first title: Modeling Rayleigh-Taylor instability of a sedimenting suspension arising in direct numerical simulation (1999, Glowinski, Pan, Joseph)	
2001	A fictitious domain approach to the direct numerical simulation of	Record Place:
Submitted: 1999	incompressible viscous flow past moving rigid bodies: Application to	282
J. Comput. Phys. Editor:	particulate flow	
Vol. 169 Issue:	R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux	
Pages: 363-426	Keywords: fictitious domain methods, finite element methods, distributed Lagrange multipliers, Navier-Stokes equations, particulate flow, liquid-solid mixtures, store	
	separation, sedimentation, fluidization, Rayleigh-Taylor instabilities	
	Abstract: In this article we discuss a methodology allowing the direct numerical simulation of incompressible viscous fluid flow past moving rigid bodies. The simulation methods rest essentially on the combination of: 1)Lagrange multiplier based FDM 2) finite eleme	
	Directory: JCompPhys.01.169.FDAprchAplctn.pdf (contact Glowinski or Pan.) Note: Glowinski or Pan is corresponding author.	
2001	Flow and stress induced cavitation in a journal bearing with axial	Record Place:
Submitted: J. Tribology	throughput	281
Editor:	A. Pereia, G. McGrath, D.D. Joseph Keywords:	
Vol: 123 Issue: Pages: 742-754	Abstract: The problem of predicting flow between rotating eccentric cylinders with axial throughput is studied. The system models a device used to test the stability of emulsions against changes in drop size distribution. The analysis looks for the major variation Directory: archive/Intevep/2000/papers/FlowstressRev/FlowstrsRev Note: Prev title: Simulation of Flow and stress fields for rotating eccentric cylinders with	
	axial throughput. Armando Pereira with AEM, later with PDVSA Intevep SA, VZ. G. McGrath with PDVSA Intevep SA, VZ.	
2000	Fictitious domain methods for particulate flow in two and three	Record Place:
Submitted: The Mathematics of	dimensions	280
Finite Elements and	R. Glowinski, T.W. Pan, D.D. Joseph Keywords:	
Applications X Editor: J.R. Whiteman,	Abstract: In this article we discuss a methodology allowing the direct numerical simulation of the flow of mixtures of rigid solid particles and incompressible viscous	
ed., Elsevier,	fluids, possibly non-Newtonian. The simulation methods rest essentially on the	
Amsterdam, Vol: Issue:	combination of	
Pages: 1-28	Directory: archive/DDJ/1999/papers/ MAFELAP99.FDM_in2-3D Note: Fourth Zienkiewicz Lecture, presented by Prof Glowinski	
2000	Rotating cylinder drag balance with application to riblets	Record Place:
Submitted: 1999 Experiments in Fluids	T. Hall, D.D. Joseph Keywords:	279
Editor: Vol: 29 Issue: 3	Abstract: Experimental results are reported and discussed for a rotating cylinder drag	
Pages: 215-227	balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, Directory: archive/DDJ/2000/papers/ExpFluids00.29.3.215.pdf Note: Tim Hall at AEM. (c) Springer-Verlag	
2000	A distributed Lagrange multiplier/fictitious domain method for	Record Place:
Submitted: 1999	viscoelastic particulate flows	278
J. Non-Newtonian Fluid Mech. Editor:	P. Singh, D.D. Joseph, T.I. Hesla, R. Glowinski, T.W. Pan Keywords: distributed Lagrange multiplier/fictitious domain method, Oldroyde-B fluid,	
Vol: 91 Issue: Pages: 165-188	viscoelastic particulate flows Abstract: A distributed Lagrange multiplier/fictitious domain method (DLM) is developed for simulating the motion of rigid particles suspended in the Oldroyd-B fluid. This method	

	is a generalization of the one described in [IJMF 1998, 25, 755-794] where the motion <i>Directory:</i> archive/DDJ/2000/papers/DLM-ParticulateFlows/DLM-viscoelastic <i>Note:</i> Corresponding author either Singh or Pan.	
2000	Sedimentation of a sphere near a wall in an Oldroyd-B fluid	Record Place:
Submitted: J. Non-Newtonian	P. Singh, D.D. Joseph Keywords:	277
Fluid Mech.	Abstract: A code based on the distributed Lagrange multiplier/fictitious domain method	
Editor: Vol: 94 Issue: 2-3	(DLM) is used to study the motion of a sphere sedimenting in a viscoelastic liquid near a	
Pages: 179-203	vertical wall. The viscoelastic liquid is assumed to be shear thinning and modeled by a shear-thinning Oldroyd-B model. Our simulations show that when the Deborah number	
	based on the sphere velocity is O(1) and its initial position is sufficiently close to the wall,	
	it moves towards the wall. Directory: archive/DDJ/2000/papers/spheresVertWall/sedimentation	
	Note: Also Univ. MN Supercomputing IRR 2000/90, May 2000.	
2000	High temperature interfacial tension measurements of PA6/PP	Record Place:
Submitted: 1999 Polymer	interfaces compatibilized with copolymers using a spinning drop	276
Editor:	tensiometer C. Verdier, H.T.M. Vinagre, M. Piau, D.D. Joseph	
Vol: 41 Issue:17	Keywords: interfacial tension, copolymer, spinning drop tensiometer	
Pages: 6683-6689	Abstract: Interfacial tension measurements of polyamide/polypropylene (PA6/PP)	
	interfaces are reported at high temperature, using a spinning drop tensiometer, especially adopted to the study of the effects of copolymers. Copolymers in different amounts are	
	included	
	Directory: archive/DDJ/1999/papers/PA6PP_interfacial/PA6PP_interfacial Note: Claude Verdier and Monique Piau at Laboratoire de Rheologie, Universite Grenoble	
	I, Institut National Polytechnique de Grenoble, CNRS, France. Harry TM Vinagre at	
	AEM. (c) Elsevier Science Ltd.	Record
2000 Submitted: 1999	A new formulation of the distributed Lagrange multiplier/fictitious	Place:
Int. J. Multiphase Flow	domain method for particulate flows N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski, TW. Pan	213
Editor: Vol: 26 Issue: 9	Keywords:	
Pages: 1509-1524	Abstract: A Lagrange-multiplier-based fictitious-domain method (DLM) for the direct numerical simulation of rigid particulate flows in a Newtonian fluid was presented	
	previously. An important feature of this finite element based method is that the flow in the	
	particle domain is constrained to be a rigid body motion by using a well-chosen field of Lagrange multipliers. The constraint of rigid body motion is represented by u=U+ omega	
	? r, u being the velocity of the fluid at a point in the particle domain;	
	Directory: /archive/DDJ/1999/papers/newlagrange/newformDLM	
	IJMF2000.26-newDLM Note:	
2000	Effects of shear thinning on migration of neutrally buoyant particles	Record Place:
Submitted: 1999 J. Non-Newtonian	in pressure driven flow of Newtonian and viscoelastic fluids	274
Fluid Mech.	P.Y. Huang, D.D. Joseph Keywords: shear thinning, viscoelastic fluid, pressure driver flow	
Editor:	Abstract: The pattern of cross streaming migration of neutrally buoyant particles in a	
Vol: 90 Issue: Pages: 159-185	pressure driven flow depends strongly on the properties of the suspending fluid. These migration effects have been studied by direct numerical simulation in planar flow.	
	Directory: 00_1	
	Note: Also as Reprint, Univ. Minnesota Supercomputing Institute Research Report, UMSI	
2000	99/100 May 1999 Steady flow and interfacial shapes of a highly viscous dispersed phase	Record
Submitted: 1998	R. Bai, D.D. Joseph	Place: 273
Int. J. Multiphase Flow Editor:	Keywords:	
Vol. 26 Issue:	Abstract: A perturbation theory for the steady flow of immiscible liquids is developed when the dispersed phase is much more viscous than the continuous phase, as is the case	
Pages: 1469-1491	in emulsions of highly viscous bitumen in water and in water lubricated pipelines of heavy	
	Directory: archive/ddj/1998/papers/BaiinterfacialLTX/, archive/docs/IJMF.26-Steady Flow.—	
	Note: Similar title, but different material, than published in book, Fluid Dynamics of	
0000	Interfaces (Cambridge Press)	Record
2000 Submitted:	A distributed Lagrange multiplier/fictitious domain method for the	Place: 272
Saoinited.	simulation of flows around moving rigid bodies: Application to	212

Comput. Methods	mantiaulata flarr	
Appl. Mech. Engrg.	particulate flow R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux	
Editor:	K. Glowinski, T. W. Fall, T.I. Fiesia, D.D. Joseph, J. Petiaux Keywords: particulate flow, fictitious domain methods, Navier-Stokes equations, liquid-	
Vol: 184 Issue: 2-4	solid mixtures, Rayleigh-Taylor instabilities	
Pages: 241-267	Abstract: In this article we discuss the application of a Lagrange multiplier based	
	fictitious domain method to the numerical simulation of incompressible viscous flow	
	modeled by the Navier-Stokes equations around moving rigid bodies; the rigid body	
	motion is due	
	Directory: http://www.elsevier.com/locate/cma	
	Note: Pan corspdg auth. Roland Glowinski, Tsorng-Whay Pan at Dept Math, Univ.	
	Houston, Houston TX 77204. Jacques Periaux at Dassault Aviation, 78, Quai Marcel Dassault, 92314 Saint-Cloud, France. (c) Elsevier Sciences SA	
1999		Record
Submitted: 1998	A distributed Lagrange multiplier/fictitious domain method for flows	Place: 271
Int. J. Numer. Meth.	around moving rigid bodies: application to particulate flow R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux	
Fluids	Keywords: particulate flow, fictitious domain method, Navier-Stokes equations	
Editor:	Abstract: This article discusses the application of a Lagrange multiplier-based fictitious	
Vol: 30 Issue:	domain method to the numerical simulation of incompressible viscous flow modeled by	
Pages: 1043-1066	the Navier-Stokes equations around moving rigid bodies; the rigid body motions are due	
	Directory: 99_10	
	Note: Glowinski corresp author (sabbatical at Paris?) and Tsorng-Whay Pan at Dept Math,	
	Univ. Houston, Houston, TX 77204. Todd I Hesla, DDJ at AEM. Jacques Periaux at Dassault Aviation, 92214 Saint-Cloud, France.	
1999	Breakup of a liquid drop suddenly exposed to a high-speed airstream	Record
Submitted: 1998	D.D. Joseph, J. Belanger, G.S. Beavers	Place: 270
Int. J. Multiphase Flow	Keywords: drop breakup, high-speed airstream, viscous drops, viscoelastic drops	270
Editor:	Abstract: The breakup of viscous and viscoelastic drops in the high speed airstream	
Vol: 25 Issue:	behind a shock wave in a shock tube was photographed with a rotating drum camera	
Pages: 1263-1303	giving one photograph every 5 us. From these photographs we created movies of the	
	fragmentation	
	Directory: archive/DDJ/1999/proposals/breakupspring99/breakup99.— Note:	
1999		Record
Submitted: 1998	Lift on a sphere near a plane wall in a second-order fluid H.H. Hu, D.D. Joseph	Place: 269
J. Non-Newtonian	Keywords: lift, sphere near a wall, second-order fluid, resuspension	
Fluid Mech.	Abstract: In this paper, we examine the lift on a sphere moving very close to an infinite	
Editor:	plane wall in a shear flow of a second-order fluid. The sphere is allowed to both translate	
Vol: 88 Issue:	and rotate along the plane. We focus on the limit when the sphere touches the wall.	
Pages: 173-184	Directory: archive/DDJ/1998/Papers/LiftMAC/LiftOct98	
4000	Note: published version a little different than archived version.	Record
1999 Submitted: 1998	A distributed Lagrange multiplier/fictitious domain method for	Place: 268
Int. J. Multiphase Flow	particulate flows	208
Editor:	R. Glowinski, TW. Pan, T.I. Hesla, D.D. Joseph Keywords: particulate flow, solid-liquid flow, fictitious-domain method, distributed	
Vol: 25 Issue: 5	Lagrange multiplier, combined equation of motion, operator splitting, finite element	
Pages: 755-794	Abstract: A new Lagrange-multiplier based fictitious-domain method is presented for the	
	direct numerical simulation of viscous incompressible flow with suspended solid particles.	
	The method uses a finite- element discretization in space and an operator-splitting	
	technique for discretization in time. The linearly constrained quadratic minimization	
	problems which arise from this splitting are solved using conjugate-gradient algorithms.	
	Directory: http://www.elsevier.com/locate/ijmulflow Note	
1999		Record
Submitted: 1997	Self-lubricated transport of bitumen froth	Place: 267
J. Fluid Mech.	D.D. Joseph, R. Bai, C. Mata, K. Sury, C. Grant Keywords:	237
Editor:	Abstract: Bitumen froth is produced from the oil sands of Athabasca using the Clark's Hot	
Vol: 386 Issue:	Water Extraction process. When transported in a pipeline, water present in the froth is	
Pages: 127-148	released in regions of high shear; namely, at the pipe wall. This results in a lubrica	
	Directory: archive/syncrude/1998/papers/selfLubAug98MAC,	
	CONTRACT TO THE CONTRACT OF TH	
	SelfLubNov98MAC.— archive/syncrude/1997/papers/bitumen97Mac/bitumen.—	
	SelfLubNov98MAC.— archive/syncrude/1997/papers/bitumen97Mac/bitumen.— Note: Runyuan Bai, Clara Mata at AEM. Ken Sury and Chris Grant at Syncrude Ltd., Edmonton Research Centre, Edmonton, Alberta T6N 1H4, Canada	

1999 Submitted: 1997 Int. J. Multiphase Flow Editor: Vol: 25 Issue: Pages: 63-85 1999 Submitted: Proceedings of MAFELAP 1999, UK Editor: Vol: Issue: Pages:	Foam control using a fluidized bed of hydrophobic particles C. Mata, D.D. Joseph Keywords: foam suspression, fluidized bed, hydrophobic particles Abstract: Applications of foams and foaming are found in many industries like the flotation of minerals, enhanced oil recovery, drilling in oil reservoirs, insulation, construction and refining processes such as Vacuum distillation and Delay-Coker reactors. Directory: archive/intevep/1997/papers/MatasDDJFoamMac/~/mataddjfoam.pdf Note: Fictitious domain methods for particulate flow in two and three dimensions R. Glowinski, T.W. Pan, D.D. Joseph Keywords: Abstract: In this article we discuss a methodology allowing the direct numerical simulation of the flow of mixtures of rigid solid particles and incompressible viscous fluids, possibly non-Newtonian. The simulation methods rest essentially on the combination of Directory: archive/DDJ/1999/papers/ MAFELAP99.FDM_in2-3D Note:	Record Place: 266
1999 Submitted: Fluid Dynamics of Interfaces Editor: Wei Shyy, Ranga Narayanan, Cambridge University Press, UK Vol: Issue: Pages: 254-261	Interfacial shapes in the steady flow of a highly viscous dispersed phase D.D. Joseph, R. Bai Keywords: Abstract: A perturbation theory for the steady flow of immiscible liquids is developed when the dispersed phase is much more viscous than the continuous phase, as is the case in emulsions of highly viscous bitumen in water and in water lubricated pipelines of heavy Directory: archive/ddj/1998/papers/BaiinterfacialLTX/~/BaiInterface [archive/ddj/1997/papers /InterfacialLTX/~/interfacial97] Note: SIMILAR title: (IJMF 2000, 26, 1469-1491) Steady flow and interfacial shapes of a highly viscous dispersed phase. 1997 unpublished version w/ DDJ only.	Record Place: 264
1998 Submitted: 1997 IUTAM Symposium on Lubricated Transport of Viscous Materials Editor: H. Ramkissoon, ed. Vol: Issue: Pages: 65-84	Levitation of core flows C. Mata, R. Bai, D.D. Joseph Keywords: Abstract: A simple model is proposed for a 2D horizontal core annular flow in which the effect of gravity due to the difference in the densities of the two fluids is the eccentricity of the core. We split the domain through the center of the core; we characterized Directory: 98_10 Note: (c) Kluwer Academic Publishers, printed in Netherlands	Record Place: 263
1998 Submitted: Lecture at IUTAM Symposium on Lubricated Transport of Viscous Materials, Tobago, Jan 7, 1997 Editor: H. Ramkissoon, ed. Vol: Issue: Pages: 1-24	Lubricated transport of viscous materials D.D. Joseph Keywords: Abstract: 1. Phase arrangements. In two-phase flows the dynamic response is tied to the way the phases are arranged. Many configurations are realized in practice; these are often described by flow charts for a) Liquid-liquid b) Gas-liquid c) Liquid-solid. 2. Types of Directory: Note: (c) Kluwer Academic Publishers, printed in Netherlands	Record Place: 262
1998 Submitted: 1998 J. Non-Newtonian Fluid Mech. Editor: Vol: 79 Issue: Pages: 157-171	Delayed-die swell and sedimentation of elongated particles in wormlike micellar solutions M. Cloitre, T. Hall, C. Mata, D.D. Joseph Keywords: delayed-die swell, viscoelastic, sedimentation, elongated particles, wormlike micellar solutions Abstract: It has been recently proposed that the combined action of inertia and nonlinear viscoelasticity may be the origin of very peculiar behaviors with dramatic changes of flow type. Two examples are the problem of delayed die swell and the orientation of elon Directory: archive/ddj/1998/papers/DieSwellMay98Mac/~/DieSwellMay98 Note: M Cloitre at Laboratoire Mixte CNRS-ELF ATOCHEM, 95 Rue Danton, 92303, Levallois-Perret, France. Others at AEM Cavitation and the state of stress in a flowing liquid	Record Place: 261

D.D. Joseph Keywords: Abstract: The problem of the inception of cavitation is formulated in terms of a comparison of the breaking strength or cavitation threshold at each point of a liquid sample with the principal stresses there. A criterion of maximum tension is proposed which unifies Directory: archive/ddj/1997/papers/CavitationLTX/~/DecCavitation	260
Note	
Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids P.Y. Huang, H.H. Hu, D.D. Joseph Keywords: Abstract: Cross-stream migration and stable orientations of elliptic particles falling in an Oldroyd-B fluid in a channel are studied. We show that the normal component of the extra stress on a rigid body vanishes; lateral forces and torque are determined by Directory: archive/ddj/1997/papers/EllipseMac/~/ellipse-* Note	Record Place: 259
How hubbly mixtures from and from control using a fluidized had	Record
J. Guitian, D.D. Joseph Keywords: fluidized bed, foam, bubbly mixture Abstract: In hydrocracking and other foaming reactors, the foam rises to the top because it has a higher gas fraction than the bubbly mixture from which it comes. The high gas hold-up in foams is undesirable in chemical reactors because it strongly decreases Directory:	Place: 258
/archive/intevep/1997/papers/BubbleReactorGuittianLTX/~/bubblesinglecolumn <i>Note:</i> Jose Guitian with Intevep SA, Los Teques, VZ. (c) Elsevier Science Ltd., Pergamon Press. Printed in Great Britain	
Drive to produce heavy crude prompts variety of transportation	Record Place:
	257
Keywords: Abstract: Increasing oil demand has been driving development of the world's large resources of heavy oil and bitumen, more than 70% of which are in Canada and Venezuela. Moving these heavy crudes and bitumens to market requires alternative pipeline transportation	
A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow R. Glowinski, TW. Pan, T.I. Hesla, D.D. Joseph, J. Periaux Keywords: Abstract: The main goal of this article, which generalizes [Glowinski et al 1997] considerably, is to discuss the numerical simulation of particulate flow for mixtures of incompressible viscous fluids and rigid particles. Such flow occurs in liquid/solid fluidized Directory: 98_5 Note: (c) American Mathematical Society	Record Place: 256
Distributed Lagrange multiplier methods for particulate flows	Record Place:
R. Glowinski, T. Hesla, D.D. Joseph, T.W. Pan, J. Periaux <i>Keywords:</i> Abstract: In this article we discuss the application of a Lagrange multiplier based fictitious domain method to the numerical simulation of incompressible viscous flow modeled by the Navier-Stokes equations around moving bodies. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The results of numerical experiments for two sedimenting cylinders in a two-dimensional channel are presented. Directory: 97_1 Note: John Wiley & Sons, Chichester, England	255
Steep wave fronts on extrudates of polymer melts and solutions:	Record Place:
lubrication layers and boundary lubrication D.D. Joseph	254
	Abstract: The problem of the inception of cavitation is formulated in terms of a comparison of the breaking strength or cavitation threshold at each point of a liquid sample with the principal stresses there. A criterion of maximum tension is proposed which unifies **Directory:** archive/ddj/1997/papers/CavitationLTX/~/DecCavitation.~** Note:** **Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids** P.Y. Huang, H.H. Hu, D.D. Joseph **Keywords:** Abstract:* Cross-stream migration and stable orientations of elliptic particles falling in an Oldroyd-B fluid in a channel are studied. We show that the normal component of the extra stress on a rigid body vanishes; lateral forces and torque are determined by **Directory:* archive/ddj/1997/papers/EllipseMac/~/ellipse-*.**—**Note** **How bubbly mixtures foam and foam control using a fluidized bed J. Guitian, D.D. Joseph **Keywords: fluidized bed, foam, bubbly mixture** Abstract.* In hydrocracking and other foaming reactors, the foam rises to the top because it has a higher gas fraction than the bubbly mixture from which it comes. The high gas hold-up in foams is undestrable in chemical reactors because it strongly decreases **Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**Directory:** Varchive/intevep/1997/papers/BubbleReactorGuittian_LTX/~/bubblesinglecolumn.**

