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Abstract: In this paper we examine the lift on a sphere moving very close to an infinite

plane wall in a second-order fluid. The sphere is allowed to both translate and rotate

along the plane. We focus on the limit when the sphere touches the wall. We found that

due to the normal stress effect the flow gives rise to a positive elastic lift force on the

sphere when gap between the sphere and the wall is small. For a moving particle in a

shear flow, the ratio of the elastic lift to the buoyant weight of the particle is proportional

to the particle radius, such that smaller particles will be easier to be suspended. We also

found that the ratio of the inertial lift to the elastic lift is proportional to the square of the

particle radius. Furthermore, the elastic lift force is singular when the minimum gap

between the sphere and the wall approaches zero. Consequently, a moving particle in a

viscoelastic fluid will be always suspended from a smooth surface.

Introduction.

The problem of the motion of an isolated sphere in bounded flows is of practical

significance in a variety of applications, such as the cleaning of particles from surfaces,

deposition of particles in filtration, fines mobilization in porous media and resuspension

of particles in a packed bed. Often, in oil industry polymer solutions are used for the

cleaning of drilling holes and for the transport of proppants. It was observed that some

polymer solutions have a better capability to mobilize and transport particles. However,

the mechanisms for the particle resuspension and the effects of fluid elasticity are still not



2

known. In this paper we examine the lift force on a sphere moving very close to an

infinite plane wall in a second order fluid. The sphere is allowed to both translate and

rotate along the plane. We focus on the effects of the normal stress and the limit when the

sphere touches the wall.
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Figure 1. Sphere moving along a planar wall. The non-dimensional minimum gap

between the sphere and the wall is ε = h − 1.

A rigid sphere of radius a is moving in a direction parallel to a fixed infinite plane

wall when the minimum clearance εa  between the sphere and the plane is much smaller

than the radius of the sphere (in the limit ε → 0 of no clearance), as shown in figure 1.

The creeping flow solution for this problem can be obtained by superposing the solution

for a sphere translating along the plane and the solution for a sphere rotating about a fixed

axis parallel to the plane. The solutions of these two problems have been obtained by

O’Neill & Stewartson [1967], Cooley & O’Neill [1968] respectively using matched

asymptotic expansions. An ‘inner’ solution was constructed for the region in the

neighborhood of the nearest points of the sphere and the plane wall where the velocity

gradients and pressure are large; in this region the leading terms of the asymptotic

expansion of the solution satisfies the equations of lubrication theory. A matching ‘outer’

solution was constructed which is valid for the remainder of the fluid where velocity

gradients are moderate but it is possible to assume that ε = 0. In summary, they found

that the force acting on the sphere is expressible as Fx , 0 , 0( )  with
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and the couple acting on the sphere is expressible as 0,Gy ,0( ) with

Gy = 8πµUa2 1
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where µ  is the viscosity of the fluid, U and Ω are the translational and angular velocity of

the sphere, respectively, as indicated in figure 1.

It is well known that the linearity of the creeping flow solutions in the absence of the

inertia (at zero Reynolds number) requires the lift forces acting on the sphere moving

along the wall to be identically zero. For a Newtonian fluid, the leading order

contribution to the lift on a sphere is atO Re( ) . The inertial lift to this order may be

calculated solely from the known creeping flow solutions using a reciprocal theorem.

The lift on a sphere in a Newtonian fluid and in the vicinity of a plane has been

investigated in a number of studies. Cox and Brenner [1968] obtained general

expressions for the lift force in terms of the Green’s functions by assuming that the

distance between the wall and the center of the sphere is large compared to the radius of

the sphere. Cox and Hsu [1977] later used this formulation to evaluate the lift force on a

sphere sedimenting near a flat wall in a stagnant fluid and neutrally buoyant and non-

neutrally buoyant spheres in a fluid undergoing a planer quadratically varying flow. Drew

