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XV Bi-power law correlations for sediment transport in pressure driven
channel flows

Direct numerical simulation (DNS) can be used to extract information implicit in the
equations of fluid-particle motion. We have investigated the lift-off of a single particle and many
particles in pressure driven flows by 2D DNS (N.A. Patankar, Huang, Ko & Joseph 2001a, Ko,
N.A. Patankar & Joseph 2001, Joseph, & Ocando 2001, Choi & Joseph 2001, N.A. Patankar, Ko,
Choi & Joseph 2001b). We show that the lift-off of single particles and many particles in
horizontal flows follow laws of similarity, power laws, which may be obtained by plotting
simulation data on log-log plots. Power laws emerge as in the case of Richardson-Zaki
correlations for fluidization by drag. Power laws also emerge from the experimental data from
STIM-LAB (Patankar, Joseph, Wang, Barree, Conway & Asadi 2002 and Wang, Joseph,
Patankar, Conway & Barree 2002). These engineering correlations for lift-off can be used to
predict proppant placement in hydraulic fracturing.

The fracturing industry makes extensive use of numerical simulation schemes based on
models and programmed to run on PC’s to guide field operations. These simulations are used to
predict how the fracture crack opens and closes and how proppant is transported in the crack.
Commercial packages dealing with these problems and propriety packages developed by oil
service companies are used extensively. These numerical schemes solve the average equations
for the fluid and the proppant phases. The solid and the fluid are considered as inter-penetrating
mixtures, which are governed by conservation laws. Interaction between the inter-penetrating
phases is modeled. Models for drag and lift forces on the particles must be used for fluid-
proppant interaction. Models for the drag force on particles in solid-liquid mixtures is a
complicated issue and usually rely on the well-known Richardson-Zaki 1954 correlation. Models
for lift forces in mixtures are much less well developed than models for drag. Therefore, none of
the packages model the all important levitation of proppants by hydrodynamic lift. The power
law models we are developing from DNS and experiments may be incorporated in the model-
based simulation techniques similar to the model for drag.

� Analogy between fluidization by drag and lift

(a)

Uniform fluid flow

g

         

(b)

Shear flow of the fluid

g

Figure XV.1. (a) Heavy particles fluidized by uniform fluid flow from the bottom of a vertical column. (b) Heavy
particles fluidized by lift due to shear flow of the fluid in a horizontal channel. Gravity acts vertically
downwards.

Fluidization by drag and shear is depicted in the cartoons in figure XV.1. In figure XV.1a the
fluid enters at the bottom of a vertical column at a uniform fluidization velocity. At equilibrium,
the drag exerted by the fluid balances the net buoyant weight of the particles. The particle bed
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acquires a height corresponding to the average particle fraction φ. When the fluidizing velocity is
increased the particle bed expands. Richardson & Zaki 1954 did experiments with different
fluids, particles and fluidization velocities. They plotted their data in log-log plots; miraculously
this data fell on straight lines whose slope and intercept could be determined. This showed that
the variables follow power laws; a theoretical explanation for this outstanding result has not been
proposed. After processing the data Richardson & Zaki (RZ) found that

Vφ = V0 [1-φ]n(R
0

) (XV.1)

where Vφ is the fluidization velocity at the column entrance or the composite velocity. V0 is the
"blow out" velocity, when φ = 0; when Vφ > V0 all the particles are blown out of the bed. Clearly
Vφ < V0 for a fluidized bed. For fluidization columns with large cross section in comparison to
the particle size, the RZ exponent n(R0) depends on the Reynolds number R0 = V0d/ν only, where
d denotes the particle size e.g. diameter of a spherical particle and ν is the kinematic viscosity of
the fluid. The power law in the RZ case is an example of what Barenblatt 1996 calls "incomplete
self similarity" because the power itself depends on the Reynolds number, a third parameter. Pan,
Joseph, Bai, Glowinski & Sarin 2001 carried out 3D DNS of the fluidization of 1204 spheres and
obtained a correlation in agreement with (XV.1). The Richardson-Zaki correlation gives different
expressions for n for different values of R0. In the appendix R.D. Barree presents a way of
representing the various expressions for n by a single continuous function.