Editor: Vol: 70 Issue: Pages: 187-203	Keywords: polymer melts, lubrication layers, boundary lubrication Abstract: Steep wave fronts tend to develop in many regimes of lubricated, slipping flows in which waves appear. Problems of slip, spurt, fracture and extrudate distortion can be framed in terms of lubrication theory with paradigms arising from the lubrication Directory: archive/ddj/1996/papers /SteepWaveLubricationLTX/~/steepwavelub, steepwave Note:	
1997 Submitted: 1996 J. Fluid Mech. Editor: Vol: 343 Issue: Pages: 73-94	Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids P.Y. Huang, J. Feng, H.H. Hu, D.D. Joseph Keywords: Abstract: This paper reports the results of direct numerical simulation of the motion of a two-dimensional circular cylinder in Couette flow and in Poiseuille flow of an Oldroyd-B fluid. Both neutrally buoyant and non-neutrally buoyant cylinders are considered. Directory: /archive/ddj/1996/papers /DirectSimParticlesMac/~/directsimparticles.— Note:	Record Place: 253
1997 Submitted: 1995 Powder Technology Editor: Vol: 94 Issue: Pages: 211-215	Lubricated pipelining D.D. Joseph Keywords: lubricated pipelines, flow, core flow, oil-water flow Abstract: This paper gives a brief overview of the issues posed by the science and technology for transporting heavy oils in a sheath of lubricating water. It touches on measures of energy efficiency, industrial experience, fouling, models of levitation, and future Directory: /archive/ddj/1996/papers/LubricatedPipeliningMac/~/lubricatedpipelining Note: (c) Elsevier Science SA, New York, NY. SEE ALSO Core Annular Flows, (CV248) Annual Reviews of Fluid Mech., 1997	Record Place: 252
1997 Submitted: 1995 J. Fluid Mech. Editor: Vol: 342 Issue: Pages: 37-51	Sidewall effects in the smoothing of an initial discontinuity of concentration T.Y. Liao, D.D. Joseph Keywords: Abstract: The velocity field of a binary mixture of incompressible miscible liquids is non-solenoidal when the densities of the two liquids are different. If the mixture density is linear in the volume fraction, as in the case of simple (ideal) mixtures orglycer Directory: archive/ddj/1997/papers/SidewallWIN/~/sidewall Note: TY Liao at HPCERC/ARC, Univ. of New Mexico, Albuquerque, NM 87131	Record Place: 251
1997 Submitted: J. Fluids Engineering Editor: Vol: 119 Issue: Pages: 497-498	Technical Forum- Questions in fluid mechanics: Understanding foams and foaming D.D. Joseph Keywords: Abstract: Foams are common, complex, and not well understood. Most of the common foams are a two-phase medium of gas and liquid with a particular structure consisting of gas pockets trapped in a network of thin liquid films and Plateau borders. Directory: archive/intevep/1997/memos/QuestionFoamsWIN /people/faculty/joseph/archive/docs/questionsfoams, [full version: /archive/intevep/1997/papers/UnderstandFoamsLTX/~/understandfoams] Note:	Record Place: 250
1997 Submitted: Annu. Rev. Fluid Mech. Editor: Vol: 29 Issue: Pages: 65-90	Core-annular flows D.D. Joseph, R. Bai, K.P. Chen, Y.Y. Renardy Keywords: Abstract: This paper gives an overview of the issues posed by the science and technology of transporting heavy oils in a sheath of lubricating water. It touches on measures of energy efficiency, industrial experience, fouling, stability, models of levitation, Directory: /archive/ddj/1996/papers/CoreAnnularMac/~/coreannular Note: KP Chen at Dept of Mech. Aerospace Engrg, Arizona State Univ., Tempe, AZ 85287; YY Renardy at Dept Math, Virginia Polytechnic Inst. State Univ., Blacksburg, VA 24061	Record Place: 249
1996 Submitted: 1996	A note on the forces that move particles in a second-order fluid D.D. Joseph, J. Feng	Record Place: 248

T		
Vol: 64 Issue: Pages: 299-302	second-order fluid are compressive and such as to turn long bodies into the stream and to cause circular particles to aggregate and chain. Directory: cdrom/docs/secondorderforces Note:	
1996	Letter to the Editor: Steep wave fronts on extrudates of polymer	Record
Submitted: 1995		Place:
	melts and solutions	247
J. Rheol.	D.D. Joseph, Y.J. Liu	
Editor:	Keywords:	
Vol: 40 Issue: 2	Abstract: It seems to us that the shape of the extrudate of polymers and polymer melts is	
Pages: 317-320	very much like the wavy shapes one sees in core-annular flows of heavy oils in water.	
	These flows are lubricated by the water and can be said to give rise to slip.	
	Directory: 96_13, archive/DDJ/1995/ExtrudatePolymers/J-Rheol96.40.2/	
	Note: Y. Joe Liu at AEM	
1996		Record
	Infiltration of initially dry, deformable porous media	Place:
Submitted: 1995	L. Preziosi, D.D. Joseph, G.S. Beavers	246
Int. J. Multiphase Flow	Keywords: deformable porous media, composites manufacturing	
Editor:	Abstract: The present paper studies the infiltration of an incompressible liquid in an	
Vol: 22 Issue: 6	initially dry (or partially dry), deformable spongeous material made of an incompressible	
Pages: 1205-1222	constituent in the slug-flow approximation having in mind the application to some indust	
	Directory: archive/ddj/1996/papers/InfiltrationLTX/zsourcefiles/infiltration	1
	Note: L Preziosi at Dipartimento di Matematica, Politecnico, Corso Duca degli. Abruzzi	1
	24, Torino, 10129, Italy	
1996		Record
Submitted: 1995	Stability of annular flow and slugging	Place:
	D.D. Joseph, A.C. Bannwart, Y.J. Liu	245
Int. J. Multiphase Flow	Keywords: annular gas-liquid flow, stability criterion, transition, slugging, core flow	
Editor:	Abstract: In this work we propose an effective viscosity criterion for the stabilization of	
Vol: 22 Issue: 6	annular gas-liquid and liquid-particle flows and an inertial mechanism which drives waves	
Pages: 1247-1254	into slugs in slugging gas-liquid flows. Annular flow is stable when the fluid.	
	Directory: archive/ddj/1996/papers/StableAnnularMac/	
	Note: YJ Liu now at 3M corporation, 3M Center, 236-2S-12, St Paul, MN 55144	
1996	The motion of solid particles suspended in viscoelastic liquids under	Record
Submitted: 1995	• • • • • • • • • • • • • • • • • • • •	Place: 244
J. Fluid Mech.	torsional shear	244
Editor:	J. Feng, D.D. Joseph	
Vol: 324 Issue:	Keywords:	
	Abstract: This paper presents an experimental study of the behavior of single particles and	
Pages: 199-222	suspensions in polymer solutions in a torsional flow. Four issues are investigated in detail:	
	the radial migration of a spherical particle; the rotation and migration of	
	Directory: 96_7	
	Note:	
1996	Dynamic simulation of sedimentation of solid particles in an	Record
Submitted: 1995	_ ·	Place: 243
J. Non-Newtonian	Oldroyd-B fluid	243
Fluid Mech.	J. Feng, P.Y. Huang, D.D. Joseph	
Editor:	Keywords: dynamic simulation, Oldroyd-B fluid, sedimentation, solid particles	
Vol: 63 Issue:	Abstract: In this paper we present a two-dimensional numerical study of the viscoelastic	
	effects on the sedimentation of particles in the presence of solid walls or another particle.	
Pages: 63-88	The Navier-Stokes equations coupled with an Oldroyd-B model are solved using a	
	Directory: 96_6	
	Note: Jimmy Feng now at Dept of Chem. Engineering, Univ. of Calif, Santa Barbara, CA	
	93106	
1996	Flow characteristics of concentrated emulsions of very viscous oil in	Record
Submitted: 1995	•	Place: 242
J. Rheol.	water	2-12
Editor:	G.A. Nunez, M. Briceno, C. Mata, H. Rivas, D.D. Joseph	1
Vol: 40 Issue:3	Keywords:	
	Abstract: This paper advances ideas and presents experiments on the flow characteristics	
Pages: 405-423	of concentrated emulsions of Venezuelan bitumen in water plus surfactant. These	
	emulsions are studied under a variety of flow conditions, namely between rotating	
	cylinders,	
	Directory: archive/DDJ/1996/Papers/FlowCharact/Emulsion_Paper.—	
	Note: Gustavo A Nunez, Maria Briceno, Clara Mata and Hercilio Rivas at Intevep SA,	
Ī	Los Teques, VZ. (c) The Society of Rheology, Inc	
	Bob reques, vz. (c) the Boelet, of Indeology, the	
1996		Record
1996 Submitted: 1995	Direct simulation of interfacial waves in a high-viscosity-ratio and axisymmetric core-annular flow	Record Place: 241

J. Fluid Mech. Editor: Vol: 327 Issue: Pages: 1-34	R. Bai, K. Kelkar, D.D. Joseph Keywords: Abstract: A direct numerical simulation of spatially periodic wavy core flows is carried out under the assumption that the densities of the two fluids are identical and that the viscosity of the oil core is so large that it moves as a rigid solid which may neverth Directory: cdrom/docs/pipelinesymp, archive/DDJ/1995/PipelineSymp95/zsourcefiles/PipelineSymp95.doc Note: Runyuan Bai at AEM; Kanchan Kelkar at Innovative Research, Inc. 2800 Univ. Ave SE, Mpls, MN 55414	Record
Submitted: 1995 J. Fluid Mech. Editor: Vol: 318 Issue: Pages: 223-236	Vaporization of a liquid drop suddenly exposed to a high-speed airstream D.D. Joseph, A. Huang, G.V. Candler Keywords: Abstract: Many studies of fragmentation of liquid drops at supersonic Mach numbers report the appearance of large amounts of mist. Photographs from other studies, which do not mention mist at all, strongly suggest that copious amounts of mist are formed at the earliest stages of fragmentation. In this paper, we present arguments and calculations which indicate that this mist is formed from condensed vapour arising from the flash vaporization of the hot and low-pressure liquid on the leeside of the drop. Directory: 96_2 Note: all at AEM	Place: 240
1996 Submitted: 1994 J. Fluid Mech. Editor: Vol: 315 Issue: Pages: 367-385	The motion of a solid sphere suspended by a Newtonian or viscoelastic jet J. Feng, D.D. Joseph Keywords: Abstract: This paper describes experimental observations of a solid sphere suspended by a vertical or inclined jet. A laminar Newtonian jet is able to suspend a sphere only through viscous entrainment at low Reynolds numbers (Re~10). A turbulent Newtonian jet Directory: 96_8 Note:	Record Place: 239
1996 Submitted: 1994 Int. J. Multiphase Flow Editor: Vol: 22 Issue:2 Pages: 207-221	Cement-lined pipes for water lubricated transport of heavy oil M.S. Arney, G.S. Ribeiro, E. Guevara, R. Bai, D.D. Joseph Keywords: core-annular flow, oil fouling, cement-lined pipes, heavy crude oils Abstract: This paper presents different strategies for preventing oil from fouling the walls of core-annular flow pipelines and also for restart from an unexpected pipeline shut-down. The most promising of these strategies is to use cement-lined pipes. Directory: 96_12, pre95/papers/1995/cement-pipeline-paper/Pipeline Note: SCAN THIS IN-VERY DIFFERENT FROM DRAFT FILE. GS Ribeiro, with CENPES-PETROBRAS, Rio de Janeiro, Brazil. E Guevara with INTEVEP S.A., Los Teques, VZ	Record Place: 238
1996 Submitted: Rheology and Fluid Mechanics of Nonlinear Materials, 1996 ASME Int. Mechanical Engineering Congress and Exposition Editor: D.A. Siginer, S.G. Advani, Des Vol: 217 Issue: Pages: 123-133	The motion and interaction of solid particles in viscoelastic liquids J. Feng, D.D. Joseph, P.Y. Huang Keywords: Abstract: In this paper we present numerical and experimental results on the motion and interaction of solid particles in polymeric fluids. The two-dimensional numerical work investigates the viscoelastic effects on the sedimentation of a particle in the presence. Directory: 96_12 Note: J Feng at Dept Chemical Engineering, Univ. California, Santa Barbara, CA 93106	Record Place: 237
1996 Submitted: Proc. of the 5th World Congress of Chemical Engineering, Second Particle Technology Forum, San Diego, July 14-18, 1996 AICHE New York Editor: Keynote	Flow induced microstructure in Newtonian and viscoelastic fluids D.D. Joseph Keywords: Abstract: Pair interactions between neighboring particles and turning couples on long bodies formed from touching bodies give rise to flow induced microstructures. In Newtonian fluids, pair interactions in a fluidized suspension lead to dispersions with particles Directory: archive/ddj/1996/papers/FlowInducedMac Note:	Record Place: 236

presentation (paper 95a), Particle Technology Track Vol: 6 Issue: Pages: 3-16		
1996 Submitted: Physica D Editor: Vol: 97 Issue: Pages: 104-125	Non-solenoidal velocity effects and Korteweg stresses in simple mixtures of incompressible liquids D.D. Joseph, A. Huang, H.H. Hu Keywords: Abstract: We study some basic problems of fluid dynamics of two incompressible miscible liquids modeled as a simple mixture in which the volume of the mixture does not change on mixing. In general, the expansion delta = div u in these problems does not vanish. Directory: 96_1, cdrom/docs/nonsolenoidal.— Also see pre95/papers/1992/nonsolenoid/HH_non-sol_vel.— Note: Adam Huang and Howard Hu at AEM. (Not sure if all material is repeat of 1993 (CV204) or 1992 (CV184) papers	Record Place: 235
1995 Submitted: 1994 J. Fluid Mech. Editor: Vol: 303 Issue: Pages: 83-102	The unsteady motion of solid bodies in creeping flows J. Feng, D.D. Joseph Keywords: Abstract: In treating unsteady particle motions in creeping flows, a quasi-steady approximation is often used, which assumes that the particle's motion is so slow that it is composed of a series of steady states. In each of these states, the fluid is in a steady Directory: 96_2 Note:	Record Place: 234
1995 Submitted: 1994 <i>J. Rheol.</i> Editor: Vol: 39 Issue:2 Pages: 323-343	Effective density and viscosity of a suspension M. Poletto, D.D. Joseph Keywords: Abstract: This paper presents results of a series of experiments on the settling velocity of spheres in two-component solid-liquid suspensions. Particular emphasis has been given to the effective values of density and viscosity of the mixture which allows us to Directory: pre95/papers/1995/SuspensionDensity/SuspensionDensityMS Note: Massimo Poletto at AEM	Record Place: 233
1995 Submitted: 1994 J. Fluid Mech. Editor: Vol: 304 Issue: Pages: 321-342	A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid Y.J. Liu, T.Y. Liao, D.D. Joseph Keywords: Abstract: When an air bubble rises in a viscoelastic fluid there is a critical capillary number for cusping and jump in velocity: when the capillary number is below critical, which is about 1 in our data, there is no cusp at the tail of a (smooth) air bubble. Directory: 95_11 Note: All at AEM	Record Place: 232
1995 Submitted: 1994 Physical Review E Editor: Vol: 51 Issue:3 Pages: R1649-1650	Cavitation in a flowing liquid D.D. Joseph Keywords: Abstract: In this paper, I propose that the cavitation threshold in a flowing liquid could be associated with the maximum tension that the fluid can sustain before undergoing cohesive fracture at a certain point. My criterion is not isotropic; I believe that Directory:archive/ddj/1996/papers/CavitationMac/Cavitation Note: (c) The American Physical Society	Record Place: 231
1995 Submitted: 1994 J. Non-Newtonian Fluid Mech. Editor: Vol: 57 Issue: Pages: 313-320	The negative wake in a second-order fluid (Short Communication) D.D. Joseph, J. Feng Keywords: finite element method, negative wakes, second-order fluid, viscoelastic fluid Abstract: To investigate the origin of negative wakes in viscoelastic fluid, we used a perturbation method to calculate the flow induced by a solid sphere falling slowly through a viscoelastic fluid in a vertical column of square cross-section. Directory: 95_6 Note: Corrigendum to, The negative wake in a second-order fluid, 1996 Vol 63, pg. 263	Record Place: 230
1995 Submitted: 1994 Int. J. Multiphase Flow Editor: Vol: 21 Issue:2	Propagation of voidage waves in a two-dimensional liquidfluidized bed M. Poletto, R. Bai, D.D. Joseph Keywords: liquid fluidization, homogeneous fluidization, voidage instabilities, nonhomogeneous fluidization, two-dimensional fluidized bed	Record Place: 229

Pages: 223-239	Abstract: Digital video recordings were used to obtain voidage distribution in a narrow fluidized bed with a small gap slightly larger than three particle diameters. From these recordings we determined auto-corrections and power spectra in spatial and temporal Directory: 95_5 Note: all at AEM	
4005		Record
1995 Submitted: 1994 J. Fluid Mech. Editor: Vol: 286 Issue:	Dynamic simulation of the motion of capsules in pipelines J. Feng, P.Y. Huang, D.D. Joseph Keywords: Abstract: In this paper we report results of two-dimensional simulations for the motion of	Place: 228
Pages: 201-227	elliptic capsules carried by a Poiseuille flow in a channel. The numerical method allows computation of the capsule motion and the fluid flow around the capsule, and accurate <i>Directory:</i> 95_3 <i>Note:</i>	
1995 Submitted: 1994 J. Fluid Mech.	Stability of eccentric core-annular flow A. Huang, D.D. Joseph Keywords:	Record Place: 227
Editor: Vol: 282 Issue: Pages: 233-245	Abstract: Perfect core-annular flows are two-phase flows, for example of oil and water, with the oil in a perfectly round core of constant radius and the water outside. Eccentric core flows can be perfect, but the centre of the core is displaced off the centreDirectory: 95_2 Note: all at AEM.	
1995	Doundamy layon flow of air even water on a flet plate	Record
Submitted: 1993 J. Fluid Mech. Editor:	Boundary layer flow of air over water on a flat plate J.J. Nelson, A.E. Alving, D.D. Joseph Keywords: Abstract: A non-similar boundary layer theory for air blowing over a water layer on a flat	Place: 226
Vol: 284 Issue: Pages: 159-169	plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x) Directory: 95_8	
	Note: JJ Nelson at USAF Wright Laboratories, Wright-Patterson AF Base, OH 45433-7913. A Alving with AEM	
1995	Dynamics of fluidized suspensions of spheres of finite size	Record Place:
Submitted: 1993	P. Singh, D.D. Joseph	225
Int. J. Multiphase Flow	Keywords: fluidized suspensions, radial and area-averaged distributions, particle phase	
Editor: Vol: 21 Issue: 1	theories, Hodamard instability, bubbling instability, bounded solutions	
Pages: 1-26	Abstract: We propose a one-dimensional theory of fluidized suspensions in which the fluids and solids momentum equations are decoupled by using a new mean drag law for the particles. Our mean drag law differs from the standard drag laws frequently used in that Directory: 95_4 Note: P Singh at AEM	
1995	A three-dimensional computation of the force and torque on an	Record
Submitted: 1993 J. Fluid Mech. Editor:	ellipsoid settling slowly through a viscoelastic fluid J. Feng, D.D. Joseph, R. Glowinski, T.W. Pan Keywords:	Place: 224
Vol: 283 Issue: Pages: 1-16	Abstract: The orientation of an ellipsoid falling in a viscoelastic fluid is studied by methods of perturbation theory. For small fall velocity, the fluid's Rheology is described by a second-order fluid model. The solution of the problem can be expressed by a dual Directory: 95_1	
	Note: R Glowinski and TW Pan at Dept Mathematics, Univ. of Houston, Houston, TX, 77204	
1995	Parallel Pipelining	Record Place:
Submitted: 1993	D.D. Joseph, R. Bai, T.Y. Liao, A. Huang, H.H. Hu	223
J. of Fluids Engineering	Keywords:	
Editor: Vol: 117 Issue: Pages: 446-449	Abstract: The use of water as a lubricant to reduce friction in pipelining of heavy crude oil is an old idea which has been used sporadically over the past half century (Joseph and Renardy, 1992). The essence of lubrication is that water forms an annulus around oil Directory: 95_20 Note: Transactions of the ASME	
1995	Motion of particles settling in a viscoelastic fluid	Record
Submitted: Proc. 2nd	D.D. Joseph, Y.J. Liu Keywords:	Place: 222
International Conference on	Abstract: In this paper, we will attempt to extract some principles concerning the flow-induced anisotropy which develops in the settling of particles in Newtonian and	