[1988] applied perturbation techniques to evaluate the lift on a sphere translating in a

shear field in the presence of a wall. The sphere was assumed to be very far from the wall

and treated as a point force. The inertial lift on a sphere translating in a shear flow

bounded by a single flat infinite wall was analyzed by McLaughlin [1993]. He derived an

expression for the lift force by superposition of the disturbance flow created by the wall

and migration velocity due to an unbounded shear field. The analysis is applicable when
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the wall lies in the outer region or the inner region provided the distance between the wall

and the sphere is large compared to the radius of the sphere. Later, Cherukat and

McLaughlin [1994] considered the same problem when the distance between the sphere

and the wall is comparable to the radius of the sphere. They obtained the inertial lift for

separation distances down to 0.1 radius.

In the limit that the separation distance between the sphere and the plane vanishes,

Leighton and Acrivos [1985] calculated the lift on a sphere in contact with a plane in a

simple shear flow of a Newtonian fluid. They found that the lift points away from the

wall and varies with the fourth power of the radius of the sphere and the square of the

velocity gradient. However, they concluded that this inertial lift is far too small to be

significance relative to the drag at Reynolds numbers ofO 10−2( ). They inferred that

inertia plays only a minor role in bringing about the resuspension of settled particles in

low Reynolds number shear fields. Recently, Krishnan and Leighton [1995] extended the

work of Leighton and Acrivos [1985] to include the case where the sphere translates and

rotates in the presence of shear in the limit that the separation distance between the

sphere and the plane vanishes.

There were also a number of investigations on the motion of a sphere in a viscoelastic

fluid and in the presence of a plane wall. A recent review was presented in Becker,

McKinley & Stone [1996]. For flows with a small Deborah number that is the ratio of a

characteristic relaxation time of the fluid to a convective time of the flow, one can use the

“retarded-motion” expansion based on the asymptotic limit of a nearly-Newtonian fluid.

The relevant constitutive model for viscoelastic materials is the Rivlin-Ericksen nth-order

fluid which represents a generic limiting form for all constitutive equations for

viscoelastic fluids. It was shown that the effects of viscoelasticity in these ordered fluids

can be determined via a regular perturbation expansion in Deborah number (Leal [1980]).

Caswell [1972] examined the motion of various objects near plane and curves walls

immersed in a non-Newtonian fluid used a reciprocal theorem. In his study, the flow was

assumed to be weakly non-Newtonian up to third-order in the expansion, and the particle



5

was assumed to not close to the wall. It was found that a sedimenting sphere will be

propelled away from the wall.

Becker, Mckinley and Stone [1996] study the motion of a sphere sedimenting near a

single vertical plane wall. They included the full wall effects, and non-Newtonian effects

up to second order in Deborah number using a general third-order fluid expansion. They

explored the first effects of normal stress differences, shear thinning and inertia on the

motion of a sphere. Their theoretical calculations indicate that a sphere settling near a

wall the first effects of elasticity result in a drift velocity of the sphere away from the

wall; a drag decrease beyond the value expected in the unbounded case with shear

thinning further enhances the drag reduction; and no tendency for a sphere to exhibit

anomalous rotation, as observed by Liu, Nelson, Feng and Joseph [1992], near a single

plane wall unless shear thinning in the viscosity is also incorporated. Their results were

valid in the limit that the wall is much closer to the sphere than the Oseen distance Re -1,

i.e. ε<<Re -1 for the gap. Results for the distance between the sphere and the wall down to

0.1 radius of the sphere were presented.

In this paper we examine the lift force on a sphere translating and rotating very close

to a single plane wall with the limit of separation distance ε → 0 . The flow is assumed to

be slow enough to be approximated by a second order fluid expansion. Since the flow is

antisymmetric with respect to the front and back of the sphere, the second order fluid

does not generate correction to the drag (1.1) and torque (1.2) on the sphere at the leading

order; while it gives rise to the first order correction to the lift force, as noted in Becker

et. al [1996]. The justification of using a second-order fluid expansion or the range of

validity of its application will be discussed later in the paper.