(XV.1) describes the complicated dynamics of fluidization by drag. The single particle
fluidization velocity plays a key role in obtaining the fluidization velocity of concentrated
suspensions. An expression for the drag force Fd(1) on a single isolated particle in an infinite
ambient of the fluid is given by a drag law, e.g.
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where η is the fluid dynamic viscosity, ρf is the fluid density and spherical particles are
considered. In a fluidized bed the total force F acting on a particle is (Foscolo & Gibilaro 1984,
Joseph 1990)

( ) ( ) ( )εεε Bd FFRF −=0, , (XV.3)

where ε is the fluid fraction, Fd(ε) is the drag on a single particle in the fluid-particle mixture and
FB(ε) is the effective buoyant weight of a particle in the suspension. We have, FB(ε) = Vp(ρp –
ρc)g = εVp(ρp - ρf)g = εFB(1), where ρp is the particle density, Vp is the volume of the particle, g
is the gravitational acceleration, FB(1) is the buoyant weight of an isolated particle and ρc =
ερf + φρp is the effective or composite density of the fluid-particle mixture. At steady conditions
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For spherical particles, (XV.1), (XV.2) and (XV.4) give
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where 23][ ηgdρρρR fpfG −=  represents the Reynolds number based on the sedimentation

velocity scale ηgdρρV fpG
2][ −=  and ηdVρR f φφ = . (XV.5) is another form of the

correlation for fluidization by drag and can be written as

( ) ( ) ( )00
0

RqRp
G RRaR εφ= . (XV.6)

Figure XV.1b shows the fluidization of particles by shear flow observed in experiments and
numerical simulations. At equilibrium the average lift exerted by the fluid should balance the net
buoyant weight of the particles. When the applied shear rate is increased the particle bed
expands. This is similar to the fluidization by drag where the mechanism for bed expansion is
different. Correlations analogous to (XV.6) may be expected for fluidization by shear. In that
case a Reynolds number based on the applied shear rate should be defined instead of Rφ. The
prefactor and the exponents may be determined from experimental or numerical data.

� Direct numerical simulation (DNS) of solid-liquid flows

Choi & Joseph 2001 and N.A. Patankar et. al 2001b used the ALE scheme to study the
fluidization by lift of 300 circular particles in a plane Poiseuille flow by direct numerical
simulation.

Particles are initially placed at the bottom of a periodic channel of height H1 in a close
packed ordered configuration (figure XV.2). The flow is driven by an external pressure gradient.
At steady condition, the particle bed reaches a constant height (figure XV.2). The height of the
clear fluid region above the particle bed is H2. From non-dimensional analysis we get
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where the shear Reynolds number is 
η
γρ 2d

R wf �= , the gravity Reynolds number or non-

dimensional lift is 
( )

2
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G

−
= , N is the number of particles, l is the channel length, ε

is the average fluid fraction in the particle bed whose height is (H1 – H2) and εmax is the fluid
fraction in the particle bed if the particles occupy the entire height of the channel i.e. if H2 = 0.
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Figure XV.2. (N.A. Patankar, Ko, Choi & Joseph 2001b) Lift-off of 300 heavy particles in a plane pressure driven
flow of a Newtonian fluid, Re = 1800. Contour plot of the horizontal velocity component is shown.

During the simulations εmax and H1/d were constant (N.A. Patankar et al. 2001b, Choi &
Joseph 2001). In that case, RG is a function of R and ε only. N.A. Patankar et al. 2001b obtained
the following correlation
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The correlation above is of the same form as that expected from (XV.6). This shows that
fluidization of slurries by lift also falls into enabling correlations of the RZ type and the above
correlation by N.A. Patankar et al. 2001b could be called a Richardson-Zaki type of correlation
for fluidization by lift. Lift results for fluidized slurries are power laws in appropriate
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dimensionless parameters. These power laws are in the form of engineering type correlations; to
use them in applications we need rules for converting two- to three-dimensional results. The goal
of our future work is to generate power laws for engineering applications by processing results of
simulations in 3D just as we have done in 2D.

The DNS results are in agreement with the expected power law form in (XV.6) from the
analogy between fluidization by drag and shear. In the next sections we present the experimental
results for proppant transport to verify the prediction of power laws from DNS (N.A. Patankar, et
al. 2002, Wang, et al. 2002).

� Experimental setup

Kerns, Perkins, and Wyant 1959 reported the earliest experimental investigation of proppant
transport in narrow slots. STIM-LAB did more experiments to better understand the processes
involved in proppant transport by water and other thin fluids. We have analyzed the data
obtained from their experiments. The apparatus used by STIM-LAB was constructed so that the
transport of proppant in a horizontally oriented slot could be observed. A schematic of the
apparatus is shown in figure XV.3.