Multiphase Flow '95 Kyoto, April 3-7, 1995, Kyoto, Japan Editor: Vol: Issue: Pages: PD1_1-8 1994 Submitted: J. Colloid and Interface Sci. Editor: Vol: 162 Issue:2 Pages: 331-339	viscoelastic fluids. Our point of view is that the local microstructure, which is determined by Directory: cdrom/docs/japanconf95 Note: Evolution of a liquid drop in a spinning drop tensiometer H.H. Hu, D.D. Joseph Keywords: Abstract: To obtain desired material properties, a blend of two mostly incompatible polymers is often used. The blend morphology developed during the mixing process of molten polymers is strongly influenced by interfacial tension between the polymers. A spinning drop tensiometer is commonly used to measure the interfacial tension between two polymeric liquids.	Record Place: 221
1994 Submitted: 1993 J. Fluid Mech. Editor: Vol: 277 Issue: Pages: 271-301	Directory: 94_12 Note: found with search in Ideal, http://search.idealibrary.com Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid, Part 2, Couette and Poiseuille flows J. Feng, H.H. Hu, D.D. Joseph Keywords: Abstract: This paper reports the results of a two-dimensional finite element simulation of the motion of a circular particle in a Couette and a Poiseuille flow. The size of the particle and the Reynolds number are large enough to include fully nonlinear inertial Directory: 94_9 Note:	Record Place: 220
1994 Submitted: 1993 J. Rheol. Editor: Vol: 38 Issue:5 Pages: 1251-1270	Rod climbing and normal stresses in heavy crude oils at low shears G.A. Nunez, G.S. Ribeiro, M.S. Arney, J. Feng, D.D. Joseph Keywords: Abstract: This paper gives the results of a study of the nonlinear viscoelastic behavior of three heavy crude oils from California and Venezuela. A linear combination of normal stress coefficients at zero shear is expressed in terms of the quantity (climbing const Directory: 94_8, pre95/papers/1994/RodClimbing/Part I+II.— Note: GA Nunez at Intevep SA-PDVSA, Los Teques, VZ. (c) The Society of Rheology, Inc	Record Place: 219
1994 Submitted: 1993 J. Fluid Mech. Editor: Vol: 271 Issue: Pages: 1-16	The turning couples on an elliptic particle settling in a vertical channel P.Y. Huang, J. Feng, D.D. Joseph Keywords: Abstract: We do a direct two-dimensional finite-element simulation of the Navier-Stokes equations and compute the forces which turn an ellipse settling in a vertical channel of viscous fluid in a regime in which the ellipse oscillates under the action of a vortex Directory: 94_7 Note: Peter Y Huang, Jimmy Feng at AEM. (c) Cambridge Univ. Press	Record Place: 218
1994 Submitted: 1993 Int. J. Multiphase Flow Editor: Vol: 20 Issue:3 Pages: 481-491	Friction factor and holdup studies for lubricated pipelining II. Laminar and k-epsilon models of eccentric core flow A. Huang, C. Christodoulou, D.D. Joseph Keywords: core, annular, flow, lubricated, pipeline Abstract: A model of core-annular flow in which the oil core is a perfect cylinder with generators parallel to the pipe wall, but off-center, is studied in laminar and turbulent flow to asses the effects of eccentricity and the volume flow rate ratio on Directory: 94_6 Note: (c) Elsevier Science Ltd., Great Britain. Pergamon press	Record Place: 217
1994 Submitted: 1993 J. Non-Newtonian Fluid Mech. Editor: Vol: 51 Issue: Pages: 111-124	White-Metzner models for rod climbing in A1 T.Y. Liao, H.H. Hu, D.D. Joseph Keywords: A1, rod climbing, Weissenberg effect, White-Metzner models Abstract: Measurements of rod climbing in A1 give rise to an apparent linear relation between the height rise h and the angular velocity Omega of the rod. We use a White-Metzner model to fit the data & we find that the height rise on the rod deviates from the quadr Directory: 94_5 Note: HH Hu at Dept of Mech. Engngr and Applied Mech., Univ. of Pennsylvania,	Record Place: 216

	Philadelphia PA 19104	
1994 Submitted: 1993 J. Non-Newtonian Fluid Mech. Editor: Vol: 54 Issue: Pages: 45-86	Aggregation and dispersion of spheres falling in viscoelastic liquids D.D. Joseph, Y.J. Liu, M. Poletto J. Keywords: aggregation of spheres, dispersion of spheres, elastic stress ratio, Newtonian liquids, numerical simulation, settling of spheres, sphere-sphere interaction viscoelastic liquids, wall-sphere interaction Abstract: This paper focuses on the settling on one sphere near another or near a wall. We find maximum differences between Newtonian and viscoelastic liquids, with repulsion between nearby bodies in the Newtonian case and attraction in the viscoelastic case. Directory: 94_4 Note: all at AEM	Record Place: 215
1994 Submitted: 1993 J. Fluid Mech. Editor: Vol: 261 Issue: Pages: 95-134	Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid, Part 1, Sedimentation J. Feng, H.H. Hu, D.D. Joseph Keywords: Abstract: This paper reports the result of direct simulations of fluid-particle motions in two dimensions. We solve the initial value problem for the sedimentation of circular and elliptical particles in a vertical channel. The fluid motion is computed from Directory: 94_1? Note: J Feng at AEM and MN Supercomputer Inst., Univ. MN. HH Hu at Dept Mech. Engrg & Applied Mech. Univ. Pennsylvania, Philadelphia, PA 19104	Record Place: 214
1994 Submitted: 1992 J. Fluid Mech. Editor: Vol: 265 Issue: Pages: 1-23	Potential flow of viscous and viscoelastic fluids D.D. Joseph, T.Y. Liao Keywords: Abstract: Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when the divergence of the stress is a gradient as in inviscid fluids, viscous fluids, linear viscoelastic fluids and second-order fluids. We show that in potential flow without Directory: 94_2 Note: (c) Cambridge Univ. Press	Record Place: 213
1994 Submitted: ASME FED (Liquid- Solid Flows) Editor: Vol: 189 Issue: Pages: 31-40	Interrogation of numerical simulation for modeling of flow induced microstructure D.D. Joseph Keywords: Abstract: This paper summarizes our recent efforts using direct numerical simulations to determine microstructural properties of fluidized suspensions of a few particles. We have been studying the motions of a few particles in a viscous fluid by direct numerical Directory: people/faculty/joseph/archive/docs/ASMEconf95.pdf, faculty/joseph/archive/catalog/cdrom/docs/asmeconf95.pdf Note:	Record Place: 212
1994 Submitted: Trends and Perspectives in Applied Mathematics, Applied Mathematical Sciences Editor: Sirovich, Arnol'd, eds., Springer- Verlag. Also in Army HPCRC preprint 93-010. Vol: 100 Issue: Pages: 1-54	Viscous and viscoelastic potential flow D.D. Joseph, T.Y. Liao Keywords: Abstract: Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when the divergence of the stress is a gradient as in inviscid fluids, viscous fluids, linear viscoelastic fluids and second-order fluids. We show that the equation balancing Directory: pre95/papers/1994/VisPotentialFlow/Part1-Sec1-8 Note: Army High Performance Computing Research Center, U of M, 1100 Washington Ave S. Minneapolis, MN 55415	Record Place: 211
1993 Submitted: 1993 J. Non-Newtonian Fluid Mech. Editor: Vol: 48 Issue: Pages: 225-235	Independent confirmation that delayed die swell is a hyperbolic transition D.D. Joseph, C. Christodoulou Keywords: delayed die swell, hyperbolic transition, wave speeds, Xanthan Abstract: We measured shear wave speeds in the same aqueous Xanthan solutions used to study delayed die swell by Allain, Cloitre, Perrot and Quemada 1993. They reported delayed die swell for solutions of 500, 1000, 2000 and 4000 ppm Xanthan in water when the shear Directory: pre95/papers/1993/Xanthan/XanthanPaper.— Note: (c) Elsevier Science Publishers, BV, Amsterdam	Record Place: 210

1993 Submitted: 1993 J. Non-Newtonian Fluid Mech. Editor: Vol: 50 Issue: Pages: 305-329	Anomalous rolling of spheres down an inclined plane Y.J. Liu, J. Nelson, J. Feng, D.D. Joseph Keywords: anomalous (or hydrodynamic) rolling, Newtonian liquids, normal (or dry) rolling, numerical simulation, settling of spheres, viscoelastic liquids Abstract: A sphere in air will roll down a plane which is tilted away from the vertical. The only couple acting about the point of contact between the sphere and the plane is due to the component of the weight of the sphere along the plane, provided that air frict Directory: pre95/papers/1993/AnomalousRolling/AnomalousRollingMS Note: Yaoqi Joe Liu, John Nelson, Jimmy Feng at AEM	Record Place: 209
106 1993 Submitted: 1993 J. Rheol. Editor: Bingham Award Lecture-1993 Vol: 37 Issue:6 Pages: 961-983	Orientation of long bodies falling in a viscoelastic liquid D.D. Joseph, Y.J. Liu Keywords: Abstract: New experiments on the orientation of a cylinder settling in viscoelastic and pseudoplastic fluids are described in an attempt to identify the main mechanisms which control the orientation of the cylinder as it falls. Directory: pre95/papers/1993/ Note: Yaoqui Joe Liu at AEM	Record Place: 208
1993 Submitted: 1992 J. Fluid Mech. Editor: Vol: 255 Issue: Pages: 565-595	Sedimentation of particles in polymer solutions Y.J. Liu, D.D. Joseph Keywords: Abstract: In this paper, we present detailed and systematic experimental results on the sedimentation of solid particles in aqueous solutions of polyox and polyacrylamide. The tilt angles of long cylinders falling in these viscoelastic liquids were measured. Directory: pre95/1993/paperTilt Note: (c) Cambridge Univ. Press	Record Place: 207
1993 Submitted: 1992 Int. J. Multiphase Flow Editor: Vol: 19 Issue:6 Pages: 1061-1076	Friction factor and holdup studies for lubricated pipelining – I M.S. Arney, R. Bai, E. Guevara, D.D. Joseph, K. Liu Keywords: core, annular, flow, lubricated, pipeline, two-phase flow Abstract: Results from new experiments on the lubricated pipelining of emulsified waxy crude oil and No. 6 fuel oil are presented and compared with other sources of literature. A correlation formula which estimates the holdup fraction is introduced and evaluated Directory: 93_3 Note: E Guevara at Intevep, SA, San Tome, Venezuela. K Liu with Deltac Corp, Plymouth, MN 55426. (c) Pergamon Press Ltd., Great Britain	Record Place: 206
1993 Submitted: 1991 Int. J. Heat Mass Transfer Editor: Vol: 36 Issue:3 Pages: 663-672	Stability of liquid-vapor flow down an inclined channel with phase change A. Huang, D.D. Joseph Keywords: Abstract: We study the stability of a two-phase flow between heated inclined plates. The temperature of the bottom plate is held below the vaporization temperature and the top plate is hotter than the vaporization temperature. A water film is on the cold wall Directory: pre95/papers/1993/Phase-change-2_AH Note: Adam Huang at AEM. (c) Pergamon Press Ltd., Great Britain	Record Place: 205
1993 Submitted: Proc. of the Symposium on Applied Mathematics at the Turn of the Century Editor: Universidad Complutense, Cursos de Verano, Almeria, Spain, July 5-10, 1993, Vol: Issue: Pages:	Non-solenoidal velocity effects and Korteweg stresses in simple mixtures of incompressible liquids D.D. Joseph Keywords: Abstract: Directory: Note: Title exactly the same as CV 235 and CV 184	Record Place: 204
1993 Submitted: J. Colloid Interface Sci. Editor: Vol: 158 Issue:1 Pages: 255-257	A note on the net force and moment on a drop due to surface forces T.I. Hesla, A.Y. Huang, D.D. Joseph Keywords: Abstract: It is shown that the net force and moment on a smooth drop or bubble due to surface forces are zero. The net force and moment due to the jump in traction are also zero. Directory: 93_6	Record Place: 203

	Note: Todd I Hesla, Adam Y Huang at AEM	
1993 Submitted: Eur. J. Mech. B/Fluids Editor: Vol: 12 Issue:1 Pages: 97-106	Drag and moment in viscous potential flow D.D. Joseph, T.Y. Liao, H.H. Hu Keywords: Abstract: We consider solutions of the Navier-Stokes equations in which the velocity is given by the gradient of a potential. We show that the drag on bodies and bubbles is the same in viscous and inviscid potential flow. The lift on two-dimensional bodies is given Directory: pre95/papers/1993/DragMoment_5-28-92.— Note: HH Hu now at Dept Mech. Engng & Applied Mech., Univ. Pennsylvania, Philadelphia, PA 19104	Record Place: 202
1992 Submitted: 1991 Fundamentals of Two-Fluid Dynamics: Vol. 1 and 2 Editor: DD Joseph and YY Renardy, eds. Vol: Issue: Pages:	Chapter 10, Interfacial tension between miscible liquids D.D. Joseph, H.H. Hu Keywords: Abstract: We study some basic problems of fluid dynamics of two incompressible miscible liquids modeled as a simple mixture in which the volume of the mixture does not change on mixing. In general, the expansion delta=divu in these problems does not vanish. Directory: pre95/papers/1992/InterfacialTension-mixture Note: Springer Interdisciplinary Applied Mathematics Volumes 3 and 4	Record Place: 201
1992 Submitted: 1992 Int. Video J. Engineering Research Editor: Vol: 2 Issue: Pages: 17-24	Experiments and direct simulations of fluid particle motions H.H. Hu, D.D. Joseph, A.F. Fortes Keywords: Abstract: This paper and the accompanying video segment show how the motions of sedimenting particles may be simulated by direct computations based on the Navier-Stokes equations and the equations of particle motion. Sedimenting and fluidized particles are confined Directory: pre95/papers/1992/ParticleMotions/VideoJ.* Note:	Record Place: 200
1992 Submitted: 1992 Zfangew Math Phys (ZAMP) Editor: Vol: 43 Issue: Pages: 626-644	Miscible displacement in a Hele-Shaw cell H.H. Hu, D.D. Joseph Keywords: Abstract: We formulated a theory of simple mixtures of incompressible miscible liquids in terms of the mass averaged velocity u and the solenoidal volume averaged velocity W. We derived simplified equations for miscible displacement in a Hele-Shaw cell. Directory: pre95/paper/1992/MiscibleH-S/stability-ZAMP* Note: (c) Birkhauser, Verlag, Basel	Record Place: 199
1992 Submitted: 1991 J. Non-Newtonian Fluid Mech. Editor: Vol: 42 Issue: Pages: 385-389	Bernoulli equation and the competition of elastic and inertial pressures in the potential flow of a second-order fluid D.D. Joseph Keywords: Bernoulli equation, normal extensional stresses, second order fluid Abstract: A Bernoulli equation for potential flow of a second order fluid is derived. This equation is used to form an expression for normal extensional stresses at points of stagnation, in which elastic and inertial pressures compete. Directory: 92_19	Record Place: 198
1992 Submitted: 1991 J. Non-Newtonian Fluid Mech. Editor: Vol: 44 Issue: Pages: 127-148	Understanding cusped interfaces D.D. Joseph Keywords: analytic cusp, disjoining pressure, Stokes flow singularity, surface tension Abstract: The good progress made on the recently opened problem of two-dimensional cusped interfaces in Newtonian and non-Newtonian fluids is reviewed. Some new results are presented and open problems are discussed. Directory: 92_15 Note:	Record Place: 197
1992 Submitted: 1991 J. Rheology Editor: Vol: 36 Issue:4 Pages: 621-662	A spinning drop tensioextensometer D.D. Joseph, M.S. Arney, G. Gillberg, H.H. Hu, D. Hultman, C. Verdier, T.M. Vinagre Keywords: Abstract: We examine some theoretical and experimental aspects of the measurement of interfacial tension, stress relaxation in elongational flow, and yield stresses in organic liquids, blends of polymer melts, and liquid crystal polymersis based on instrument Directory: 92_14, [draft- pre95/papers/1992/tensio-extensio.*] Note: G Gillberg at Hoechst Celanese Corp, Summit, NJ. C Verdier at Institut de Mecanique, Grenoble, France. (c) American Institute of Physics	Record Place: 196

1992 Submitted: 1991 J. Theoret. Comput. Fluid Dynamics	Direct simulation of fluid particle motions H.H. Hu, D.D. Joseph, M.J. Crochet Keywords: Abstract: Continuum models of two-phase flows of solids and liquids use constitutive assumptions to close the equations. A more fundamental approach is a "molecular"	Record Place: 195
Editor: Vol: 3 Issue: Pages: 285-306	dynamic" simulation of flowing "big" particles based on reliable macroscopic equations for both Directory: 92_12 Note: MJ Crochet at Unite de Mecanique Appliquee, Universite Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium	
1992 Submitted: 1991 J. Non-Newtonian Fluid Mech. Editor: Vol: 42 Issue: Pages: 189-211	Elastic short wave instability in extrusion flows of viscoelastic liquids K.P. Chen, D.D. Joseph Keywords: elastic instability, short waves, wall slip Abstract: An analysis of the stability to short waves of the flow of concentric coextruded polymeric liquids modeled by upper convected Maxwell models is presented. The flow can be unstable to short waves under various conditions on the elastic parameter. Directory: pre95/papers/1992/KC_elastic-shrt-wav* Note: Kang Ping Chen now at Dept Mechanical and Aerospace Engineering, Arizona State Univ., Tempe, AZ 85287	Record Place: 194
1992 Submitted: 1991 J. Fluid Mech. Editor: Vol: 242 Issue: Pages: 235-247	Instability of the equilibrium of a liquid below its vapour between horizontal heated plates A. Huang, D.D. Joseph Keywords: Abstract: We study the stability of a motionless liquid below its vapour between heated horizontal plates. The temperature of the bottom plate is held below the vaporization temperature and the top plate is hotter than the vaporization temperature. A water film Directory: pre95/papers/1992/Phase_change_1.* Note: Adam Huang at AEM	Record Place: 193
1992 Submitted: 1990 J. Fluid Mech. Editor: Vol: 240 Issue: Pages: 97-132	Lubricated pipelining: stability of core-annular flow. Part 5, Experiments and comparison with theory R. Bai, K. Chen, D.D. Joseph Keywords: Abstract: Results are given for experiments on water-lubricated pipelining of 6.01 P cylinder oil in a vertical apparatus in up- and down flow in regimes of modest flow rates, less than 3 ft/s. Measured values of the flow rates, holdup ratios, pressure gradients Directory: pre95/papers/1991/lubPipe/lub-pipeV.* Note: Runyuan Bai, Kangping Chen at AEM	Record Place: 192
1992 Submitted: Proc. 1992 US Army Chemical Research Development & Engineering Center Editor: Scientific Conference on Chemical Defense Research, November 18, 1992 Vol: Issue: Pages:	A discussion on the aerodynamic dissemination of simulant released at high altitude D.D. Joseph, A. Huang, M. Arney Keywords: Abstract: Directory: 92_20 Note: !- MISSING OUTPRINT, not sure of authors order	Record Place: 191
1992 Submitted: Theoretical and Applied Rheology, Proc. XI-th Int Congress on Rheology, Brussels, Belgium, August 17- 21, 1992 Editor: P. Moldenaers, R. Keunings, eds. Vol: Issue: Pages: 60-64	Competition between inertial pressures and normal stresses in the flow induced anisotropy of solid particles D.D. Joseph, J. Nelson, H.H. Hu, Y.J. Liu Keywords: Abstract: It is well known that a long body settling in a viscous liquid will turn its broadside to the stream. The same long body settling in a viscoelastic liquid will turn its broadside parallel to the stream at small speeds, but heavier long bodies which fall faster again turn broadside. Sedimenting spheres in a fluid filled channel will arrange themselves so that the line of centers between neighboring spheres is across the stream in a viscous liquid and parallel to the stream Directory: 92_17 Note: (c) Elsevier Science Publishers, BV	Record Place: 190