2. Formulation of the Problem

Consider an incompressible second-order fluid with density ρ and viscosity µ, and

second order stress coefficients α1  and α2 . The steady flow around a moving sphere in

this fluid, as shown in figure 1, can be defined as,
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∇⋅ σ = Re u ⋅ ∇( )u + De∇⋅ B +
α2

α1

A2
 
 
  

 
    

∇ ⋅u = 0

where  σ = − pI + A u[ ]
(2.1)

The equations are made dimensionless with the particle radius a as the length scale, and

some arbitrary V as the velocity scale. The pressure is scaled with µV a . Re = ρVa µ  is

the Reynolds number. De = −α1( )V µa( )  is the Deborah number representing elastic

effects of the fluid, where −2α1 = Ψ1 is the coefficient of the first normal stress difference

which is usually positive.

If the coordinate system is located on the wall and centered at the point of closest

contact between the sphere and the plane wall, and moves with the translational velocity

of the sphere, the boundary conditions for this problem are given by

 

u = −U V e1                       on plane wall

u = Ωa V e2 × x − he3( )     on sphere surface A

u = −U V e1                       for xi → ∞

 

 
 

  
(2.2)

Expanding the velocity field in powers of the small parameters, Re and De, we have

u = u(0) + Re u(1) + Deu(2) + o Re,De( ) (2.3)

and similarly for the pressure p and the total stress tensor σ.

The creeping flow equations at the leading order reduces to

∇⋅ σ ( 0) = 0   and   ∇ ⋅u( 0) = 0 (2.4)

with the same boundary conditions given in (2.2).

The dimensionless lift force acting in the x3 direction is given by integrating the

stress over the surface of the sphere,
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L = e3 ⋅ σn( )
A
∫ dS = σ ijnjδ i 3dS

A
∫ (2.5)

or

L = Re σ ij
1( )n jδ i3dS

A
∫ + De σ ij

2( )n jδ i3dS
A
∫ + o Re,De( )

  = ReL 1( ) + DeL 2( ) + o Re,De( )
(2.6)

since the contribution from the zeroth order creeping flow solution vanishes. It can be

shown that the second order contribution in De2 term for a third-order fluid expansion is

also zero since the flow is antisymmetric with respect to the front and back of the sphere

(Becker et. al [1996]).  Using a reciprocal theorem, it can be shown that the first term in

the (2.6) due to the inertia reduces to

  
L1( ) = v ⋅ u 0( ) ⋅ ∇( )u 0( ){ }[ ]

V
∫ dV (2.7)

where v is the creeping flow solution for a sphere approaching a plane with unit velocity

in a quiescent fluid. The integration is over the entire space occupied by the fluid.

The second term in (2.6) is due to the normal forces in the viscoelastic fluid. By using

the same reciprocal theorem and applying the Giesekus theorem for a second order fluid

with α1 = −α2 , we have

  
L2( ) = v ⋅ ∇⋅ B u 0( )[ ] − A2 u 0( )[ ]( ){ }[ ]

V
∫ dV = v ⋅ ∇ Ψ[ ]

V
∫ dV = − Ψn3[ ]

A
∫ dS (2.8)

where A is the surface of the sphere, and

Ψ = u 0( ) ⋅∇p 0( ) + 1

4
A u 0( )[ ] : A u 0( )[ ] (2.9)

Substituting (2.9) into (2.8), we have

L2( ) = − u 0( ) ⋅ ∇p 0( )[ ]
A
∫ n3dS −

1

4
A u 0( )[ ]: A u 0( )[ ]

A
∫ n3dS (2.10)
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Taking advantage of the linearity of the creeping flow equations, the zeroth order

solution u 0( ) , p 0( )( ) induced by the motion of a sphere moving very close to a plane may

be obtained from the superposition of two different creeping flow solutions: (a) ut , pt( ) ,