Proppant Trap 

Perforations

Channel Above Proppant

Pressure Regulator

Hose and Fluid ExitFluid Supply Hose

Open Standpipe

Proppant Metering Feeder

1 by 8 foot Plexiglas Slot

Initial
Proppant
Emplacement

See Figure XV.7

Figure XV. 3. (N.A. Patankar et al. 2002) The experimental setup for proppant transport. Proppant and fluid are
added at the left where they enter over the full height of the slot. Materials exit at the right through
perforations.

Proppant can be added at a constant rate and water flow rate is also constant. Proppant and
water enter the 7.94 mm wide slot through an open end that is 30.5 cm tall. The proppant and
water then move through the 2.44 m length of the slot where they exit via three 8 mm
perforations spaced 7.62 cm apart on the 30.5 cm tall end of the slot. The proppant and water
flow rates were varied, proppants of varying size and density were added and water at different
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temperatures was used. Observations were recorded and portions of the experiments were video
taped.

The evolution of the proppant bed in the experiments is well described in figure XV.4. The
portion shown in figure XV.4 is marked in figure XV.3. In the steady state there is an initial
development length (see figure XV.3) followed by a flat bed region shown in figure XV.4 and
marked in figure XV.3. There are three distinct zones in the flat bed region. The bottom part of
the bed is immobile; it is a stationary porous medium that supports liquid throughput that might
be modeled by Darcy's law. Above the immobile bed is a mobile bed in which particles move by
sliding and rolling or advection after suspension or a combination of these modes. Above the
mobile bed is the clear fluid zone. At steady state the volumetric fluid flow rate Qf and the
volumetric proppant flow rate Qp in and out of this region are constant. At steady state, these are
equal to the rate at which the fluid and proppant are injected in the slot.

 

   

Mobile bed

Immobile bed 

Qf 

Clean fluid 

Qp Qp 

Qf 
H1 H2

Figure XV.4. (N.A. Patankar et al. 2002) Proppant transport in thin fluids at steady state conditions. In Case 1 only
fluid is pumped, QP = 0, H1 = H2; the particles are immobile. In Case 2 proppants are also injected, QP ≠ 0,
H1 ≠ H2; there is a mobile bed of height H1 - H2. The channel width W = 7.94 mm.

STIM-LAB carried out two types of experiments looking at the transport of proppants in thin
fluids. In Case 1 only fluid is pumped, QP = 0, H1 = H2; the particles are immobile. We call case
1 erosion case. In Case 2 proppants are also injected, QP ≠ 0, H1 ≠ H2; there is a mobile bed of
height H1 - H2. We call case 2 bed load transport case. The channel width W = 7.94 mm. A
simplified description of the experiment is that a bed of proppant is eroded by the flow of water.
When proppant is not injected as in Case 1, the faster the flow of water the deeper is the channel
above the proppants. We are seeking to predict the height above the channel for the given fluid
flow rate. In Case 2, we seek to predict both the clear fluid height as well as the mobile bed
height as functions of Qf and Qp. In the experiments the fluid and the proppant flow rates are
controlled and the heights H1, H2 are measured.

In the DNS of 300 particles reported by Choi & Joseph 2001 and N.A. Patankar et al. 2001b
(figure XV.2), we have a set up similar to that in figure XV.4. The value of H1 in figure XV.4 is
equivalent to the height of the channel in the simulations. In the simulations, data is obtained for
a fixed value of H1/d. This is not the case with the experimental data.
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� Experimental correlations for sediment transport

Dimensionless parameters

The dimensionless parameters in this problem are listed below:

Gravity Reynolds number
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Gravity Reynolds number for the fluid
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Note that 1/λ can be viewed as the Reynolds number based on a velocity scale V ~ gW  and
length scale W.

Fluid Reynolds number based on channel width
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Proppant Reynolds number based on channel width
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Particle diameter/channel width: d/W.

Height of bed/channel width: H/W.

Power law correlations for the erosion case (Patankar et al. 2002)

The erosion case: H1 = H2 = H finds the critical condition of the initial motion of the
proppant. Only fluid is injected in the channel. The particle bed is immobile. There is an
equilibrium value of H corresponding to a given fluid flow rate. When the fluid flow rate is
increased beyond the critical value for a given initial height H, the proppants are eroded from the
bed and washed out until a new equilibrium height H of the clear fluid region above an immobile
bed is achieved for the new flow rate.

Table XV.1 gives the data from these experiments. Figure XV.5 shows a plot of H/W vs. Rf at
different values of RG.
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Figure XV.5. Plot of H/W vs. Rf at different values of RG on a logarithmic scale.