1992	The tilt angle transition and notantial flow	Record
Submitted:	The tilt angle transition and potential flow D.D. Joseph	Place: 189
Proceedings of the	Keywords:	
Plenary Lecture at the 1st International Symposium of the Grenoble Mechanics	Abstract: The natural orientation of a long body is the key to understanding flow-induced structures of spherical bodies. The natural orientation of a long body falling in a viscous liquid is broadside-on; the body will always turn its long side perpendicular Directory: 92_16	
Federation, May 19-21 Editor: Vol: Issue: Pages:	Note: Lecture presented at the NSF-DOE Workshop on Flow of Partriculates and Fluids, NIST, Gaithersburg, MD, September 17, 1992	
1992	Kelvin-Helmholtz mechanism for side branching in the displacement	Record Place:
Submitted: <i>Eur. J. Mech. B/Fluids</i> Editor: Vol: 11 Issue:3	of light with heavy fluid under gravity D.D. Joseph, T.Y.J. Liao J.C. Keywords:	188
Pages: 253-264	Abstract: The problem of stability of smooth fingering motions which may develop from the Rayleigh-Taylor instability when the initial data is analytic is considered. A second-order ordinary linear differential equation with time-dependent coefficients is derived Directory: pre95/papers/1992/K-Hmech/KHmech-side-branch.* Note: TYJ Liao at AEM, JC Saut still at U of Paris, France	
1992 Submitted: Physics of Fluids A	Chapter IX. Vortex rings of one fluid in another in free fall N. Baumann, D.D. Joseph, P. Mohr, Y. Renardy Keywords:	Record Place: 187
Editor: Vol: 4 Issue: 3 Pages: 567-580	Abstract: In this chapter, we present and interpret experiments in which vortex rings of one immiscible liquid are created in another from drops falling from rest under gravity. These rings are associated with circulations generated by viscosity and, unlike Directory: 92_5 Note:	
1992	Upper and lower bounds for interfacial tension using spinning drop	Record Place:
Submitted:	devices	186
J. Colloid Interface Sci.	D.D. Joseph, M. Arney, G. Ma	
Editor:	Keywords: Abstract: In this note we show how to use spinning drop devices to determine lower and	
Vol: 148 Issue: 1 Pages: 291-294	upper bounds for interfacial tension between immiscible liquids. We like the idea of upper and lower bounds because the equilibrium tension is not a robust function and depends Directory: pre95/papers/1992/upper-lower-bounds.* Note: (c) Academic Press, Inc	
1992	Chapter 10, Finite Size Effects in Fluidized Suspension Experiments	Record Place:
Submitted:	D.D. Joseph	185
Particulate Two-Phase Flow	Keywords:	
Editor: M.C. Roco, ed., NSF and Univ. of Kentucky	Abstract: 'Two fluid' equations for fluidized suspensions of solid particles can be rigorously formulated as ensemble averages (Joseph & Lundgren 1990). Even though these equations have a rigorous foundation they are not useful unless the interaction forces	
Vol. Issue:	Directory: 92_2	
Pages: 300-324	Note: (c) Butterworth-Heinemann	Record
1992 Submitted:	Non-solenoidal velocity effects and Kortweg stresses in simple	Place:
AHPCRC Report,	mixtures of incompressible liquids H.H. Hu, D.D. Joseph	104
preprint	Keywords:	
Editor: Also in Chapter	Abstract: We study some basic problems of fluid dynamics of two incompressible	
10: Fundamentals of Two-	miscible liquids modeled as a simple mixture in which the volume of the mixture does not always on mixing. In general, the expression adjust the property which	
Fluid Dynamics,	change on mixing. In general, the expansion .=div u in these problems does not vanish. Directory: pre95/papers/1992/HH_non-sol_vel.*, 9th-symp-EES.cam.*	
Springer 1992	Note: !-MISSING OFFPRINT. Same title given for CV210 (Proceedings Universidad	
Vol: 91-03 Issue: Pages:	Cmplutense, Cursos de Verano, Almeria, Spain, July 5-10, 1993), and CV235 (Physica D, 97, 1996)you	
1991	Application of binary sequences to problems of chaos	Record Place:
Submitted: 1991 International Video	P. Singh, P. Mohr, D.D. Joseph	183
Journal of	Keywords: Abstract: Oil and water in equal proportion are set into motion between horizontal	
Engineering Research	concentric cylinders when the inner one rotates. In a range of speeds where the water is	

Editor: Vol: 1 Issue: Pages: 107-114	Taylor unstable and the oil Taylor stable, we get Taylor cells. The main focus of this paper Directory: pre95/papers/1991/BinarySeq-Chaos/Video-strange-att.1* Note: Singh, Mohr and DDJ at AEM. (c) John Wiley & Sons, Ltd.	
November 1991 Submitted: 1990 Phys. Fluids A Editor: Vol: 3 Issue:11 Pages: 2672-2679	Long wave and lubrication theories for core-annular flow K.P. Chen, D.D. Joseph Keywords: Abstract: Different nonlinear amplitude equations for long waves in core-annular flow are compared. Each equation has its own limits of validity that can be critically assessed by comparing the linearization of approximate and exact theories. Directory: pre95/papers/1991/longWave/KC_long-waveLub-thry* Note: (c) American Institute of Physics	Record Place: 182
1991 Submitted: 1990 <i>J. Fluid Mech.</i> Editor: Vol: 227 Issue: Pages: 587-615	Lubricated pipelining: stability of core-annular flow. Part 4, Ginzburg-Landau equations K. Chen, D.D. Joseph Keywords: Abstract: Nonlinear stability of core-annular flow near points of the neutral curves at which perfect core-annular flow loses stability is studied using the Ginzburg-Landau equations. Most of the core-annular flows are always unstable. Therefore the set of coreann Directory: pre95/papers/1991/lubPipe/lubPipe-IV-GL-eqs.* Note: Kangping Chen now with Dept Mech. and Aeronautical Engineering, Clarkson Univ., Potsdam, NY 13676	Record Place: 181
1991 Submitted: 1990 J. Fluid Mech. Editor: Vol: 223 Issue: Pages: 383-409	Two-dimensional cusped interfaces D.D. Joseph, J. Nelson, M. Renardy, Y. Renardy Keywords: Abstract: Two-dimensional cusped interfaces are line singularities of curvature. We create such cusps by rotating a cylinder half-immersed in liquid. A liquid film is dragged out of the reservoir on one side and is plunged in at the other, where it forms a cusp Directory: pre95/papers/1991/2dimCusped/JN-M-YR-cusps.* Note: John Nelson with AEM; Michael and Yuriko Renardy with Dept Math and ICAM, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA 24061	Record Place: 180
1991 Submitted: 1990 Phys. Fluids A Editor: Vol: 3 Issue:5 Pages: 995-996	Combined effects of riblets and polymers on drag reduction in pipes C. Christodoulou, K.N. Liu, D.D. Joseph Keywords: Abstract: In the present Brief Communication, experiments are reported establishing superposition of drag reduction due to riblets on drag reduction due to polymers, in fully developed turbulent flow of dilute aqueous solutions of polymers (2-50ppm) through 25.4mm Directory: pre95/papers/riblets-polymers.* Note:	Record Place: 179
1991 Submitted: FED, Liquid Solid Flows Editor: M.C. Roco, T. Magasume, eds. Vol: 118 Issue: Pages: 77-86	Finite size effects in fluidized beds P. Singh, D.D. Joseph Keywords: Abstract: We consider a one-dimensional theory of fluidized beds in which the fluids and solids equations are decoupled and the system is closed with a momentum equation for the particles alone. The simplest theory, based on the Foscolo-Gibilaro force law, Directory: 91_6 Note: (c) American Society of Mechanical Engineers	Record Place: 178
1991 Submitted: Proceedings of Joint DOE/NSF workshop on flow of particulates and fluids, Worcester MA, October 22-24 Editor: Vol: Issue: Pages: 1-12	Wake Architecture in two-dimensional fluidization of spheres. Part 1, Experiments and phenomenogical description A.F. Fortes, D.D. Joseph Keywords: Abstract: The structure of a shear flow past freely suspended spheres at low Reynolds numbers (based on the diameter of the spheres and mean fluid velocity) is visualized employing sheets of hydrogen bubbles illuminated by laser light as well as tungsten halogen Directory: pre95/papers/1991/WakeArchitectures/AF_wake.cam.* Note: Antonio F Fortes with Dept Mech. Engineering, Univ. Brasilia, 70910 Brasilia, DF Brasil	Record Place: 177
1991 Submitted:	Mathematical problems for miscible, incompressible fluids with Korteweg stresses	Record Place: 176

Eur. J. Mech. B/Fluids Editor: Vol: 10 Issue:3 Pages: 253-267	P. Galdi, D.D. Joseph, L. Preziosi, S. Rionero <i>Keywords:</i> Abstract: It is shown that the equations governing the motion and diffusion of miscible liquids can be reduced to a form like the Navier-Stokes equations when the equation of state is for the density of a simple mixture. In particular, in this case, W=Cu+D psi Directory: pre95/papers/Miscible-K-stresses/mathMiscLiq-K-strs.*, [91_2] Note:	
1990 Submitted: Problems Involving a Change ofType Editor: D. Kirchgassner, ed. Vol: 99-111 Issue: Pages: 22-50	Problems associated with the elasticity of liquids D.D. Joseph Keywords: Abstract: These lectures are in three parts: 1. Physical phenomena associated with hyperbolicity and change of type; 2. Conceptual ideas associated with effective viscosities and rigidities and the origins 3. Mathematical problems associated with hyperbolicity Directory: pre95/papers/Elasticity/probsElastctyLiquids Note:	Record Place: 175
1990 Submitted: 1990 Physics of Fluids A Editor: Vol: 2 Issue:11 Pages: 1945-1954	Stability of core-annular flow with a small viscosity ratio H.H. Hu, T.S. Lundgren, D.D. Joseph Keywords: Abstract: It is known that the stability problem for core-annular flow of very viscous crude oil and water is singular, the water annulus appears to be inviscid with boundary layers at the pipe wall and at the interface. Directory: 90_11 Note: (c) American Institute of Physics	Record Place: 174
1990 Submitted: 1990 J. Non-Newtonian Fluid Mech. Editor: Vol: 37 Issue: Pages: 347-377	Numerical simulation of viscoelastic flow past a cylinder H.H. Hu, D.D. Joseph Keywords: change of type, dilute polymer solution, relaxation, viscoelastic flow past cylinder, vorticity shock, wave propagation Abstract: The flow of an upper-convected Maxwell fluid past a circular cylinder is simulated numerically using the algorithm SIMPLER, which is based on a finite volume discretization on a staggered grid of the governing equations and an iterative solution to Directory: 90_10 Note:	Record Place: 173
1990 Submitted: 1989 Two Phase Flows and Waves, IMA Volumes in Mathematics and Its Applications Editor: D.D. Joseph, D. Schaeffer, eds., Springer-Verlag Vol: 26 Issue: Pages: 1-20	One-dimensional, particle bed models of fluidized suspensions P. Singh, D.D. Joseph Keywords: Abstract: One-dimensional unsteady models of a fluidized suspension based on modeling the forces that the fluid exerts on the particles are considered. Four different theories are discussed. The first, by Foscolo and Gibilaro 1984,1987 gives a criterion for Directory: 90_9 Note:	Record Place: 172
1990 Submitted: 1989 J. Non-Newtonian Fluid Mech. Editor: Vol: 35 Issue: Pages: 287-307	Climbing constant, second-order correction of Trouton's viscosity, wave speed and delayed die swell for M1 H.H. Hu, O. Riccius, K.P. Chen, M. Arney, D.D. Joseph Keywords: climbing constant, delayed die swell, extensional viscosity, wave speed, test fluid M1 Abstract: Measurements of wave speed c in M1 imply a fast time lambda=mu/rho c^2 of relaxation. This and the delayed die-swell measurements suggest that M1 is not very elastic. Extensive and very reliable values of the climbing constants show that M1 has weak Directory: 90_6 [pre95/papers/lab/lab-M1-fluid*] Note: All at AEM: Howard H Hu, Oliver Riccius, Kang Ping Chen, Mike Arney, Daniel D Joseph	Record Place: 171
1990 Submitted: 1989 J. Fluid Mech. Editor: Vol: 214 Issue: Pages: 251-286	Lubricated pipelining; Part 3, Stability of core-annular flow in vertical pipes K. Chen, R. Bai, D.D. Joseph Keywords: Abstract: The stability of core-annular flow in vertical pipes is analyzed using the linearized theory of stability. In previous studies instabilities due to interfacial friction, interfacial tension and Reynolds stresses in the bulk fluid were identified and Directory: 90_4	Record Place: 170

	Note:	
1990	Ensemble averaged and mixture theory equations for incompressible	Record Place:
Submitted: 1989	fluid-particle suspensions	169
Int. J. Multiphase Flow	D.D. Joseph, T.S. Lundgren, R. Jackson, D.A. Saville	
Editor:	Keywords: Ensemble average, mixture theory, fluid-particle suspensions, fluidized beds	
Vol: 16 Issue: 1	Abstract: Two-fluid equations for flowing composites of solid particles in a liquid have	
Pages: 35-42	been given by mixture theory and by ensemble averaging. The mixture theory equations	
	are postulated and the ensemble averaged equations are derived.	
	Directory: pre95/papers/EnsembleAveraged/equations-TSL	
	Note: (c) Pergamon Press/Elsevier, Great Britain	
1990	Generalization of the Foscolo-Gibilaro analysis of dynamic waves	Record
Submitted: 1989	D.D. Joseph	Place: 168
Chemical Engineering	Keywords:	
Science	Abstract: A new expression for the particle phase pressure in a fluidized bed, generalizing	
Editor:	the one used by Foscolo and Gibilaro, is derived. In the new theory uniform fluidization is	
Vol: 45 Issue: 2	always unstable.	
Pages: 411-414	Directory: pre95/papers/FoscoloGibilaro/Foscolo-Gibilaro	
	Note: (c) Pergamon Press plc, Great Britain	
1990	Couette flows, rollers, emulsions, tall Taylor cells, phase separation	Record
Submitted: 1989	and inversion, and a chaotic bubble in Taylor-Couette flow of two	Place: 167
Proceedings of NATO	· · · · · · · · · · · · · · · · · · ·	
Advanced Research	immiscible liquids	
Workshop on	D.D. Joseph, P. Singh, K. Chen	
Nonlinear Evolution of	Keywords:	
Spatio-Temporal	Abstract: Oil and water in equal proportion are set into motion between horizontal	
Structures in	concentric cylinders when the inner one rotates. Many different flows are realized and	
Dissipative	described. In one regime many large bubbles of oil are formed. In a range of speeds where	
Continuous Systems,	Directory: pre95/papers/1989/CouetteFlow/CouetteFlow [89_4]	
1989 in Streitberg, FR	Note: Plenum Press, NY, Plenum Publishing Corp. NY	
Germany	Note: Ficham Fless, NT, Ficham Fuonshing Corp. NT	
Editor: F.H. Busse, L.		
Kramer		
Vol: 225 Issue: Series		
B: Physics		
Pages: 169-189		D 1
1990	Application of the singular value decomposition to the numerical	Record Place:
Submitted: 1989	computation of the coefficients of amplitude equations and	166
Applied Numerical Mathematics	normal forms	
	K.P. Chen, D.D. Joseph	
Editor: Vol: 6 Issue:	Keywords:	
Pages: 425-430	Abstract: The Fredholm alternative is a standard procedure by which one generates the	
1 ages. 423-430	coefficients of amplitude equations and normal forms. The alternative requires that the	
	inhomogeneous terms in the underlying systems of differential equations, which contain	
	Directory: 89_11	
	Note: Kang Ping Chen still at AEM. Pub Elsevier Science Publishers BV, North-Holland	
1990	Fluid Dynamics of Viscoelastic Liquids	Record Place:
Submitted:	D.D. Joseph	165
Editor: Springer Applied	Keywords:	
Math Series	Abstract: This book is about two special topics in rheological fluid mechanics: the	
Vol: 84 Issue:	elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of	
Pages: 755 pages	the book is on the mathematical and physical consequences of the elasticity of liquids;	
	seventeen of twenty chapters are devoted to this. Constitutive models which are	
	instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of	
	vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to	
	steady flows of transonic type or to short wave instabilities which lead to ill-posed	
	problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed	
	instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics.	
	Directory: faculty/joseph/pre95/book1990/Fld-Dyn-Visco-Liq/	
	Note: (c) Springer-Verlag	l
4000		Record
1990 Submitted:	Separation in flowing fluids	Record Place:
Submitted:	Separation in flowing fluids D.D. Joseph	
	Separation in flowing fluids	Place:

T7 1 240 T		
Vol: 348 Issue: Pages: 487, 523	when stationary. But when these stratified liquids are made to flow down a pipe, the less viscous liquid will tend to encapsulate the more viscous liquid, even lubricating	
	Directory: 90_13	
4000	Note	Record
1990	Fluid dynamics of two miscible liquids with diffusion and gradient	Place:
Submitted: Eur. J. Mech. B/Fluids	stresses	163
Editor:	D.D. Joseph Keywords:	
Vol: 9 Issue:6	Abstract: The density of incompressible fluids can vary with concentration phi and	
Pages: 565-596	temperature, but not with pressure. The velocity field u of such incompressible fluids is	
	not in general solenoidal, div u.0. A conservation form for the left hand	
	side of Directory pro05/papers/Missible Lieuwide/miss Lie Papers*	
	Directory: pre95/papers/MiscibleLiquids/miscLiqPaper.* Note: (c) Gauthier-Villars	
1990	Addenum to the paper "Heat waves"	Record
Submitted:	D.D. Joseph, L. Preziosi	Place: 162
Reviews of Modern	Keywords:	
Physics	Abstract: Since the appearance of our paper on heat waves [Rev. Mod. Phys. 61, 1989],	
Editor: Vol: 62 Issue: 2	certain papers which should have been cited have come to our attention. It appears that our effort to write a relatively complete chronology of thought about heat waves fell	
Pages: 375-391	somew	
	Directory: pre95/papers/heatWaves/LP-heatWavesAdd.*	
	Note: (c) The American Physical Society	
1990	Mathematical problems associated with the elasticity of liquids	Record Place:
Submitted: Problems Involving a	D.D. Joseph	161
Change of Type	Keywords: Abstract: The mathematical theory of hyperbolicity and change of type is associated with	
Editor: D. Kirchgassner,	models with an instantaneous elastic response. Basically, this means there is no	
ed.	Newtonian-like part of the constitutive equation. The underlying quasilinear system gives	
Vol: Issue: Pages: 99-111	rise	
1 ages. 33-111	Directory: pre95/papers/Elasticity/probsElastctyLiquids* Note: This lecture is in three parts: 1.Physical phenomena associated with hyperbolicity	
	and change of type; 2. Conceptual ideas associated with effective viscosities and rigidities	
	and the origins of viscosity in elasticity; 3. Mathematical problems assoc'd	
1990	Drag reduction in pipes lined with riblets	Record Place:
Submitted: AIAA Journal	K.N. Liu, C. Christodoulou, O. Riccius, D.D. Joseph	160
Editor:	Keywords: Abstract: In the present paper, experiments are reported establishing a maximum drag	
Vol: 28 Issue: 10	reduction of 5-7% in fully developed turbulent flow of water through 25.4- and 50.8- mm-	
Pages: 1697-1698	diam. pipes lined with a film of grooved equilateral triangles of base 0.11 mm.	
	Directory: 90_5 [pre95/papers/riblets/ribletPipes*]	
1000	Note:	Record
1990 Submitted:	Short-wave instabilities and ill-posed initial-value problems D.D. Joseph, J.C. Saut	Place:
Theoret. Comput.	Keywords:	
Fluid Dynamics	Abstract: We characterize ill-posed problems as catastrophically (Hadamard) unstable to	
Editor: Vol: 1 Issue:	short waves. The growth rate tends to infinity as the wavelength tends to zero. The	
Pages: 191-227	mathematical description of ill-posed problems is framed in terms of instability. Directory: pre95/papers/JCS-ShortWave/short-wave-inst.pdf	
1 4505. 101 221	Note:	
1989	Stability of core-annular flow in a rotating pipe	Record Place:
Submitted: 1989	H.H. Hu, D.D. Joseph	158
Phys. Fluids A Editor:	Keywords:	
Vol: 1 Issue:10	Abstract: The linear stability of core-annular flow in rotating pipes is analyzed. Attention is focused on the effects of rotating the pipe and the difference in density of the two fluids.	
Pages: 1677-1685	Both axisymmetric and nonaxisymmetric disturbances are considered.	
	<i>Directory:</i> 89_10	
4000	Note: Howard H Hu at AEM. (c) American Institute of Physics	Dag1
1989	Remarks on inertial radii, persistent normal stresses, secondary	Record Place:
Submitted: 1988 J. Non-Newtonian	motions, and non-elastic extensional viscosities	157
Fluid Mech.	D.D. Joseph Keywords:	
Editor:		1

1989 Submitted:	Heat waves D.D. Joseph, L. Preziosi	Place: 150
1989 Submitted: 1987 <i>J. Fluid Mech.</i> Editor: Vol: 201 Issue: Pages: 323-356	Lubricated pipelining: stability of core-annular flow L. Preziosi, K. Chen, D.D. Joseph Keywords: Abstract: The stability of core-annular flow (CAF) in pipes is analyzed using the linear theory of stability. Attention is confined to the potentially stable case of lubricated pipelining with the less viscous liquid, say water, in the annulus. The effects of surface tension and density is included, but gravity is excluded. We find upper and lower branches of the neutral curve in a Reynolds number (R) vs. wave number (OE) plane. A window of parameters is identified in which CAF is stable to small disturbances. Directory: 89_1 Note:	Record Place: 151
1989 Submitted: 1988 <i>J. Fluid Mech.</i> Editor: Vol: 205 Issue: Pages: 359-396	Lubricated pipelining: stability of core-annular flow; Part 2. H.H. Hu, D.D. Joseph Keywords: Abstract: In this paper, we study the linearized stability of three symmetric arrangements of two liquids in core-annular Poiseuille flow in round pipes. Deferring to one important application, we say oil and water when we mean more viscous and less viscous liquids. Directory: 89_2 Note: Howard H. Hu at AEM	Record Place: 152
1989 Submitted: 1988 <i>J. Fluid Mech.</i> Editor: Vol: 205 Issue: Pages: 553-571	Stability of periodic arrays of cylinders across the stream by direct simulation P. Singh, PH. Caussignac, A.F. Fortes, D.D. Joseph, T. Lundgren Keywords: Abstract: Directory: 89_3 Note: P Singh at AEM. PH Caussignac at Dept Math, Swiss Federal Inst. of Technology, CH 1015 Lausanne, Switzerland. A Fortes at Dept Mech. Engineering, Univ. Brasilia, 70910 Brasilia DF, Brasil	Record Place: 153
1989 Submitted: 1988 J. Non-Newtonian Fluid Mech. Editor: Vol: 31 Issue: Pages: 301-323	Similarity solutions that give rise to hyperbolicity and change of type in steady flow of a viscoelastic fluid C. Verdier, D.D. Joseph Keywords: Abstract: Similarity solutions have proved to be a very useful tool for the study of flows of viscoelastic fluids since they allow us to check numerical computations against them. We compute here hyperbolic regions of the vorticity for an upper convected Maxwell Directory: 89_6 Note:	Record Place: 154
1989 Submitted: 1988 J. Non-Newtonian Fluid Mech. Editor: Vol: 31 Issue: Pages: 325-343	Change of type and loss of evolution of the White-Metzner model C. Verdier, D.D. Joseph Keywords: Abstract: In this paper a mathematical study of the White-Metzner model is presented. This model gives rise to systems of first order nonlinear (not quasilinear) partial differential equations. The unsteady case is studied first to determine if the Cauchy problem. Directory: 89_5 Note:	Record Place: 155
Submitted: 1988 Physics Letters A Editor: Vol: 135 Issue:4,5 Pages: 247-253	attractor P. Singh, D.D. Joseph Keywords: Abstract: A binary sequence is defined for the Lorenz attractor. This binary sequence contains some information about the original system. To extract this information we have used autoregressive methods from the theory of signal processing. The binary sequences Directory: 89_7 Note: (c) Elsevier Science Publishers BV, North-Holland Physics Publishing Div.	156
Vol: 32 Issue: Pages: 107-114	Abstract: In this note I discuss some consequences of the balance of inertia and normal stresses in nearly steady slow motions. I argue that the fluid's elasticity cannot be determined from its extensional viscosity. A formula is given for the extensional viscosity Directory: 89_9 Note: Autoregressive methods for chaos on binary sequences for the Lorenz	Record Place:

Reviews of Modern	Keywords:	
Physics Editor: Vol: 61 Issue:1 Pages: 41-73	Abstract: The concept of transmission of heat by waves is reviewed and interpreted. The notion of an effective thermal conductivity, an effective heat capacity, and relaxation functions for heat and energy is introduced along lines used recently to describe Directory: 89_8 Note: Luigi still in Italy. (c) The American Physical Society, quarterly, thru American Inst. of Physics	
4000		Record
1988 Submitted: 1987 J. Non-Newtonian Fluid Mech. Editor: Vol: 28 Issue: Pages: 47-60	Anomalous elongational flows and change of type D.D. Joseph, K. Chen Keywords: Abstract: Anomalous effects on elongational flows at high rates of elongation reported by Ferguson et al 1987 are here treated as a change of type. Analysis predicts that the vorticity near the drum is hyperbolic, elliptic away from the drum under the supercritical Directory: 88 2	Place: 149
1988	Measurement of interfacial tension between immiscible liquids with	Record
Submitted: 1986 J. Colloid and Interface Sci. Editor: Vol: 124 Issue:2 Pages: 552-559	the spinning rod tensiometer P. Than, L. Preziosi, D.D. Joseph, M. Arney Keywords: Abstract: A spinning rod interfacial tensiometer (US patent 4,644,782) is described and compared with spinning drop tensiometers. The rod pierces the drop and can help to stabilize the rotating bubble, reducing spin up time and drift. The effects of contact Directory: 88_1 Note: P Than at Aerospace Corp. Los Angeles, CA 90009. L Preziosi now at Instituto di	Place: 148
1000	Mathematica, Dell 'Universita di Napoli, Via Mezzacannone 8, 80134 Napoli, Italy	Record
1988 Submitted: 1986 <i>J. Fluid Mech.</i> Editor: Vol: 187 Issue: Pages: 99-113	The run-off condition for coating and rimming flows L. Preziosi, D.D. Joseph Keywords: Abstract: A layer of liquid can be supported on the inside or outside of a horizontal rotating cylinder if the viscous forces pulling the liquid around with the cylinder are large enough to overcome the force of gravity. If there are places on the cylinder where Directory: 88_10, 86_5 Note: Luigi Preziosi at AEM	Place: 147
1987 Submitted: 1986 J. Fluid Mech. Editor: Vol: 185 Issue:	Stability of rigid motions and coating films in bicomponent flows of immiscible liquids D.D. Joseph, L. Preziosi Keywords: About We consider the makkey of clobal stability of the rigid retation of two floids.	Record Place: 146
Pages: 323-351	Abstract: We consider the problem of global stability of the rigid rotation of two fluids. The realized interfacial configurations minimize a potential. We derive the most general form of the potential in which the working of the contact line may be expressed as Directory: 87_10, 87_10.stab-rigid-motions.pdf in pre95/papers/BicomponentFlow/LP_stab-rigid-motions Note:	
1987 Submitted: 1986 J. Non-Newtonian	Hyperbolicity and change of type in the flow of viscoelastic fluids through pipes	Record Place: 145
Fluid Mech. Editor: Vol: 24 Issue: Pages: 67-83	J.Y. Yoo, D.D. Joseph Keywords: Abstract: We consider steady flow of an upper convected Maxwell fluid through a channel with wavy walls. The vorticity of this flow will change type when the velocity in the center of the channel is larger than a critical value defined by the propagation of shear. Directory: 87_9	
1097	Note:	Record
1987 Submitted: 1986 J. Non-Newtonian	Delayed die swell D.D. Joseph, J.E. Matta, K. Chen Keywords:	Place: 144
Fluid Mech. Editor: Vol: 24 Issue: Pages: 31-65	Abstract: The experiments reported here establish that there is a general critical condition associated with die swell which we called delayed die swell. This condition is defined by a critical speed which is the area-averaged velocity, the extrusion velocity Directory: 87_8 Note: Joseph E Matta at Chemical Research, Development & Engineering Center,	
Editor: Vol: 24 Issue:	Abstract: The experiments reported here establish that there is a general critical condition associated with die swell which we called delayed die swell. This condition is defined by a critical speed which is the area-averaged velocity, the extrusion velocity Directory: 87_8	Record

Submitted: 1986 J. Non-Newtonian Fluid Mech. Editor: Vol: 25 Issue: Pages: 239-259	L. Preziosi, D.D. Joseph Keywords: Abstract: The theory given in this paper is based on a generalization of Boltzmann's equation of linear viscoelasticity in which the presence of a Newtonian viscosity is acknowledged. The solution of Stokes' first problem for this kind of fluid, with a viscosity Directory: 87_7 Note: Luigi Preziosi	143
1987 Submitted: 1986 <i>J. Fluid Mech.</i> Editor: Vol: 177 Issue: Pages: 467-483	Nonlinear mechanics of fluidization of beds of spherical particles A.F. Fortes D.D., Joseph T.S.Lundgren Keywords: Abstract: Experiments on fluidization with water of spherical particles falling against gravity in columns of rectangular cross-section are described. All of them are dominated by inertial effects associated with wakes. Two local mechanisms are involved: drafting & Directory: 87_4 Note:	Record Place: 142
1987 Submitted: 1985 IMA, Proceedings of Amorphous Polymers Workshop, March 5-8, 1985 at Inst. for Mathematics and its Applications Editor: Dafermos, J.L. Ericksen, D. Kinderlehrer, eds. Springer Verlag Vol: 6 Issue: Pages: 57-88	Hyperbolic dynamics in the flow of elastic liquids D.D. Joseph Keywords: Abstract: In this paper I discuss concepts of viscosity, elasticity, hyperbolicity, Hadamard instability and change of type in the flow of viscoelastic fluids. Directory: 87_3 Note:	Record Place: 141
1987 Submitted: Rheo. Acta Editor: Vol: 26 Issue: Pages: 96-99	Shear-wave speeds and elastic moduli for different liquids; Part 3, Experiments update O. Riccius, D.D. Joseph, M. Arney Keywords: shear-wave speed, effective shear modulus, relaxation time, wave-speed meter Abstract: Tables of values of shear-wave speeds, shear moduli and relaxation times for 18 new liquids are presented, supplementing the tables for 51 liquids given in Part 2. A brief discussion of errors and analysis of the oscilloscope traces is presented. Directory: 87_6 Note:	Record Place: 140
1987 Submitted: SIAM Advances in Multiphase Flow and Related Problems Editor: G. Papanicolau, ed. Vol: Issue: Pages: 101-122	Nonlinear mechanics of fluidization of spheres, cylinders and disks in water D.D. Joseph, A.F. Fortes, T.S. Lundgren, P. Singh Keywords: Abstract: Experiments on fluidization with water of spherical particles falling against gravity in columns of rectangular cross section are described. All of them are dominated by inertial effects associated with wakes. Two local mechanisms are involved: drafting & Directory: 87_5 Note:	Record Place: 139
1987 Submitted: Int. J. Engng. Sci. Editor: Vol: 25 Issue:2 Pages: 189-204	Instability of Poiseuille flow of two immiscible liquids with different vicosities in a channel P.T. Than, F. Rosso, D.D. Joseph Keywords: Abstract: We study the stability of plane Poiseuille flow of two immiscible liquids of different viscosities and equal densities. The problem is like one considered by C.S. Yih who found that flow in two layers of equal thickness was always unstable. Directory: 87_2 Note: Pergamon Journals Ltd., Pubd in Great Britain	Record Place: 138
1987 Submitted: J. Theoretical Applied Mech. Editor: Vol: 6 Issue:5 Pages: 619-645	Nonlinear stability of rotating flow of two fluids C. Guillope, D.D. Joseph, K. Nguyen, F. Rosso Keywords: Abstract: The stability of Couette flow between concentric cylinders of two immiscible fluids with different viscosities and different densities is studied. Two approaches are proposed, both based on the energy method. The first one consists in decomposing the solution at time t into a steady solution defined on the evolution configuration plus a	Record Place: 137

1986 Submitted: 1985 J. Non-Newtonian Fluid Mech. Editor: Vol: 20 Issue: Pages: 117-141	disturbance The second approach is possible only when an explicit solution is known. Directory: Note: C Guillope' at Mathematique, Laboratoire d'Analyse Nume'rique, Bat. n 425, Univ. Paris-Sud et CNRS, 91405 Orsay Cedex, France. F Rosso at Dept Math and its Applications, Univ. Naples, Via Mezzocannone 8, 80134, Naples, Italy Change of type and loss of evolution in the flow of viscoelastic fluids D.D. Joseph, J.C. Saut Keywords: Abstract: In this paper we discuss concepts associated with viscosity, elasticity, hyperbolicity, Hadamard instability and ill posedness of Cauchy problems in the flow of viscoelastic fluids. We frame the analysis in terms of vorticity and develop relations between change of type in steady flow and the ill posedness of the unsteady problem. We also consider the problem of regularizing Hadamard instabilities by the addition of Newtonian contributions to the constitutive equations. Directory: 86_7 Note:	Record Place: 136
1986 Submitted: 1985 J. Non-Newtonian Fluid Mech. Editor: Vol: 19 Issue: Pages: 237-249	Historical perspectives on the elasticity of liquids D.D. Joseph Keywords: Abstract: The existence of normal stresses, shear thinning and recoil in polymeric solutions and undiluted polymers (melts) makes it impossible to believe that every liquid is Newtonian. There are recurrent arguments starting with Poisson 1829, stimulated by Maxwel Directory: 86_6 Note:	Record Place: 135
1986 Submitted: 1985 J. Fluid Mech. Editor: Vol: 171 Issue: Pages: 309-338	Shear-wave speeds and elastic moduli for different liquids; Part 2, Experiments D.D. Joseph, O. Riccius, M. Arney Keywords: Abstract: In this paper we describe the experimental apparatus that we use to measure transit speeds. Tables of measured values of transit speeds and the corresponding values of the shear modulus are presented. The criteria we use to determine if a transit speed is a shear-wave speed are described and applied to the data. The main criteria are that transit speeds should be independent of the gap size and the corresponding value of the shear modulus should be consistent with independent rheometrical measurements Directory: 86_2 Note:	Record Place: 134
1986 Submitted: 1985 J. Fluid Mech. Editor: Vol: 171 Issue: Pages: 289-308	Shear-wave speeds and elastic moduli for different liquids; Part 1, Theory D.D. Joseph, A. Narain, O. Riccius Keywords: Abstract: In this paper we develop a theory for a rheometrical device for measuring the speed of shear waves into a region at rest. The device is a Couette apparatus with a narrow gap. The outer cylinder is moved impulsively and a time of transit is measured. Directory: 86_1 Note: A Narain now at Dept Mech. Engineering and Engineering Mech., Michigan Technological Univ., Houghton, MI 49931	Record Place: 133
1986 Submitted: 1984 SIAM J. Math. Anal. Editor: Vol: 17 Issue:4 Pages: 894-910	Hopf bifurcation in two component flow M. Renardy, D.D. Joseph Keywords: two-component flow, Hopf bifurcation Abstract: The stability of viscosity-stratified bicomponent flow has been studied by long wave asymptotics, by short wave asymptotics and numerically. These studies have shown that interfacial instabilities arise from the viscosity difference between th two fluids. Directory: 86_9 Note: (c) Society for Industrial and Applied Mathematics	Record Place: 132
1986 Submitted: Phys. Fluids Editor: Vol: 29 Issue:9 Pages: 2771	Rollers D.D. Joseph, K. Nguyen, G.S. Beavers Keywords: Abstract: High-viscosity liquids hate to work. Low-viscosity liquids are the victims of the laziness of high-viscosity liquids because they are easy to push around. The arrangement of components in two fluid flows is typically nonunique. There is a problem of places Directory: 86_8 Note: prev. published	Record Place: 131

		1
1986 Submitted:	Recent results on the stability of rotating flows of two fluids D.D.	Record Place: 130
Rend. Sem. Mat. Univ. Politec. Torino Editor: Vol: 44 Issue:2 Pages: 173-206	Keywords: Abstract: Flows of two fluids are important and interesting because they are commonplace, they lend themselves to technological application and they introduce new phenomena without counterpart in the flow of one fluid. Many configurations of flow of two fluids are Directory: 86_4 Note: Full Journal: Universita e Politecnico di Torino, Seminario Matematico. Rendiconti. Univ. Politec. Torino, Turin.	
1986		Record
Submitted: Proceedings of the Conference on Energy, Stability, Theory and Convection, Capri, May 20-28, 1986 Editor: Vol: Issue: Pages: 364-382	Two fluids heated from below D.D. Joseph Keywords: Abstract: We consider the problem of stability of the conduction solution of two fluids in two layers heated from below. This is the classical Benard problem, but for two fluids. The two fluid problem is never self-adjoint. We compute the adjoint. The computation Directory: 86_3 Note:	Place: 129
1985	Hyperbolicity and change of type in the flow of viscoelastic fluids	Record Place:
Submitted: 1985 J. Non-Newtonian Fluid Mech. Editor: Vol: 19 Issue: Pages: 15-41	through channels J.Y. Yoo, D.D. Joseph Keywords: Abstract: We consider steady flow of an upper convected Maxwell fluid through a channel with wavy walls. The vorticity of this flow will change type when the velocity in the center of the channel is larger than a critical value defined by the propagation of shear. Directory: 85_3 Note:	128
1985	Effects of quadratic drag on convection in a saturated porous	Record Place:
Submitted: 1984 Phys. Fluids Editor: Vol: 28 Issue:3 Pages: 995-997	medium D.A. Nield, D.D. Joseph Keywords: Abstract: The effects of inertia (involving a drag which is quadratic in velocity) on convection in a fluid-saturated porous medium are considered. It is shown that the effect of quadratic drag is physically significant for natural convection, at realistic Directory: 85_7 Note: DA Nield at Dept Mathematics and Statistics, Univ. of Auckland, Auckland, New Zealand	127
1985	Oscillatory instability in a Benard problem of two fluids	Record Place:
Submitted: 1984 Phys. Fluids Editor: Vol: 28 Issue:3 Pages: 788-793	Y. Renardy, D.D. Joseph Keywords: Abstract: A linear stability analysis for a Benard problem with two layers is considered. The equations are not self-adjoint. The system can lose stability to timeperiodic disturbances. For example, it is shown numerically that when the viscosities and coefficient Directory: 85_6 Note:	126
1985	Hyperbolicity and change of type in the flow of viscoelastic fluids	Record Place:
Submitted: 1984 ARMA Editor: Vol: 87 Issue:3 Pages: 213-251	D.D. Joseph, M. Renardy, JC. Saut <i>Keywords:</i> Abstract: The equations governing the flow of viscoelastic liquids are classified according to the symbol of their differential operators. Propagation of singularities is discussed and conditions for a change of type are investigated. The vorticity equations for steady flow can change type when a critical condition involving speed and stresses is satisfied. This leads to a partitioning of the field of flow into subcritical and supercritical regions, as in the problem of transonic flow Directory: 85_2 Note: Jean-Claude Saut at Dept Math. Universite' de Paris-Sud, Orsay	125
1985	Hyperbolicity and change of type in sink flow	Record
Submitted: 1984	J.Y. Yoo, M. Ahrens, D.D. Joseph	Place: 124

J. Fluid Mech. Editor: Vol: 153 Issue: Pages: 203-214	Keywords: Abstract: We consider the problem of steady fast flow of a family of Oldroyd fluids into a hole, and show that the field of flow is partitioned into elliptic (subcritical) and hyperbolic (supercritical) regions. We analyze the characteristics and show that the vort Directory: 85_1 Note: Mark Ahrens at AEM. Jung Y. Yoo at Dept Mech. Engineering, Seoul National University, Seoul, Korea	Record
1985 Submitted: 1983 J. Fluid Mech. Editor: Vol: 153 Issue: Pages: 151-165	Stability of rigid motions and rollers in bicomponent flows of immiscible liquids D.D. Joseph, Y. Renardy, M. Renardy, K. Nguyen Keywords: Abstract: We consider the motion of two rings of liquids with different viscosities and densities lying between concentric cylinders that rotate with the same angular velocity [omega]. Gravity is neglected and interfacial tension is included. We show that rigid motions are globally stable and that the shape of the interface which separates the two fluids is determined by a minimizing problem for a potential P defined as the negative of the sum of the kinetic energies of two rigid motions plus the surface energy of the interface Directory: 85_5 Note: K. Nguyen now with Firestone Tire and Rubber Co., Akron, Ohio 44317	Place: 123
1985 Submitted: 1983 J. Fluid Mech. Editor: Vol: 150 Issue: Pages: 381-394	Couette flow of two fluids between concentric cylinders Y. Renardy, D.D. Joseph Keywords: Abstract: We consider the flow of two immiscible fluids lying between concentric cylinders when the outer cylinder is fixed and the inner one rotates. The interface is assumed to be concentric with the cylinders, and gravitational effects are neglected. We present a numerical study of the effect of different viscosities, different densitities and surface tension on the linear stabilitity of the Couette flow. Our results indicate that, with surface tension, a thin layer of the less-viscous fluid next to either cylinder is linearly stable and that it is possible to have stability with the less dense fluid lying outside. The stable configuration Directory: 85_4 Note:	Record Place: 122
1985 Submitted: Viscoelasticity and Rheology Editor: A. Lodge, J. Nohel, M. Renardy, eds. Academic Press Vol: Issue: Pages: 235-321	Hyperbolic phenomena in the flow of viscoelastic fluids D.D. Joseph, Appendix by Marshall Slemrod Keywords: Abstract: This paper treats the problem of hyperbolicity, change of type and nonlinear wave propagation in the flow of viscoelastic fluids. Rate equations for fluids with and without instantaneous elasticity are derived and discussed Directory: 85_6 Note: M Slemrod at Dept Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180	Record Place: 121
1984 Submitted: 1983 J. Fluid Mech. Editor: Vol: 141 Issue: Pages: 319-345	Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities D.D. Joseph, K. Nguyen, G.S. Beavers Keywords: Abstract: High-viscosity liquids hate to work. Low-viscosity liquids are the victims of the laziness of high-viscosity liquids because they are easy to push around. The arrangement of components in steady flow of immiscible liquids is typically non-unique. The problem of selection of arrangements is defined here and is studied by variational methods under the hypothesis that the realized arrangements are the ones that maximize the speed on exterior boundaries for prescribed boundary tractions, or the ones that minimize the tractions for prescribed speeds. Directory: 84_6 Note:	Record Place: 120
1984 Submitted: 1983 J. Fluid Mech. Editor: Vol: 141 Issue: Pages: 309-317	Instability of the flow of two immiscible liquids with different viscosities in a pipe D.D. Joseph, M. Renardy, Y. Renardy Keywords: Abstract: We study the flow of two immiscible fluids of different viscosities and equal density through a pipe under a pressure gradient. This problem has a continuum of solutions corresponding to arbitrarily prescribed interface shapes. The question therefore Directory: 84_5	Record Place: 119