for a non-rotating, translating sphere in a quiescent fluid; (b) ur , p r( ), for a sphere

rotating in a quiescent fluid about a fixed axis parallel to a plane. Solutions to the two

problems have been provided by O’Neill & Stewartson [1967] and Cooley & O’Neill

[1968]. It is important to note that in order to keep the flow steady in the translational

flow case, the sphere should be kept fixed, while the plane wall and fluid are moving with

a constant velocity, as indicated in the boundary conditions (2.2). Thus we write for the

zeroth order dimensional velocity field as

u 0( ) = U( )ut + Ωa( )ur (2.11)

where the flow velocity for the two cases are scaled differently. Using (2.11) to write

down the dimensional lift force, we get

L = L 1( ) + L 2( )

  = ρa2 λ1
1( ) U2( ) + λ2

1( ) Ω2a2( ) + λ3
1( ) UΩa( ){ }

  + −α1( ) λ1
2( ) U 2( ) + λ2

2( ) Ω2a2( ) + λ3
2( ) UΩa( ){ }

(2.12)

where the inertial terms are evaluated by the Krishnan and Leighton [1995],

λ1
1( ) = 1.755,λ2

1( ) = 0.546,λ3
1( ) = −2.038; while the elastic lift coefficients are defined as

λ1
2( ) = −

1

4
A u t[ ] :A ut[ ]

A
∫ n3dS (2.13a)

λ2
2( ) = − ur ⋅ ∇p r[ ]

A
∫ n3dS −

1

4
A u r[ ]: A ur[ ]

A
∫ n3dS (2.13b)

λ3
2( ) = − ur ⋅ ∇p t[ ]

A
∫ n3dS −

1

2
A u r[ ]: A ut[ ]

A
∫ n3dS (2.13c)

since ut = 0  on the surface of the sphere.
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We can write the integrals in (2.13) in the polar-cylindrical coordinate system r,θ , z( )
where z coincides with x3. The velocity components and pressure of the solution for the

two creeping flows around a sphere (described above) can be written in a special form of

ur ,uθ ,uz , p{ } = U cosθ ,V sinθ,W cosθ ,P cosθ{ } (2.14)

where U,V ,W and P  are functions of r and z only.

Using the velocity boundary conditions on the sphere surface, the first surface

integration in (2.13) related to the pressure reduces to,

ur ⋅ ∇p[ ]
A
∫ n3dS = π z −1( ) ∂P

∂r
+

P

r

 
 

 
 − r

∂P

∂z

 
  

 
  z −1( )dz

0

2

∫ (2.15)

and the second integral becomes

1

2
A u[ ] :A u[ ]( )

A
∫ n3dS

= π 4
∂U

∂r

 
 

 
 

2

+
∂V

∂r

 
 

 
 

2

+
∂W

∂r
+

∂U

∂z

 
 

 
 

2

+
∂V

∂z
−

W

r

 
 

 
 

2 

  
 

  z −1( )dz
0

2

∫
(2.16)

1. Contribution of the Inner Solution to the Lift

The creeping flow solutions for a sphere moving along a wall when the minimum

clearance εa  between the sphere and the plane is very much smaller than the radius of the

sphere can be obtained using a matched asymptotic expansions technique (O’Neill &

Stewartson [1967], Cooley & O’Neill [1968]). An ‘inner’ solution can be constructed for

the region in the neighborhood of the nearest points of the sphere and the plane where the

velocity gradients and pressure are large. A matching ‘outer’ solution can be constructed

which is valid for the remainder of the fluid where velocity gradients are moderate but it

is possible to assume that ε = 0. In the limit of ε = 0, the ‘outer’ solution obviously

provides the O(1) contribution to the lift force. We are going to show that the ‘inner’

solution leads to O(1 ε ) contribution to the lift. Therefore, to the leading order we only

need to calculate the contribution to the lift force from the flow in the ‘inner’ region,

using the ‘inner’ solution for a translating sphere along a plane wall.
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The inner solution for a translating sphere along a plane wall is given by O’Neill and

Stewartson [1967],

P r, z( ) = ε− 3 2P0 R, Z( ) + ε−1 2P1 R,Z( ) + ...