Proppants d
(cm)

H

(cm)

η
(gm/cm-s)

fρ

(gm/cc)

Qf
(cc/s)

pρ

(gm/cc)

RG V~

(cm/s)

Rf H/W

0.034212 1.7 0.01115 0.999 36.778 2.65 521.1645 58.37416 4184.12 2.141732

0.034212 2.3 0.01115 0.999 58.289 2.65 521.1645 92.51649 6631.36 2.897638

0.034212 5.6 0.01115 0.999 133.295 2.65 521.1645 211.5662 15164.55 7.055118

60/40

Brady

0.034212 7.8 0.01115 0.999 232.588 2.65 521.1645 369.1644 26460.80 9.826772

0.056043 2.3 0.01115 0.999 46.556 2.65 2290.822 73.89383 5296.48 2.897638

0.056043 5.2 0.01115 0.999 133.106 2.65 2290.822 211.2663 15142.90 6.55118120/40

Ottawa 0.056043 8.2 0.01115 0.999 227.542 2.65 2290.822 361.1554 25886.49 10.33071

0.06 1.4 0.01115 0.999 7.885 1.05 86.83778 12.5151 897.05 1.76378

0.06 2 0.01115 0.999 10.409 1.05 86.83778 16.5212 1184.19 2.519685

0.06 3.9 0.01115 0.999 31.92 1.05 86.83778 50.66353 3631.42 4.913386

0.06 8.5 0.01115 0.999 128.438 1.05 86.83778 203.8572 14611.89 10.70866

20/40

Light

Beads

0.06 12 0.01115 0.999 226.217 1.05 86.83778 359.0523 25735.84 15.11811

0.094946 1.5 0.01 0.998 31.542 2.73 14513.72 50.06356 3997.08 1.889764

0.094946 2.2 0.01 0.998 50.467 2.73 14513.72 80.10138 6395.30 2.77165416/20

Carbolite 0.094946 9.9 0.01 0.998 258.642 2.73 14513.72 410.5174 32775.74 12.47244

0.094946 1.7 0.00378 0.972 36.778 2.73 100415.8 58.37416 12008.41 2.141732

0.094946 2.3 0.00378 0.972 58.289 2.73 100415.8 92.51649 19031.98 2.897638

0.094946 5.6 0.00378 0.972 133.295 2.73 100415.8 211.5662 43522.25 7.055118

16/20

Carbolite

0.094946 7.8 0.00378 0.972 232.588 2.73 100415.8 369.1644 75942.48 9.826772
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Proppants d
(cm)

H

(cm)

η
(gm/cm-s)

fρ

(gm/cc)

Qf
(cc/s)

pρ

(gm/cc)

RG V~

(cm/s)

Rf H/W

(continued)

0.088437 0.4 0.01115 0.999 10.535 3.45 13363.76 16.72119 1198.53 0.503937

0.088437 0.6 0.01115 0.999 13.878 3.45 13363.76 22.02721 1578.85 0.755906

0.088437 1.3 0.01115 0.999 29.145 3.45 13363.76 46.25904 3315.71 1.637795

0.088437 3.5 0.01115 0.999 100.681 3.45 13363.76 159.8012 11454.08 4.409449

16/30

Banrite

0.088437 8.3 0.01115 0.999 261.796 3.45 13363.76 415.5234 29783.50 10.45669

0.109021 1.3 0.01015 0.998 28.955 2.65 20342.9 45.95747 3615.03 1.637795

0.109021 2.5 0.01015 0.998 62.137 2.65 20342.9 98.62404 7757.81 3.149606

0.109021 5.8 0.01015 0.998 155.185 2.65 20342.9 246.3101 19374.85 7.307087

12/20

Badger

0.109021 9 0.01015 0.998 290.814 2.65 20342.9 461.5809 36308.13 11.33858

Table XV.1: Data from experiments on the initiation of sediment motion (Erosion Case).

In the erosion case, three dimensionless parameters Rf, H/W, and RG enter the power law
correlation

)()( GRm
fG RRa

W
H = (XV.13)

where a and m are function of RG.1 The values of a and m may be regarded as constants for
521.37 ≤ RG ≤ 20342.9 (table XV.2).

RG 86.838 521.37 — 20342.9 100415.8
a 0.0304 0.001 0.0006
m 0.614 0.90432 0.8672

Table XV.2. The prefactor a(RG) and exponent m(RG) in the power law correlations for the erosion case.