	Note: Michael and Yuriko Renardy at Mathematics Research Center, U of Wisconsin-Madison, 610 Walnut St., Madison, WI 53705	
1984 Submitted: 1983 J. Fluid Mech.	Interfacial shapes between two superimposed rotating simple fluids H.A. Tieu, D.D. Joseph, G.S. Beavers Keywords:	Record Place: 118
Editor: Vol: 145 Issue: Pages: 11-70	Abstract: The interfacial shape of two immiscible simple fluids in a vertical cylinder which oscillates about its axis is investigated using the theory of domain perturbations. The perturbation stresses are expressed by integrals over the history of the deformation. At first order the azimuthal velocity field satisfies the requirements of continuity in velocity and shear stresses across the interface. At second order the solution consists of a mean part and a time-periodic part varying at twice the frequency of the cylinder. the mean problem is inverted for the mean secondary flow, pressure and interfacial shape. Experimental data for two polymeric oils (TLA227 and STP) show qualitative agreement with theoretical predictions for the mean interfacial shapes. Directory: 84_4 Note: HA Tieu at Goodyear Tire and Rubber Co. Akron, Ohio	
1984	·	Record
Submitted: 1982 J. of Elasticity Editor: Vol: 14 Issue: Pages: 19-26	Classification of linear viscoelastic solids based on a failure criterion A. Narain, D.D. Joseph Keywords: Abstract: An isotropic, incompressible linear viscoelastic solid subjected to a step shear displacement fails if the relaxation function G(s) is such that 0 <g(0)< -="" 49931="" 84_1="" and="" at="" case,="" dept="" directory:="" discontinuity="" displacement="" engineering="" hague,="" houghton,="" in="" infty="" infty<g'(0)<="0." into="" martinus="" mech.="" mech.,="" mi="" michigan="" narain="" netherlands.<="" nijhoff="" note:="" propagates="" pub.="" td="" tech.="" the="" this="" univ.,="" usa.=""><td>Place: 117</td></g(0)<>	Place: 117
1984	Systematic linearization for stability of shear flows of viscoelastic	Record Place:
Submitted: 1981 ARMA Editor: Vol: 86 Issue: Pages: 65-84	fluids J. Dunwoody, D.D. Joseph Keywords: Abstract: The phenomenon of melt fracture occurring in the process of polymer extrusion (see Tordella, 1963) has attracted the attention of research workers in the past two decades. In order to understand the mechanisms which might give rise to this phenomenon, Directory: 84_2 Note: J. Dunwoody at Dept of Engineering Math., The Queen's Univ. of Belfast, Northern Ireland	116
1984	Remarks on the stability of viscometric flow	Record Place:
Submitted: Rheol. Acta Editor: Vol: 23 Issue: Pages: 345-354	M. Ahrens, D.D. Joseph, M. Renardy, Y. Renardy Keywords: viscometric flow, instability, short memory assumption, change of type Abstract: Directory: 84_7 Note:	115
1984	Climbing constants for various liquids	Record
Submitted: J. Rheol Editor: Vol: 28 Issue:4 Pages: 325-345	D.D. Joseph, G.S. Beavers, A. Cers, C. Dewald, A. Hoger, P.T. Than <i>Keywords:</i> Abstract: In this article we present tables of values of the climbing constant \hat beta=3alpha_1 + 2alpha_2, where alpha_1 and alpha_2 are the parameters of the second-order approximation to the stress in a slow, slowly varying flow of any simple non-Newtonian Directory: 84_3 Note: Carolyn Dewald and others at AEM, U of M. Anne Hoger at Dept Theoretical and Applied Mech., Univ. Illinois, Urbana-Champaign.	Place: 114
1983	Extrudate swell for a round jet with large surface tension	Record Place:
Submitted: 1983 J. Non-Newtonian Fluid Mech. Editor: Vol: 13 Issue: Pages: 203-222	H.A. Tieu, D.D. Joseph Keywords: Abstract: The problem of extrudate swell of a viscoelastic fluid from a round pipe is studied by the method of domain perturbations. The perturbation problems are solved by a finite-element method through second-order in the flow rate parameter epsilon for small Directory: 83_7 Note: Pub. Elsevier Science Publishers B.V., Amsterdam	113
1983	Jets into liquid under gravity	Record
Submitted: 1982	D.D. Joseph, K. Nguyen, J.E. Matta	Place: 112

Editor: Vol: 128 Issue: Pages: 443-468 1983 Submitted: 1981 Chaotic Behavior of Deterministic Systems Editor: Vol: Issue: Pages: 1	Keywords: Abstract: We study the flow of a heavy, viscous, possibly non-Newtonian axisymmetric jet of liquid of density rho falling under gravity g into a lighter liquid of density ~-rho. If the change in the momentum of the entrained lighter liquid is neglected the jet Directory: 83_2 Note: K Nguyen with AEM U of M; Matta with Aberdeen Proving Ground, MD 21018 Stability and bifurcation theory (course 5) D.D. Joseph Keywords: TOC: Bifurcation in R', in R^2, Projections into R^2, Bifurcation of periodic orbits. Normal forms. Derivation of the autonomous equation, Bifurcation from periodic solutions. Hopf bifurcation into a torus of subharmonic and asymptotically Abstract: In this lecture we consider the theory of singular points of plane curves. And to	Record Place: 111
rages.	these considerations we add the study of stability Directory: 83 3	
	Note: Pubd North-Holland Publishing Co. 1983	
1983 Submitted: Transactions of the 39 th Conference of Army Mathematicians Editor: Vol: Issue: Pages: 1-6	Examples and significance of change of type in viscoelasticity D.D. Joseph, M. Renardy, JC. Saut Keywords: Abstract: The equations governing the flow of viscoelastic fluids are classified according to the symbol of their differential operators. Conditions for a change of type in steady two-dimensional flows are derived for a three-constant Oldroyd model Directory: 83_6 Note:	Record Place: 110
1983 Submitted: Lecture Notes in Mathematics, Equadiff 82. Proceedings Worzburg 1982 Editor: Also in Transactions of 28th Conference of Army Mathematicians, ARO Report, 83-1 (1983). Vol: 1017 Issue: Pages: 476-507	Linearized dynamics of shearing deformation perturbing rest in viscoelastic materials A. Narain, D.D. Joseph Keywords: Abstract: This paper extends our earlier work on the propagation of jumps in velocity and displacement for shearing deformations imposed impulsively at the boundary of viscoelastic fluids and solids obeying constitutive equations in integral form with arbitrary Directory: 83_5 Note:	Record Place: 109
1983 Submitted: Rheol. Acta Editor: Vol: 22 Issue: Pages: 528-538	Remarks about the interpretation of impulse experiments in shear flows of viscoelastic liquids A. Narain, D.D. Joseph Keywords: step jump, first normal-stress difference, reflecting shock waves, relaxation function Abstract: The effect of inertia in three popular impulse experiments in shear flows of viscoelastic liquids is considered. Dynamics of the flow is used to evaluate the stress observables such as the shear stress and the first normal stress difference at the walls. Directory: 83_4 Note:	Record Place: 108
1983 Submitted: ARMA Editor: Vol: 81 Issue:1 Pages: 53-95	Fading memory J.C. Saut, D.D. Joseph Keywords: Abstract: Fading memory expresses the intuitive idea that the recent rather than the remote history of deformation of a material body should have a greater effect on the present stress. The problem of fading memory is to give a useful mathematical formulation Directory: 83_1 Note:	Record Place: 107
1982 Submitted: 1981 J. Non-Newtonian Fluid Mech. Editor: Vol: 10 Issue:	Matched eigenfunction expansions for slow flow over a slot S.A. Trogdon, D.D. Joseph Keywords: Abstract: We solve the problem of plane flow of a second-order fluid over a rectangular slot when inertia is neglected by matching biorthogonal eigenfunction expansions in different regions of flow. The method appears to be cheaper and more accurate than direct	Record Place: 106

Pages: 185-213	num Directory: 82_4 Note: Trogdon at Dept of Mechanical Engineering, Clarkson College, Potsdam, New York 13676	
1982 Submitted: 1980 SIAM J. Appl. Math. Editor: Vol: 47 Issue:3 Pages: 653-677	The shape of stress-free surfaces on a sheared block P. Dixit, D.D. Joseph Keywords: Abstract: We obtain solutions for the shape of the free surface on the upper and lower boundaries of an initially rectangular, incompressible linearly viscoelastic block when the block is sheared at the vertical sidewall. To solve the problem when the vertical Directory: 82_2 Note:	Record Place: 105
1982 Submitted: Proceedings of 9th US National Congress of Applied Mechanics, Held at Cornell Univ., Ithaca, NY June 21-25, 1982 Editor: Y.H. Pao, et al Vol: Issue: Pages: 433-436	The application of bifurcation theory to physical problems D.D. Joseph Keywords: Abstract: I am going to start my lecture with a citation by James Lighthill 1982. He says "There is one great complicating feature that introduces major difficulties into mechanics, physics, chemistry, engineering, astronomy and biology. This complicating feature Directory: 82_7 Note:	Record Place: 104
1982 Submitted: Rheol. Acta Editor: Vol: 21 Issue: Pages: 228-250	Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid A. Narain, D.D. Joseph Keywords: step jump, singular surface, reflection, shearing flow, simple fluid Abstract: We consider linearized dynamics associated with step jumps in the velocity or displacement of the boundary of a fluid in a shearing motion. The discontinuity will propagate into the interior with a speed C = sqrt[G(0)/rho], (rho is the density) if Directory: 82_6 Note: Narain with AEM U of M	Record Place: 103
1982 Submitted: Water Resources Research Editor: Vol: 18 Issue:4 Pages: 1049-1052	Nonlinear equation governing flow in a saturated porous medium D.D. Joseph, D.A. Neild, G. Papanicolaou <i>Keywords:</i> Abstract: It is argued that the appropriate generalization of Darcy's law when inertia effects are included takes the form nabla p = -(mu/k) V -(rho c/k^[1/2]) V V, div V = 0, where k is the permeability of the medium and the 'form drag constant' c is a coeff Directory: 82_5 Note: Pubd by American Geophysical Union	Record Place: 102
1982 Submitted: ARMA Editor: Vol: 78 Issue:3 Pages: 223-274	Convergence of biorthogonal series of biharmonic eigenfunctions by the method of titchmarsh D.D. Joseph, L.D. Sturges, W.H. Warner Keywords: Abstract: Canonical edge problems for the biharmonic equation can be solved by separating variables. The eigenvalues and eigenvectors arising in this separation are derived from a reduced system of ordinary differential equations along lines suggested inRCSmith Directory: 82_3 Note:	Record Place: 101
1981 Submitted: 1981 J. Non-Newtonian Fluid Mech. Editor: Vol: 9 Issue: Pages: 269-300	Rimming flow of a viscoelastic liquid inside a rotating horizontal cylinder J. Sanders, D.D. Joseph, G.S. Beavers Keywords: Abstract: The flow of a simple liquid coating the inside of a horizontal, steadily rotating cylinder is investigated. The theory, in combination with the experiments, allows us to determine the complex viscosity eta*(Omega) of the liquid, characterizing its Directory: 81_5 Note:	Record Place: 100
1981 Submitted: 1980 Rheol. Acta	The stick-slip problem for a round jet; II, Small surface tension S.A. Trogdon, D.D. Joseph Keywords:	Record Place: 99

Editor: Vol: 20 Issue:1 Pages: 1-13 1981 Submitted: Dynamical Systems and Turbulence, Warwick 1980; Proceedings of a Symposium Held at Univ. of Warwick, 1979/80 Editor: D.A. Rand, LS. Young, eds.; Springer Lecture Notes in Mathematics	Abstract: The stick-slip problem for a round jet studied in Part I gives a good approximation for the swell of a low speed jet when the surface tension is large but it fails when the surface tension is small. In this paper a new stick-slip problem II is defined Directory: 81_2 Note: Lectures on bifurcation from periodic orbits D.D. Joseph Keywords: Abstract: These lectures are about bifurcations from a periodic orbit of an evolution equation with periodic forcing. The analysis applies to equations in an arbitrary Hilbert space, not just to finite dimensional problems. The results described here are joint Directory: 81_10 Note: A. Dold, B. Eckmann series eds., Mathematics Inst., Univ. of Warwick, Advisor D.B.A. Epstein	Record Place: 98
Vol: 898 Issue: Pages: 1-12		
1981 Submitted: ASME-SMAC Forum Editor: J. Fong, ed. Vol: Issue: Pages:	Mathematics, Mechanics, and engineering: an essay on the contribution of applied mechanics to engineering and applied science D.D. Joseph Keywords: Abstract: Directory: 81_10 Note: !-MISSING OUTPRINTS	Record Place: 97
1981 Submitted: ARMA Editor: Vol: 77 Issue:3 Pages: 199-261	Free surface problems induced by motions perturbing the natural state of simple solids P.M. Dixit, A. Narain, D.D. Joseph Keywords: Abstract: We develop a perturbation theory for solids along the lines which have been used to treat the motions of fluids which perturb states of rest or rigid motion. The perturbation theory for fluids does not assume special rheological models; it defines its own Directory: 81_4 Note:	Record Place: 96
1981 Submitted: ARMA Editor: Vol: 75 Issue:3 Pages: 251-256	Instability of the rest state of fluids of arbitrary grade greater than one D.D. Joseph Keywords: Abstract: I am going to prove that the rest state of fluids of grade n, any n.1, is unstable in the spectral sense of linearized theory when the ratio of the coefficients of A_n and A_(n-1) in the constitutive equation is negative. Negative ratios, and only Directory: 81_3 Note:	Record Place: 95
1981 Submitted: Topics in Applied Physics, Hydrodynamic Instabilities and the Transition to Turbulence Editor: H.L. Swinney, J.P. Gollub, eds. , Vol: 45 Issue:	Hydrodynamic stability and bifurcation D.D. Joseph Keywords: Abstract: The goal of hydrodynamics is to describe and predict the motions of fluids under applied forces. For incompressible Navier-Stokes fluids, in many circumstances, these forces scale with the Reynolds number. When the Reynolds number is small Directory: 81_1 Note: Pubd Springer-Verlag, Berlin, Heidelberg, Germany	Record Place: 94
Pages: 27-76 1980 Submitted: 1980 Phys. Fluids	Boundary conditions for thin lubrication layers D.D. Joseph	Record Place: 93

Editor: Vol: 23 Issue: 12 Pages: 2356-2358	Keywords: Abstract: In certain circumstances, the effects of a thin lubrication layer may be accommodated by a slip flow boundary condition with the gradient of the tangential component of the velocity at the wall proportional to the square of the tangential component there. Directory: 80_10 Note: Pub'd American Institute of Physics 1980	
1980 Submitted: 1980 <i>Rheol. Acta</i> Editor: Vol: 19 Issue: Pages: 404-420	The stick-slip problem for a round jet; I. Large surface tension S.A. Trogdon, D.D. Joseph Keywords: Abstract: A jet of fluid is extruded from a round pipe at low speed with gravity and wind shear neglected. The fluid must adjust from a fully developed flow in the pipe to a uniform flow far downstream. At low speeds this adjustment appears to require that Directory: 80_9 Note:	Record Place: 92
1980 Submitted: 1979 J. Non-Newtonian Fluid Mech. Editor: Vol: 6 Issue: Pages: 325-331	A normal stress amplifier for the second normal stress difference L.D. Sturges, D.D. Joseph Keywords: Abstract: When a viscoelastic fluid flows down a tilted trough, the free surface bulges upward in the middle. The amount of bulge is proportional to the second normal stress difference of the fluid. Wineman and Pipkin 1966 were the first to suggest that Directory: 80_6 Note: Sturges at Dept of Engineering Science and Mechanics, and Engineering Research Institute, Iowa State University, Ames, Iowa 50011 USA	Record Place: 91
1980 Submitted: 1979 Rheol. Acta Editor: Dietrich Steinkopff, Verlag, Darmstadt Vol: 19 Issue: Pages: 19-31	The free surface on a liquid between cylinders rotating at different speeds; Part III G.S. Beavers, J.Y. Yoo, D.D. Joseph Keywords: Abstract: When a viscoelastic fluid is sheared between two concentric cylinders undergoing differential rotation the free surface on the fluid is deformed as a consequence of the normal stresses induced in the fluid by the shearing motion Directory: 80_3 Note:	Record Place: 90
1980 Submitted: Recent Methods in Nonlinear Analysis and Applications, SAFA IV - Int'l Meeting, Napoli, Italy, March 21-28 Editor: Liguori, ed. Vol: 4 Issue: Pages:	Bifurcation of periodic solutions D.D. Joseph Keywords: Abstract: I consider the problem du/dt = f(t,mu,u), f(t,)=f(t+T,), f(t,mu,0)=mu[element of] I_0, where I_0 is an interval containing mu=0, u is a vector in R^n, or more generally, in a Hilbert space. The problem (1) can arise when there is a forced T-periodic motion which is subtracted off the governing problem leading to the local form given by (1) in which u=0 is a solution. The analysis given here is taken from Chap. X of the forthcoming book "Elementary Stability and Bifurcation Theory" by G. Iooss and D. Joseph which is to appear in 1980 as a Springer Undergratuate Textbook in Mathematics. Directory: 80_11 Note: !-MISSING OUTPRINTS	Record Place: 89
1980 Submitted: Proceedings of IUTAM Toronto Editor: North Holland, 1980 Vol: Issue: Pages: 295-305	Bifurcation in fluid mechanics D.D. Joseph Keywords: Abstract: A broad discursive review of bifurcation theory in fluid mechanics is given. The review delineates the assumptions, methods and potential for application of bifurcation theory. The problem of sequential bifurcation of flows into other flows Directory: 80_8 Note: IUTAM (International Union of Theoretical and Applied Mechanics) 1980	Record Place: 88
1980 Submitted: ARMA Editor: Vol: 79 Issue: Pages: 389-393	An integral invariant for jets of liquid into air D.D. Joseph Keywords: Abstract: A liquid is forced to move from left to right (x increasing) down a round pipe of length L by high pressure imposed at the entrance x = -L of the pipe. The flow is assumed to be axisymmetric but the pressure and velocity which is prescribed at Directory: 80_7	Record Place: 87
1980 Submitted: Proceedings of a	The behaviour of solutions lying on an invariant 2-Torus arising from the bifurcation of a periodic solution	Record Place: 86

Conference on	G. Iooss, D.D. Joseph	
Bifurcation Theory at Bielefeld, Germany, October 1979 Editor: H. Amann, N. Bayley, K. Kirchgasser, eds., Pitman Pub.	Keywords: Abstract: We are going to consider the problem of bifurcation of a periodic solution into an invariant two-dimensional torus, for the following autonomous differential equation in R^k: dV/dt=F(mu,V), where F is as smooth as we wish and mu is a real parameter. Directory: 80_5 Note	
Vol: Issue: Pages: 92-114		
1980 Submitted:	Motions perturbing states of rest of viscoelastic solids P.M. Dixit, D.D. Joseph	Record Place: 85
Transactions of the 25 th Conference of Army Mathematicians Editor: Vol: 80 Issue:1 Pages: 503-584	Keywords: Abstract: Our goal is to derive the canonical forms of the stress and equations of motion governing the motions which perturb the rest state (of elastostatic deformation) and the natural (unstressed and undeformed) state of viscoelastic solids. In this theory Directory: Note:	
1980 Submitted: J. Rheol. Editor:	Free surface on a simple fluid between cylinders undergoing torsional oscillations; IV, Oscillating Rods B.E.D. Kolpin, G.S. Beavers, D.D. Joseph	Record Place: 84
Vol: 24 Issue:6 Pages: 719-739	Keywords: Abstract: In earlier papers(Parts 1 and 2) we gave the perturbation analysis for the prediction of the free surface on a simple fluid near an oscillating rod and presented the results of a preliminary experiment involving a single rod in one sample of simple fluid. Directory: 80_2 Note: BED Kolpin, The 3M Co., St Paul, MN. The Society of Rheology, Inc. Pub'd John Wiley & Sons, Inc	
1980 Submitted: J. Applied Mech. Editor: Vol: 87 Issue: Pages: 482-484	Stokes flow in a driven sector by two different methods J. Sanders, V. O'Brian, D.D. Joseph Keywords: Abstract: A biorthogonal series expansion and a numerical finite-difference approximation are applied to the problem of steady Stokes flow in a driven sector of 10 deg total angle, providing mutual support of the theoretical techniques. For this problem the method Directory: 80_1 Note:	Record Place: 83
1979 Submitted: 1978 J. Non-Newtonian Fluid Mech. Editor: Vol: 5 Issue: Pages: 323-352	Experiments on free surface phenomena G.S. Beavers, D.D. Joseph Keywords: Abstract: This paper reviews an experimental program in which predictions from domain perturbation theory for motions which perturb the rest state are used in conjunction with experimental measurements on free surface deformations associated with Weissenberg effect Directory: 79_6 Note: Presented at the UITAM Symposium on Non-Newtonian Fluid Mechanics, Louvain-La-Neuve, Belgium, 28 August-1 September, 1978	Record Place: 82
1979 Submitted: 1978 J. Non-Newtonian Fluid Mech. Editor: Vol: 5 Issue: Pages: 13-31	Perturbation of state of rest and rigid motion of simple fluids and solids D.D. Joseph Keywords: Abstract: In the lecture I advocate perturbing states of rest and rigid motion with arbitrary motions. This procedure leads to general expressions for the relation between stress and deformation and defines the parameters which must be measured in order to Directory: 79_4 Note: Elsevier Scientific Publishing Co. Amsterdam, Printed in The Netherlands	Record Place: 81
1979 Submitted: 1978 J. Fluid Mech. Editor: Vol: 92 Issue:3 Pages: 529-590	Higher-order theory of the Weissenberg effect J. Yoo, D.D. Joseph, G.S. Beavers Keywords: Abstract: The higher-order theory of the Weissenberg effect is developed as a perturbation of the state of rest. The perturbation is given in powers of the angular frequency Omega of the rod and the solution is carried out to O(Omega^4). The perturbation induces Directory: 79_3	Record Place: 80