U r,z( ) = U0 R, Z( ) + εU1 R, Z( ) + ...

V r, z( ) = V0 R,Z( ) + εV1 R, Z( ) + ...

W r,z( ) = ε12 W0 R, Z( ) + ε3 2W1 R, Z( ) + ...

(3.1)

where the inner variables are defined as

R = r ε   and  Z = z ε  . (3.2)

The gap between the sphere and the plane, expressed as a function of r, is given by

δ = 1+ ε − 1− r 2( )1 2
= εH + 1

8 ε2R4 + ... (3.3)

where

H = 1+ 1
2 R2 . (3.4)

The leading order solution to a translating sphere is

P0
t = 6R

5H 2

U0
t = 6 − 9R2

10H3
Z2 + 2 + 7R2

5H2
Z − 1

V0
t = −

3

5H2
Z2 −

2

5H
Z + 1

W0
t =

8R− 2R3

5H4
Z3 +

2R3 − 8R

5H 3
Z2

 . (3.5)
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Similarly, leading order solution to a rotating sphere is

P0
r = 6R

5H2

U0
r = 6 − 9R2

10H3
Z2 − 8 − 2R2

5H2
Z

V0
r = −

3

5H2
Z2 +

8

5H
Z

W0
r =

8R − 2R3

5H4
Z3 −

R3 + 26R

10H3
Z2

 . (3.6)

The first lift coefficient in (2.13) are calculated, at the leading order, as

λ1
2( ) =

π
2ε

∂U0
t

∂Z

 
 
  

 

2

+
∂V0

t

∂Z

 
 
  

 

2

+ O ε( )
 

 
 

 

 
 

Z = H

RdR
0

R 0

∫  . (3.7)

Substituting the ‘inner’ solutions (3.5) into (3.7), we found

λ1
(2) =

1

ε
π
2

16

25

R0
2 32 + 20R0

2 + 5R0
4( )

2 + R0
2( )3 + O ε( )

 

 
 

 

 
  . (3.8)

Evaluating (3.8) at large values of the inner variable R0 → ∞, we have

λ1
2( ) =

8

5
π

1

ε
+ O 1( ) . (3.9)

To the leading order, the second lift coefficient in (2.13) is calculated as

λ2
2( ) =

π
2ε

−2
∂P0

r

∂R
+

P0
r

R

 
 
  

 
+

∂U0
r

∂Z

 
 
  

 

2

+
∂V0

r

∂Z

 
 
  

 

2

+ O ε( )
 

 
 

 

 
 

Z = H

RdR
0

R 0

∫  . (3.10)

Substituting the inner solutions (3.6) into (3.10), we found

λ2
2( ) =

1

ε
π
2

16

25

R0
2 −28 −10R0

2 + 5R0
4( )

2 + R0
2( )3 +O ε( )

 

 
 

 

 
 (3.11)

or
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λ2
2( ) =

8

5
π

1

ε
+ O 1( ) . (3.12)

with the inner variable R0 → ∞, which is the same as λ1
2( ) .

Similarly, the third lift coefficient in (2.13) is evaluated as

λ3
2( ) =

π
2ε

−2
∂P0

r

∂R
+

P0
r

R

 
 
  

 
+

∂U0
r

∂Z

 
 
  

 
∂U0

t

∂Z

 
 
  

 
+

∂V0
r

∂Z

 
 
  

 
∂V0

t

∂Z

 
 
  

 
+ O ε( ) 

  
 

  
Z = H

RdR
0

R 0

∫

=
1

ε
π
2

−
4

25

R0
2 92 + 80R0

2 + 5R0
4( )

2 + R0
2( )3 + O ε( )

 

 
 

 

 
 

(3.13)

or λ3
2( ) = −

4

5
π

1

ε
+ O 1( ) , (3.14)

with the inner variable R0 → ∞.