	Note:	D
1979	Direct and repeated bifurcation into turbulence	Recore Place:
Submitted:	D.D. Joseph	79
Approximation	Keywords:	
Methods for the	Abstract: This lecture is a review of the applications of the theory of bifurcation to the	
Navier-Stokes	problem of transition to turbulence. Most of the material in this lecture can be found in	
Equations	detail in my recent review, in other reviews in the same volume and in the monograph	
Editor: Springer Lecture	Directory: 79_5	
Notes in Mathematics, R.	Note:	
Rautmann, ed.		
Vol: 771 Issue:		
Pages: 249-271		
1979	Factorization theorems and repeated branching of solutions at a	Record
Submitted:	simple eigenvalue	Place: 78
Annals of the New	D.D. Joseph	
York Academy		
of Sciences	Keywords:	
Editor:	Abstract: In this paper I prove factorization theorems which show that, under certain	
Vol. 316 Issue:	typical hypotheses, the stability of steady and time-periodic solutions can change only at a	
Pages: 150-167	turning point or at a point of bifurcation.	
1 4505. 100 101	Directory: 79_2	
4070	Note:	Recor
1979	A new separation of variables theory for problems of Stokes flow and	Place:
Submitted:	elasticity	77
2nd Symposium on	D.D. Joseph	
Trends in	Keywords:	
Applications of Pure	Abstract: Some classes of fourth-order boundary-value problems arising in the theory of	
Mathematics	Stokes flow and elasticity are solved by the method of biorthogonal series. The	
to Mechanics	eigenfunctions are formed from separable solutions when the separation constants	
Editor: London; Pitman	(eigenvalues)	
Publishing	Directory: 79_1	
Vol: Issue:	Note:	
Pages: 129		
1978	Constitutive equations and free surfaces	Recore Place:
Submitted: 1977	D.D. Joseph	76
Contemporary	Keywords:	
Developments in	Abstract: The general theory of perturbations of rigid body motions of simple fluids	
Continuum Mechanics	with applications to free surface problems is discussed. The general theory is utilized	
and Partial	to explain phenomena exhibited in the movie "Novel Weissenberg Effects" by G.S.	
Differential Equations	Beavers & DDJ	
Editor: G.M. de La Penha,	Directory: 78_10	
L.A. Medeiros	Note: North-Holland Publishing Co.	
Vol: Issue:		
Pages: 254-283		
	Stokes flow in conical trenches	Record
March 1978	Stokes flow in conical trenches	Place:
March 1978 Submitted: 1976	C.H. Liu, D.D. Joseph	
March 1978 Submitted: 1976 SIAM J. Appl. Math.	C.H. Liu, D.D. Joseph Keywords:	Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor:	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of	Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-	Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads	Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3	Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note:	Place: 75
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue: 2 Pages: 286-296	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II	Place: 75
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math.	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue: 2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor:	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue: 2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor:	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords:	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal series solving edge problems which arise in elasticity and in Stokes flow in cavities. These	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal series solving edge problems which arise in elasticity and in Stokes flow in cavities. These conditions and those given in Part I,	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal series solving edge problems which arise in elasticity and in Stokes flow in cavities. These conditions and those given in Part I, (D.D. Joseph, vol. 33, 1977, pp337-347) include	Place: 75 Recor Place:
March 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:2 Pages: 286-296 1978 Submitted: 1976 SIAM J. Appl. Math. Editor: Vol: 34 Issue:1	C.H. Liu, D.D. Joseph Keywords: Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in cone-shaped trenches formed as the intersection of a cone of circular cross-section and a spherical shell centered at the vertex of the cone. The theory leads Directory: 78_3 Note: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II D.D. Joseph, L. Sturges Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal series solving edge problems which arise in elasticity and in Stokes flow in cavities. These conditions and those given in Part I, (D.D. Joseph, vol. 33, 1977, pp337-347) include Directory: 78_2	Place: 75 Recor Place:

		1
SIAM J. Appl. Math.	Keywords:	
Editor:	Abstract: In this paper we develop a separation of variables theory for solving problems of	
Vol: 34 Issue: 2	Stokes flow in annular trenches bounded by horizontal parallel planes and concentric	
Pages: 247-285	vertical cylinders. The theory leads to a new set of Stokes flow eigenfunctions,	
4070	Directory: 78_1	Record
1978	Hydrodynamic stability and bifurcation	Place:
Submitted:	D.D. Joseph	72
Fluid Dynamics	Keywords:	
Transactions (Arch.	Abstract: Our understanding of hydrodynamic stability has been greatly enriched by	
Mechaniki Stosovanej),	recent developments in the mathematical theory of bifurcation. Bifurcation theory brings	
Proceedings of XIII-th	the theory of stability closer to physics and leads to simple criteria by which one can judge	
Biennial Fluid	Directory: 78_4 Note:	
Dynamics	Note:	
Symposium, Olztyn-		
Kortowo, Poland Sept		
5- 10, 1977		
Editor:		
Vol: 9 Issue:		
Pages: 177-228		
1977	Even guyfana nyahlama in whoological fluid machanica	Record
Submitted: 1977	Free surface problems in rheological fluid mechanics D.D. Joseph, G.S. Beavers	Place:
Rheol. Acta	Keywords:	/1
Editor: Dr. Dietrich	Abstract: Free surfaces are sensitive to the state of stress in fluids. The striking variations	
Steinkopff, ed.	in the shape of free surfaces induced by the motion of viscoelastic fluids chart the	
Vol: 16 Issue:	competing effects of elasticity, normal stresses and inertia in the fluid.	
Pages: 169-189	Directory: 77 4	
	Note: Paper, presented to Euromech Colloquium, No. 79, Darmstadt 7-10, 1976	
1977		Record
Submitted: 1976	Stokes flow in wedge-shaped trenches	Place:
J. Fluid Mech.	C.H. Liu, D.D. Joseph	70
Editor:	Keywords:	
Vol: 80 Issue: 3	Abstract: In this paper we develop a separation of variables theory for solving problems of Stokes flow in wedge-shaped trenches bounded by radial lines and concentric circles	
Pages: 443-463	centered at the vertex of the wedge. The theory leads to a set of Stokes flow eigenfuncti	
rages. I is iss	Directory: 77_9	
	Note:	
1977		Record
Submitted: 1976	Novel Weissenberg effects	Place:
J. Fluid Mech.	G.S. Beavers, D.D. Joseph Keywords:	09
Editor:	Abstract: We have observed two novel manifestations of the Weissenberg effect in	
Vol: 81 Issue: 2	viscoelastic liquids which are set into motion by the rotation of a circular rod. In the first	
Pages: 265-272	experiment we floated a layer of STP on water. The STP climbs up the rod into the air	
	Directory: 77 6	
	Note: !-photos poor	
1977	Bifurcation and stability of nT-periodic solutions branching from T-	Record
Submitted:	, ,	Place: 68
ARMA	periodic solutions at points of resonance	00
Editor:	G. Iooss, D.D. Joseph	
Vol: 66 Issue: 2	Keywords:	
Pages: 135-172	Abstract: We shall study solutions which bifurcate from forced, T-periodic solutions of	
- ~	evolution equations of the Navier-Stokes type. Our principal interest is in subharmonic	
	bifurcating solutions, n T-periodic solutions with n>=1.	
	Directory: 77_12 Note:	
1977		Record
	Factorization theorems, stability and repeated birucation	Place:
Submitted:	D.D. Joseph	67
ARMA Editor:	Keywords:	
Vol: 66 Issue: 2	Abstract: In this paper I prove theorems about the stability of bifurcating solutions without rectricting the study to small applitudes. I do not even always require that the	
Pages: 99-118	without restricting the study to small amplitudes. I do not even always require that the	
1 4505. 55-110	solutions which I call 'bifurcating' form connected branches; they may be isolated	
	Directory: 77_11 Note:	
1977		Record
Submitted:	The bifurcation of T-periodic solutions into nT-periodic solutions and	Place:
		66

Proceedings of International Workshop on Synergetics at Schloss Elmau, Bavaria, May 2-7, 1977 Editor: H. Haken, ed. Vol: Issue: Pages:	Tori D.D. Joseph Keywords: Abstract: My lecture on bifurcation and stability of solutions which branch from forced T- periodic solutions is based on the recent work of G. Iooss and myself [ARMA 66(2) 1997, 135-172] and on my forthcoming paper on factorization theorems [ARMA 66(2) 1997, 99-118]. In general, forced T-periodic solutions bifurcate into subharmonic solutions with a fixed period tau(tau=nT; n=1,2,3,4) independent of the amplitude or into a torus [1,3,4,5,6] containing solutions whose analytic properties are not yet fully understood. The subharmonic bifurcating solutions with n=1 are the T-periodic equivalent of a symmetry-breaking bifurcation of steady solutions with other steady solutions. The symmetry breaking Directory: 77_10 Note: Springer-Verlag !-MISSING OFFPRINTS	
1977 Submitted: ARMA Editor: Vol: 66 Issue:4 Pages: 311-344	Rotating simple fluids D.D. Joseph Keywords: Abstract: In this paper I derive iterative procedures for the sequential computation of velocity fields and strain histories of motions of incompressible simple fluids driven by arbitrary, time-dependent prescribed data. The arbitrary data is a small perturbation Directory: 77_8 Note:	Record Place: 65
1977 Submitted: SIAM J. Appl. Math. Editor: Vol: 33 Issue:2 Pages: 337	The convergence of biorthogonal series for biharmonic and stokes flow edge problems, Part I D.D. Joseph Keywords: Abstract: Sufficient conditions are established for the convergence of the biorthogonal series solving edge problems which arise in elasticity and in Stokes flow in cavities. These conditions greatly improve those stated in the excellent work of R.C.T Smith 1952. Directory: 77_7 Note:	Record Place: 64
1977 Submitted: Proceedings of ASME Symposium on Viscoelastic Fluids Editor: R.S. Rivlin, Yale Vol: Issue: Pages: 59	Free surfaces induced by the motion of viscoelastic fluids D.D. Joseph, G.S. Beavers Keywords: Abstract: Free surfaces are sensitive to the state of stress in fluids. The striking variations in the shape of free surfaces induced by the motion of viscoelastic fluids chart the competing effects of elasticity, normal stresses and inertia in the fluid. Directory: 77_5 Note:	Record Place: 63
1977 Submitted: Proceedings of VII-th International Congress on Rheology Editor: Vol: Issue: Pages: 242-243	Perturbations of the rest state of a simple fluid: the Weissenberg effect induced by torsional oscillation of a rod D.D. Joseph Keywords: Abstract: A rod of small diameter (2a) is partially immersed in a vat of simple fluid. The rod is set into torsional oscillation with an angular frequency Omega equal to epsilon sin wt. An analysis of this problem based on a newly developed theory of Directory: 77_3 Note:	Record Place: 62
1977 Submitted: ARMA Editor: Vol: 64 Issue:3 Pages: 245-267	The free surface on a simple fluid between cylinders undergoing torsional oscillations. Part III, Oscillating planes L.D. Sturges, D.D. Joseph Keywords: Abstract: In Part I (Joseph 1976a) of this paper in three parts, a recently developed algorithm (Joseph 1976b) for computing the motions of a simple fluid of integral type which perturb the state of rest was applied to the problem of finding the shape of the free Directory: 77_2 Note: Leroy D Sturges	Record Place: 61
1976 Submitted: ARMA Editor: Vol: 62 Issue:4	The free surface on a simple fluid between cylinders undergoing torsional oscillations D.D. Joseph, B.S. Beavers Keywords: Abstract: In a recent work (Joseph 1976), ideas from the theory of domain perturbations	Record Place: 60

Pages: 323-352	were used to develop an algorithm for the computation of unsteady motions of a simple fluid. In this algorithm, the rest state is perturbed with an unsteady motion. *Directory: 76_10 ** Note:	
1976 Submitted: Proceedings of Conference, Turbulence and Navier Stokes Equations, University of Paris- Sud, Orsay, June 12- 13, 1975 Editor: Roger Temam, ed. Vol: 565 Issue: Pages: 85-93	Factorization theorems for the stability of bifurcating solutions D.D. Joseph Keywords: Abstract: The theory of bifurcation at a simple complex eigenvalue, developed for ordinary differential equations by Hopf 1942 and extended to partial differential equations, like the Navier-Stokes equations, by Joseph and Sattinger 1972, using Hopf's methods Directory: 76_1!-MISSING PRINT Note: Lecture Notes in Mathematics, A Dold, B Eckmann, eds. Springer-Verlag	Record Place: 59
1975 Submitted: 1974 J. Fluid Mech. Editor: Vol: 69 Issue:3 Pages: 475-511	The rotating rod viscometer G.S. Beavers, D.D. Joseph Keywords: Abstract: This paper reports the development of practical methods of viscometry to characterize non-Newtonian fluids in slow flow. It is shown that measurements of the free surface near rods rotating in STP and polyacrylamide are accurate, reproducible, and in Directory: 75_2 Note:	Record Place: 58
1975 Submitted: 1974 J. Fluid Mech. Editor: Vol: 69 Issue:3 Pages: 565-589	The free surface on a liquid filing a trench heated from its side D.D. Joseph, L. Sturges **Xeywords:* Abstract:* In this paper we compute the motion and the shape of the free surface on a liquid in a trench heated from its side. The analysis is based on Joseph's Lagrangian theory of domain perturbations, which is developed in general and through simple examples **Directory: 75_1** Note: Leroy Sturges, AEM UM	Record Place: 57
1975 Submitted: ARMA Editor: Vol: 58 Issue:4 Pages: 369-380	Stability of bifurcating time-periodic and steady solutions of arbitrary amplitude D.D. Joseph, D.A. Nield Keywords: Abstract: The theory of bifurcation at a simple complex eigenvalue, developed for ordinary differential equations by Hopf 1942 and extended to partial differential equations, like the Navier-Stokes equations, by Joseph & Sattinger 1972, is a local theory which. Directory: 75_4 Note:	Record Place: 56
1975 Submitted: ARMA Editor: Vol: 59 Issue:4 Pages: 359-387	Slow motion and viscometric motion, Part V: the free surface on a simple fluid flowing down a tilted trough L. Sturges, D.D. Joseph Keywords: Abstract: This paper is a contribution to the theory of viscometry of slow steady motions of a simple fluid and is presented as Part V of the work on slow motion and viscometric motion which formed the subject of the paper in four parts of Joseph 1974. Directory: 75_3 Note:	Record Place: 55
1974 Submitted: 1974 ARMA Editor: Vol: 56 Issue: Pages: 99-157	Slow motion and viscometric motion; stability and bifurcation of the rest state of a simple fluid D.D. Joseph Keywords: Abstract: This paper is divided into four loosely connected parts whose common thread is the study of slow steady motion of a simple fluid. The motions to be considered are those which can be constructed as a perturbation series pivoted about a state of rest Directory: 74_5 Note:	Record Place: 54
1974 Submitted: 1973	Friction factors in the theory of bifurcating Poiseuille flow through annular ducts	Record Place: 53

J. Fluid Mech. Editor: Vol: 66 Issue:1 Pages: 189-207	D.D. Joseph, T.S. Chen <i>Keywords:</i> Abstract: The objective of this paper is to show how to formulate a bifurcation theory for pipe flows in terms of the friction factor. We compute the slope of the friction factor vs. Reynolds number curve and the frequency change for the time periodic solution Directory: 74_2 Note: Chen: U of Missouri Rolla, Rolla	Possed
1974 Submitted: 1973 Physics of Fluids Editor: Vol: 17 Issue:3 Pages: 650-651	Tall Taylor cells in polyacrylamide solutions G.S. Beavers, D.D. Joseph Keywords: Abstract: The behavior of Taylor cells in a polyacrylamide solution contained between rotating cylinders is described. As the rotational speed increases, the cell aspect ratio changes from about 1 to 4. Hysteresis of the 4-cell configuration is observed. Directory: 74_1 Note: copyright 1974 American Institute of Physics	Record Place: 52
1974 Submitted: ARMA Editor: Vol: 53 Issue:2 Pages: 101-130	Repeated supercritical branching of solutions arising in the variational theory of turbulence D.D. Joseph Keywords: Abstract: In the variational theory of statistically stationary turbulence one seeks bounds on the difference between the response of laminar and turbulent flow when the steady external forces driving the flow are specified. For example, the difference between Directory: 74_4 Note:	Record Place: 51
1974 Submitted: Adv. Applied Mech. Editor: Vol: 14 Issue: Pages: 241-277	Response curves for plane Poiseuille flow D.D. Joseph Keywords: Abstract: A response function for a fluid motion can be defined as a scalar function that measures the response of the flow to the external forces which induce the motion. For example, in problems of thermal convection, the response function can be taken as Directory: 74_3 Note: Academic Press, Inc. (NY, San Francisco, London).	Record Place: 50
1973 Submitted: 1972 J. Fluid Mech. Editor: Vol: 57 Issue:3 Pages: 491-514	Bounds for heat transport in a porous layer V.P. Gupta, D.D. Joseph Keywords: Abstract: Strongly nonlinear heat transport across a porous layer is studied using Howard's (1963) variational method. The analysis explores a bifurcation property of Busse's (1969) multi-alpha solution of this variational problem and complements the 1972 study Directory: 73_5 Note:	Record Place: 49
1973 Submitted: 1972 ARMA Editor: Vol: 49 Issue:5 Pages: 381-401	The free surface on a liquid between cylinders rotating at different speeds; Part II D.D. Joseph, G.S. Beavers, R.L. Fosdick Keywords: Abstract: Chapt IV. The rise of fluid on a rod rotating in a large vat. The detailed agreement between theory and experiment which we shall display here leaves open the possibility that standard experiments on climbing can be so designed to determine accurately Directory: 73_4 Note:	Record Place: 48
1973 Submitted: 1972 ARMA Editor: Vol: 49 Issue:5 Pages: 321-380	The free surface on a liquid between cylinders rotating at different speeds; Part I D.D. Joseph, R.L. Fosdick Keywords: Abstract: When a liquid in a vessel rotates as a rigid body, the free surface on top of the liquid is shaped by the requirements of a balance of forces arising from centripetal accelerations, gravity, and surface tension. In the absence of relative internal motion, Directory: 73_3 Note:	Record Place: 47
1973 Submitted: 1972	Subcritical bifurcation of plane Poiseuille flow T.S. Chen, D.D. Joseph	Record Place: 46

J. Fluid Mech. Editor: Vol: 58 Issue:2 Pages: 337-351	Keywords: Abstract: We apply the perturbation theory which was recently developed and justified by Joseph & Sattinger (1972) to determine the form of the time-periodic solutions which bifurcate from plane Poiseuille flow. The results at lowest significant order seem to be in Directory: 73_1 Note: Chen: Dept Mech. Aerospace Engrg, U of Missouri-Rolla	
1973	Domain perturbations: The higher order theory of infinitesimal	Record
		Place:
Submitted:	water waves	45
ARMA	D.D. Joseph	
Editor:	Keywords:	
Vol: 51 Issue: 4	Abstract: The higher order theory of infinitesimal water waves refers to a perturbation	
Pages: 295-303	theory which represents solutions to problems in the theory of nonlinear water waves as a power series in the amplitude of the wave. The infinitesimal wave appears in this theory <i>Directory:</i> 73_7 <i>Note:</i>	
1973	Ougsilingay Divighlet nychlems duiven by negitive sources	Record
Submitted:	Quasilinear Dirichlet problems driven by positive sources	Place:
	D.D. Joseph, T.S. Lundgren	44
ARMA	Keywords:	
Editor:	Abstract: We study the problem $(r^{(n-1)u')'} + lambd r^{(n-1)} F(u) = 0$ where $F(u) > 0$ when	
Vol: 49 Issue: 4	u>=0. Our main concern is with functions F(u)=(1+alpha u)^beta, alpha beta>0 and with	
Pages: 241-269	F(u)=e^u. The last secton deals with solutions of (I.1) when F(u) is Lipschitz	
	continuous	
	Directory: 73_6	
	Note:	
1973	Remarks about bifurcation and stability of quasi-periodic solutions	Record
Submitted:	·	Place: 43
Nonlinear Problems in	which bifurcate from periodic solutions of the Navier Stokes	-
Physical Science and	equations	
Engineering	D.D. Joseph	
Editor: Joseph, Sattinger,	Keywords:	
Stakgold, eds.,	Abstract: L.D. Landau (1944) and E. Hopf (1948) have conjectured that the transition to	
Springer Lecture Notes in	turbulence may be described as repeated branching of quasi-periodic solutions into quasi-	
Mathematics	periodic solutions with more frequencies. The simplest case is the bifurcation of	
Vol: Issue:	Directory: 73_2	
Pages: 1-30	Note: hand note, title: Nonlinear Problems in the Physical Sciences and BIOLOGY, 1972	
rages.	(?)	
1972	Bounds for heat transport in a porous layer	Record Place:
Submitted: 1971	F.H. Busse, D.D. Joseph	42
J. Fluid Mech.	Keywords:	
Editor:	Abstract: Bounds on the heat transport in a porous layer are derived using the variational	
Vol: 54 Issue: 3	method of Howard 1963 and Busse 1969b. The relatively simple structure of the	
Pages: 521-543	variational problem in the case of prorous convection allows one to formulate the theory	
	I	
	Directory: 72_3	
	Note: Busse: Dept of Planetary and Space Sciences, U of Calf, Los Angeles	
1972	Global stability of spiral flow; Part 2	Record
Submitted: 1971	W.L. Hung, D.D. Joseph, B.R. Munson	Place: 41
J. Fluid Mech.	Keywords:	
Editor:	Abstract: The stability of spiral flow between rotating and sliding cylinders is considered.	
Vol: 51 Issue: 3	In the limit of narrow gap, a 'modified' energy theory is constructed. This theory exploits	
Pages: 593-612	the consequences of assuming the existence of a preferred spiral direction	
1 4505. 000-012		
	Directory: 72_2 Note: Hung, Joseph: AEM, UM. Munson: Duke U	
4072		Record
1972	Bifurcating time periodic solutions and their stability	Place:
Submitted:	D.D Joseph, D.H. Sattinger	40
ARMA	Keywords:	
Editor:	Abstract: Equilibrium configurations of mechanical systems are often characterized by	
Vol: 45 Issue: 2	stability parameters, such as the Reynolds number R in fluid mechanics. When R is small,	
Pages: 79-109	the equilibrium configuration is stable; but when R is raised to a certain critical value	
	Directory: 72_4	
	Note: Sattinger: also UM?	
1972	Energy stability of hydromagnetic flow	Record
Submitted:	D.D. Joseph	Place: 39
	р.р. возори	