Therefore, for an arbitrary moving (both translating and rotating) sphere, we obtain

the dimensional lift due to the normal stress

L 2( ) = −α1( ) U2 + Ω2a2 − 1
2 UΩa( ) 8

5
π

1

ε
+ O 1( ) , (3.15)

where U  and Ω are the translational and angular velocity of the sphere, respectively.

When the sphere is in perfect rolling along the plane U = Ωa, we have a non-zero lift

force

L rolling
(2) = −α1( )Ω2a2 12

5
π

1

ε
+ O 1( )  . (3.16)

4. Discussion and Conclusions

The linear dependence of the lift on the inverse of the minimum gap size ε in (3.15)

and (3.16) can be easily explained. In addition to the Newtonian pressure, the pressure in

a second-order fluid is modified by a term which is proportional to the square of the shear

rate (see Joseph and Liao [1994]). Within the gap between the sphere and the wall and to

the leading order, this term scales as 1 ε 2 , since the shear rate there is proportional to
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1 ε . The circular area of the gap region between the sphere and wall shrinks as the gap

size reduces and scales as ε, as indicated by the inner variable R in (3.2). Therefore, the

lift generated by the additional term for the second-order fluid varies linearly with 1 ε .

From (3.15), we conclude that the flow due to a moving sphere along a plane wall

gives rise to a positive elastic lift force on the sphere when gap between the sphere and

the wall is small, since in flows of viscoelastic fluids the first normal stress difference

which is proportional to −α1( )  is positive.

Equation (2.12) indicates that the ratio of the inertial lift to the elastic lift is

proportional to the square of the particle radius. Therefore, for fine particles moving in a

viscoelastic solution, the elastic lift could be much bigger than the inertial lift.

For a sphere moving in a shear flow of constant shear rate far away from the sphere,

the expression (3.15) is still valid to the leading order, since the addition of shear flow

around a stationary sphere does not induce any flow in the ‘inner region’ between the

sphere and the wall (O’Neill, [1968]). In this situation, the shear flow around the sphere

is driving the sphere forward. For a fixed relative gap size between the particle and the

wall, the translational velocity of the sphere is proportional to its radius. Thus the elastic

lift in (3.15) will be proportional to the square of the sphere radius. When the lift force on

a heavy particle moving along a wall exceeds the effective weight of the particle, the

particle will be lifted from the wall and suspended in the fluid. Therefore, the ratio of the

elastic lift to the effective weight of the particle is proportional to the particle radius.

Namely, smaller particles will be easier to be suspended by the elastic lift due to the

normal stress in the fluid. However, under the same condition, the inertial lift that is

proportional to the fourth power of the particle radius as discussed above does not

suspend small particles.

Furthermore, the elastic lift force is singular when the minimum gap between the

sphere and the wall approaches zero. A direct consequence of this result is that in a

viscoelastic fluid a moving particle will be always suspended from a smooth surface.

However, as the gap size approaches zero, the application of the second-order fluid
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expansion is no longer valid since the shear rate in the gap becomes increasingly large. In

order for a retarded motion expansion to be valid, the second-order terms are normally

required to be small corrections to the Newtonian terms. We may compare the magnitude

of the nondimensional pressures in the gap due to the creeping flow, O ε − 3 2( ), with that

of the correction in a second-order fluid expansion, O Deε−2( ). For valid use of the

second-order fluid expansion, one needs that

De << O ε1 2( ) or De ~ O ε( )  . (4.1)

Certainly this is not a rigorous proof for the validity of the expansion. However, in the

perturbation sense, there is always a valid range of Deborah number for the second-order

fluid expansion, however small the range may be. Expression (3.15) will be always valid

for this limited range of De.
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