Proceedings of Conference on Mathematical Topics in Stability Theory, March 29-31, 1971 at Washington State Univ. Editor: Vol: Issue: Pages: 1-12	Keywords: Abstract: The governing equations of motion for a viscous fluid with constant density rho and finite conductivity sigma flowing in a magnetic field are dU/dt=1/(rho mu) B.nablaB, dB/dt=B.nabla U + 1/(sigma mu), and nabla.U=nabla.B=0 where B is the magnetic Directory: 72_1 Note: Viscous incompressible flow between concentric rotating spheres;	Record
Submitted: 1971 J. Fluid Mech. Editor: Vol: 49 Issue:2 Pages: 305-318	Part 2, Hydrodynamic stability B.R. Munson, D.D. Joseph Keywords: Abstract: The energy theory of hydrodynamic stability is applied to the viscous incompressible flow of a fluid contained between two concentric spheres which rotate about a common axis with prescribed angular velocities. The critical Reynolds number is calculated Directory: 71_5 Note: Munson: Dept Mech. Engrg, Duke Univ., Durham, NC	Place: 38
1971 Submitted: 1970 J. Fluid Mech. Editor: Vol: 49 Issue:2 Pages: 289-303	Viscous incompressible flow between concentric rotating spheres; Part 1, Basic flow B.R. Munson, D.D. Joseph Keywords: Abstract: The steady motion of a viscous fluid contained between two concentric spheres which rotate about a common axis with different angular velocities is considered. A highorder analytic perturbation solution, through terms of order Re^7, is obtained for low R Directory: 71_3 Note: Munson: Dept Mech. Engrg, Duke Univ., Durham NC	Record Place: 37
1971 Submitted: 1970 J. Fluid Mech. Editor: Vol: 47 Issue:2 Pages: 257-282	Stability of convection in containers of arbitrary shape D.D. Joseph Keywords: Abstract: When a container of fluid of arbitrary shape is heated from below and the temperature gradient exceeds a critical value (Rc2) the conduction solution with no motion becomes unstable and is replaced by convection. The convection may have two forms: one with 'upflow' at the centre of the container and one with 'downflow' there. Here we study the stability of the two forms of convection. Directory: 71_2 Note	Record Place: 36
1971 Submitted: ARMA Editor: Vol: 44 Issue:1 Pages: 1-22	Contributions to the nonlinear theory of stability of viscous flow in pipes and between rotating cylinders D.D. Joseph, W. Hung Keywords: Abstract: Three component disturbance vector fields of the title flows, which are constant along a distinguished direction, imply the existence of a component of disturbance velocity which is not driven by disturbance pressure. This fact implies the existence of two Directory: 71_4 Note:	Record Place: 35
1971 Submitted: Instability of Continuous Systems, IUTAM Symposium September 1969 Editor: Vol: Issue: Pages: 132-142	On the place of energy methods in a global theory of hydrodynamic stability D.D. Joseph Keywords: Abstract: The point of departure for the global theory to be described is the system of the nonlinear Boussinesq equations (1,2) governing the disturbance of some given motion. For simplicity, let (U,T,Gamma) be a basic steady velocity, temperature and concen' Directory: 71_1 Note: DDJ at Imperial College of Science and Technology, London, UK Global stability of spiral flow	Record Place: 34
Submitted: 1969 <i>J. Fluid Mech.</i> Editor:	D.D. Joseph, B.R. Munson Keywords: Abstract: Energy and linear limits are calculated for the Poiseuille-Couette spiral motion	Place: 33

Vol: 43 Issue: 3 Pages: 545-575	between concentric cylinders which rotate rigidly and rotate and slide relative to one another. The addition of solid rotation can bring the linear limit down Directory: 70_3 Note:	
1970 Submitted: 1967 Physics of Fluids Editor: Vol: 13 Issue:2 Pages: 217-221	Linear instability of asymmetric flow in channels T.S. Fu, D.D. Joseph Keywords: Abstract: A study of the linear stability of asymmetric channel flows is presented. Three one-parameter families of basic velocity which possess, respectively, no, one, and two inflection points are treated. The competing effects of stabilizing asymmetry and destab Directory: 70_4 Note: TS Fu, DDJ in IT, MN	Record Place: 32
1970 Submitted: ARMA Editor: Vol: 36 Issue:4 Pages: 285-292	Global stability of the conduction-diffusion solution D.D. Joseph Keywords: Abstract: This paper continues and, to a degree, completes the working out of an energy-stability theory for the thermosolutal conduction-diffusion solution of the Boussinesq equations [1,2,3]. The Boussinesq equations allow a steady conduction diffusion solution Directory: 70_2 Note:	Record Place: 31
1970 Submitted: Quarterly J. Applied Math. Editor: Vol: 28 Issue: Pages: 327-342	Nonlinear diffusion induced by nonlinear sources D.D. Joseph, E.M. Sparrow Keywords: Abstract: In the published literature dealing with a number of diverse scientific and technological problems, one encounters the mathematical system nabla^2psi+lambda g(x)Phi(psi)=0 in R, Directory: 70_1 Note: Sparrow: UM	Record Place: 30
1969 Submitted: 1968 J. Fluid Mech. Editor: Vol: 36 Issue:4 Pages: 721-734	Eigenvalue bounds for the Orr-Sommerfeld equation; Part 2 D.D. Joseph Keywords: Abstract: Rigorous estimates of amplification rates, wave speeds and sufficient conditions for linear stability are derived for the manifold of solutions of the Orr-Sommerfeld problem governing parallel motion in the boundary layer and in round pipes Directory: 68_5 Note:	Record Place: 29
1969 Submitted: 1967 Quarterly J. Applied Math. Editor: Vol: 26 Issue:4 Pages: 575-599	Stability of Poiseuille flowing pipes, annuli, and channels D.D. Joseph, S. Carmi Keywords: Abstract: The value of R=180 which has been given by Orr [1] as a limit for sure stability of Hagen-Poiseuille flow is incorrect. A lower value, R=82.88, can be associated with an eigenfunction possessing a first mode azimuthal variation (N=1) and no streamwise var Directory: 69_2 Note: Carmi: UM	Record Place: 28
1969 Submitted: ARMA Editor: Vol: 35 Issue:3 Pages: 169-177	Uniqueness criteria for the conduction-diffusion solution of the Boussinesq quations D.D. Joseph Keywords: Abstract: Energy stability theory gives sufficient conditions for the exponential stability of basic fluid motions [1]. If the basic motion is steady, the energy criterion is also sufficient for uniqueness [2]. However, since it is sufficient to guarantee Directory: 69_3 Note:	Record Place: 27
1969 Submitted: <i>ARMA</i> Editor: Vol: 33 Issue:2 Pages: 116-138	Existence of convective solutions of the generalized Benard problem which are analytic in their norm P.C. Fife, D.D. Joseph Keywords: Abstract: The generalized nonlinear Benard problem defined below, like the standard Benard problem itself, possesses a unique, motionless, conduction-solution when the parameters lie within a restricted range. This solution, however, bifurcates at certain Directory: 69_1 Note:	Record Place: 26

1968 Submitted: 1968 J. Fluid Mech. Editor: Vol: 33 Issue:3 Pages: 617-621	Eigenvalue bounds for the Orr-Sommerfeld equation D.D. Joseph Keywords: Abstract: Estimates of the eigenvalues C belonging to the manifold of solutions of the Orr-Sommerfeld equation are constructed by application of elementary isoperimetric inequalities. The inequalities also lead to a considerable improvement on the estimate of (a-R) Directory: 68_1 Note:	Record Place: 25
1968 Submitted: 1967 Physics of Fluids Editor: Vol: 11 Issue:4 Pages: 903-904	Subcritical instability and exchange of stability in a horizontal fluid layer D.D. Joseph, R.J. Goldstein, D.J. Graham Keywords: Abstract: Rayleigh numbers calculated from linear and energy theories do not coincide when internal heat sources are present. For free boundaries exchange of stability applies, but energy theory nonetheless deems possible the existence of subcritical instabilities. Directory: 68_2 Note: all in IT, UM	Record Place: 24
1968 Submitted: 1966 Physics of Fluids Editor: Vol: 11 Issue:10 Pages: 2065-2073	Stability of parallel flow between concentric cylinders J.E. Mott, D.D. Joseph Keywords: Abstract: The linear stability of parallel flow in a concentric annulus to infinitesimal, axially symmetric disturbances in considered. First, the Poiseuille flow in annular cylinders is studied with the ratio k of the outer to inner cylinder as a parameter Directory: 68_4 Note: Mott: Nuclear Engineering Dept, Univ. of Tennessee, Knoxville, Tennessee	Record Place: 23
1968 Submitted: ARMA Editor: Vol: 30 Issue:1 Pages: 38-80	Convective instability in a temperature and concentration field C.C. Shir, D.D. Joseph Keywords: Abstract: In chemically homogeneous fluids, density differences induced by thermal gradients can drive fluid motions. If, in addition, there is a concentration gradient, e.g., a salt gradient or a gradient of water vapor in air, then the density variations Directory: 68_3 Note:	Record Place: 22
1967 Submitted: 1967 J. Fluid Mech. Editor: Vol: 30 Issue:1 Pages: 197-207	Boundary conditions at a naturally permeable wall G.S. Beavers, D.D. Joseph Keywords: Abstract: Experiments giving the mass efflux of a Poiseuille flow over a naturally permeable block are reported. The efflux is greatly enhanced over the value it would have if the block were impermeable, indicating the presence of a boundary layer in the block Directory: 67_1 Note:	Record Place: 21
1967 Submitted: 1966 Quarterly J. Applied Math. Editor: Vol: 25 Issue:2 Pages: 163-173	Parameter values excluded by existence conditions for buoyant dissipative motions in vertical channels D.D. Joseph, W.H. Warner Keywords: Abstract: The nonexistence of steady, fully-developed solutions for frictionally heated buoyant flow in vertical channels is established analytically. Explicit bounds on the values of parameters beyond which solutions to this nonlinear problem cannot exist are Directory: 67_2 Note:	Record Place: 20
1967 Submitted: ARMA Editor: Vol: 24 Issue:5 Pages: 325-351	Parameter and domain dependence of eigenvalues of elliptic partial differential equations D.D. Joseph Keywords: Abstract: It is our purpose in this paper to exploit the technique of parameter differentiation for studying the calculus of eigenvalues. The study of the domain dependence of eigenvalues is emphasized, but not exclusively, and dependence of eigenvalues on other Directory: 67_3 Note:	Record Place: 19
1966	Evaluation of Tietjens function in stability calculations	Record Place:

Submitted: Physics of Fluids Editor: Vol: 9 Issue:12 Pages: 2519-2520	T.S. Chen, D.D. Joseph, E.M. Sparrow Keywords: Abstract: The Tietjens function is re-expressed as a ratio of rapidly converging power series of its (complex) argument which may be utilized to replace tables or graphs in the calculation of critical Reynolds numbers from asymptotic theory. Directory: 66_5 Note:	18
1966 Submitted: J. Fluid Mech. Editor: Vol: 26 Issue:4 Pages: 769-777	Subcritical convective instability; Part 2. Spherical shells D.D. Joseph, S. Carmi Keywords: Abstract: In this paper we consider the effect of internal heat generation and a spatial variation of the gravity field on the onset of thermal convection in spherical shells. If the temperature gradient and gravity fields have the same spatial variation, Directory: 66_4 Note: Shlomo Carmi	Record Place: 17
1966 Submitted: J. Fluid Mech. Editor: Vol: 26 Issue:4 Pages: 753-768	Subcritical convective instability; Part 1, Fluid layers D.D. Joseph, C.C. Shir Keywords: Abstract: This paper elaborates on the assertion that energy methods provide an always mathematically rigorous and a somes physically precise theory of subcritical convective instability. The general theory, without explicit solutions, is used to deduce that Directory: 66_3 Note:	Record Place: 16
1966 Submitted: ARMA Editor: Vol: 22 Issue:3 Pages: 163-184	Nonlinear stability of the Boussinesq equations by the method of energy D.D. Joseph Keywords: Abstract: The linear theory of hydrodynamic stability suffers from the defect that one cannot, in principle make judgements regarding the growth potential of finite disturbances. Thus, one cannot say for certain that a given flow will remain stable if disturbed Directory: 66_2 Note:	Record Place: 15
1966 Submitted: Quarterly J. Applied Math. Editor: Vol: 23 Issue:4 Pages: 349-354	Bounds on lambda for positive solutions of $\Delta \psi + \lambda \int (\rho) \{\psi + G(\psi)\} = 0$ D.D. Joseph Keywords: Abstract: We shall show that when $G(psi) >= G(0) = 1$ and psi satisfies typical conditions on the closed (sufficiently smooth) boundary S of an open n dimensional region v, the values of lambda > 0 for shiwh the title equation has positive solutions Directory: 66_1 Note:	Record Place: 14
1966 Submitted: J. Applied Mech. Editor: Vol: 33 Issue: Pages: 753-761	Lubrication of a porous bearing Stokes' solution D.D. Joseph, L.N. Tao Keywords: Abstract: Coupling of flows induced by the rotation of an infinite cylinder in an eccentric cylindrical hole in a fluid-saturated porous space is investigated in the context of a coupled boundary-value problem in which the Stokes flow outside porous regions and Directory: 65_5 Note:	Record Place: 13
1966 Submitted: J. Applied Mech. Editor: Vol: 33 Issue: Pages: 761-167	Lubrication of a porous bearing Reynolds' solution C.C. Shir, D.D. Joseph Keywords: Abstract: The problem of lubrication of a journal in a porous bearing is considered. A Reynolds equation modified to accommodate mass transfer with the fluid-saturated bearing is solved, and the influence of the permeability and radius ratio of the bearing is exami Directory: 65_4 Note:	Record Place: 12
1965 Submitted: 1964	Ground flow induced by a moving cylinder	Record Place: 11

Physics of Fluids Editor: Vol: 8 Issue:8 Pages: 1438	D.D. Joseph, L.N. Tao Keywords: Abstract: Ground flow induced by rotation and translation of a solid cylinder is investigated in the context of a coupled boundary-value problem in which the Stokes flow outside porous regions and the arcy flow inside porous regions are connected by the continuity Directory: 65_3 Note:	
1965 Submitted: 1964 Int. J. Heat Mass Transfer Editor: Vol: 8 Issue: Pages: 281-288	Non-linear heat generation and stability of the temperature distribution in conducting solids D.D. Joseph Keywords: Abstract: The effect of non-linear dependence of resistance on temperature on the Joulean production of heat in electrically conducting systems is investigated. The theory is compared with well-known linear theories. In common conducting materials there exists Directory: 64_3 Note:	Record Place: 10
1965 Submitted: 1963 Developments in Mechanics, Proceedings of the 8 th Midwestern Mechanics Conference at Case Institute of Technology, April 1-3, 1963 Editor: Vol: Issue: Pages: 403-404	Unsteady Free and Forced Convection in Vertical Annular and Annular Sector Tubes D.D. Joseph, L.N. Tao Keywords: Abstract: In this investigation solutions to the problem of unsteady laminar forced and free convection in coaxial sector tubes in the presence of a constant axial temperature gradient have been developed. The solutions admit phenomena of oscillation and resonance which are not usually present in flows in which the dissipative mechanisms of heat conduction and viscosity are important. Several numerical examples are constructed and used to discuss the "dashpot" features of the solutions. Directory: 65_10 Note:	Record Place: 9
1965 Submitted: Physics of Fluids Editor: Vol: 8 Issue:12 Pages: 2195-2200	Stability of frictionally-heated flow D.D. Joseph Keywords: Abstract: Extended results relative to the existence of a critical stress (a finite shear stress or pressure gradient above which fully-developed steady solutions do not exist) in Couette and Poiseuille motions are reported. The results apply to liquids under gener Directory: 65_2 Note:	Record Place: 8
1965 Submitted: ARMA Editor: Vol: 20 Issue:1 Pages: 59-71	On the stability of the Boussinesq equations D.D. Joseph Keywords: Abstract: In this paper we generalize the method of energy to discuss the stability of thermally-driven convective flows governed by the Boussinesq equations. The energy method as applied to non-convective flows has the striking advantage that it may be applied to Directory: 65_1 Note:	Record Place: 7
1965 Submitted: Quarterly J. Mech. Applied Math. Editor: Vol: 18 Issue:3 Pages:	Note on steady flow induced by rotation of a naturally permeable disc D.D. Joseph Keywords: Abstract: Coupled flow induced by the steady rotation of a fluid saturated, naturally permeable and infinite disk is compared with the flow induced by the rotation of an otherwise impermeable disk over which a uniform suction has been prescribed. The coupled proble Directory: 65_11 Note:	Record Place: 6
1964 Submitted: 1964 Physics of Fluids Editor: Vol: 7 Issue:11 Pages: 1761-1771	Variable Viscosity Effects on the Flow and Stability of Flow in Channels and Pipes D.D. Joseph Keywords: Abstract: Variable viscosity and frictionally heated channel and pipe flows are investigated. The solutions are bounded and improved estimates of the critical stress	Record Place: 5

	(beyond which there are no steady solutions) developed. The stress first increases, then decreases, with increasing maximum temperature. At this stress maximum there is a neutral solution and neighboring unstable solutions to an associated stability problem. Points of inflection in the velocity profile can develop in Poiseuille flows and must develop in Couette flows. The Poiseuille profiles which develop are inviscidly unstable in channels but stable in pipes. *Directory: 64_2 Note:	
1964 Submitted: 1963 Zeitschrift AMM Editor: Vol: 44 Issue:8 Pages: 361-364	The Effect of Permeability on the Slow Motion of a Porous Sphere in a Viscous Liquid D.D. Joseph, L.N. Tao Keywords: Abstract: A technique is suggested by which the effects of permeable materials on the low Reynolds number flow of viscous liquids may be evaluated. In particular, we show that Darcy's law and the asymptotic equations (Re->0) of Stokes may be used to formulate boundary value problems generating solutions valid for both porous and non-porous regions and matched at common boundaries. The coupled problem of the streaming of a viscous liquid past a permeable sphere is considered and closed solutions which depend simply on the permeability on the sphere are derived. The drag on a permeable sphere is shown to be the same as the drag on an impermeable sphere of reduced radius. Directory: 64_1 Note:	Record Place: 4
1964 Submitted: 1963 Physics of Fluids Editor: Vol: 7 Issue:5 Pages: 648-651	Incompatibility of Beltrami Flow with Viscous Adherence D.D. Joseph Keywords: Abstract: Boundary conditions on the vorticity are deduced to infer conditions under which Beltrami flows of a viscous fluid are possible. The inconsistency of steady and unsteady Beltrami flow with adherence to rigid surfaces is established for a broad class of rigid motions of the bounding surfaces. The implications of isochoric motions are explored, and the possibility of an isochoric Beltrami motion of a Newtonian fluid is eliminated for rigid translatory motions of the boundary surface. The inconsistency of Beltrami Blows of any fluid with rotation about an axis of geometric symmetry is also established. It is shown that the adherence condition implies either a vanishing or infinite vorticity at boundary surfaces for certain kinematically possible types of Beltrami motions. Directory: 64_10 Note:	Record Place: 3
March 1963 Submitted: 1962 J. Applied Mech. Editor: Vol: Issue: Pages: 147-148	Transverse Velocity Components in Fully Developed Unsteady Flows D.D. Joseph, L.N. Tao Keywords: Abstract: It is known that if an incompressible fluid is confined to straight pipe or channel, and if the axial velocity is steady and fully developed, then, under certain very general conditions, no transverse velocity components can exist. This conclusion is not valid for unsteady flows, and it is the purpose of this note to develop the appropriate restrictions for the unsteady case. Directory: 63_1 Note:	Record Place: 2
1962 Submitted: J. Applied Mech. Editor: Vol: 29 Issue: Pages: 1-5	Fluid flow between porous rollers L.N. Tao, D.D. Joseph Keywords: boundary layer control Abstract: The problem of fluid flow between two porous rollers with a small gap is investigated. Solutions for both large and small values of the porosity of the minimum gap distance are derived. It is found that increasing porosity will decrease the maximum suction and shift its position away from the origin. Directory: 62_1 Note:	Record Place: 1
3-1987 Submitted: MISSING INFO Editor: Vol: Issue: Pages: 107-122	Hyperbolicity, change of type, wave speeds and related matters D.D. Joseph Keywords: Abstract: In this paper I will review some consequences of instantaneous elasticity for the numerical analysis of flows of viscoelastic liquids. I will consider situations which are associated with hyperbolic waves of vorticity. T vorticity equation may change type Directory: 87_1	

Note: photocopy in binder 5, no citation info:	
--	--