Bi-power law correlations for the bed load transport case (Wang et al. 2002)

Bed load transport is another name for the transport of sediments. In bed load transport cases,
both fluids and proppants play important role in determining H1 and H2. Therefore we seek
correlations for H1/W and H2/W in terms of Rf and Rp with the coefficients as functions of RG

                                                
1 Shield’s (1936) curve also gives the critical condition for the initiation of sediment motion. The Shields parameter

S is defined as:
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S
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= , where τ is a measure of the shear stress on the particle bed. If we take
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. From the Shield’s 1936 curve one obtains (see also, Vanoni

1975) S = fs ( ][ W
dR f ). (XV.13), applicable for proppant transport in narrow channels, has W/H as another

parameter. Nothing close to the bi-power law correlations has been put forward for sediment transport.
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and λ.  To create correlations, we need data and a data structure. An example of the way the data
is structured for processing correlations is given for 20/40 Ottawa in water in table XV.3.

ρf: 1.0gm/cc, ρp: 2.65gm/cc, d: 0.06cm, η: 0.01poise, W: 0.79375cm, RG: 3496.28, λ: 0.000451.

Qp

(cc/s)
Qf

(cc/s)
Rf Rp H1

(cm)
H2

(cm)
H1/W H2/W

40 244.1 30752.76 13354.33 2.3 0.8 2.897638 1.007874
45.7 242.9 30601.57 15257.32 2.6 0.7 3.275591 0.88189
28.6 250.4 31546.46 9548.346 2.3 1 2.897638 1.259843
11.4 249.8 31470.87 3805.984 2.4 1.5 3.023622 1.889764
11.4 313.5 39496.06 3805.984 3 2.1 3.779528 2.645669
34.3 304.7 38387.4 11451.34 2.9 1.5 3.653543 1.889764
11.4 314.8 39659.84 3805.984 3.1 2.3 3.905512 2.897638
45.7 303.4 38223.62 15257.32 3 1.4 3.779528 1.76378
40 305.3 38462.99 13354.33 3 1.5 3.779528 1.889764

28.6 306 38551.18 9548.346 2.9 1.6 3.653543 2.015748
22.8 306 38551.18 7611.969 2.8 1.7 3.527559 2.141732
17.1 315.4 39735.43 5708.976 3.1 2 3.905512 2.519685
5.7 314.2 39584.25 1902.992 3.5 2.9 4.409449 3.653543
2.9 313.5 39496.06 968.189 4.1 3.6 5.165354 4.535433
1.4 312.9 39420.47 467.4016 5.1 5 6.425197 6.299213
0.4 311.6 39256.69 133.5433 5.8 5.7 7.307087 7.181102

Table XV.3: Experimental data for the bed load transport case with 20/40 Ottawa and water.

We look for correlations in the bi-power law form with five dimensionless parameters
involved:

)(),(
1

1 11)( GG Rn
p

Rm
fG RRRc

W
H λ= ; (XV.14)
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Following are the procedures we used to achieve the bi-power correlations: (1) Different
kinds of proppant and fluid are used in bed load transport experiments and lead to different
values of RG and λ.  For each single case, we develop bi-power law correlations of H1 and H2. (2)
The prefactors and exponents in these correlations are functions of RG and λ. We implement
curve-fitting to find analytical expression for these coefficients. (3) Curve fitting implies that c1,
n1, c2 and n2 can be reasonably approximated by logarithmic functions of RG. While the trend of
m1, m2 is less obvious. (4) We use the predicted c1, n1, c2, and n2 by the logarithmic functions of
RG and vary m1, m2 in the bi-power law correlations to match the measured H1 and H2
consistently. The new m1 and m2 turn out to be also logarithmic functions of RG, but with slopes
and intercepts as functions of λ. (5) With the explicit and analytical expressions for all the
coefficients in the bi-power law known: c1(RG), c2(RG), n1(RG), n2(RG), m1(RG, λ), m2(RG, λ) , we
predict H1 and H2 and compare them with the experimentally measured values. The analytical
expressions c1(RG), c2(RG), n1(RG), n2(RG), m1(RG, λ) and m2(RG, λ) can be adjusted to obtain the
best fit for H1 and H2. Hence, we obtain the final form for the analytical expressions: (XV.16) –
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(XV.21). Then they are inserted to (XV.14) and (XV.15), giving rise to (XV.22) and (XV.23) as
the final form for the bi-power law correlations.

Next, we present the analytical expressions for the prefactors and exponents in the bi-power
law correlations. These expressions are plotted in figure XV.6–XV.9.

0029193.0)ln(000230175.01 +−= GRc ; (XV.16)
30.00132876)ln(000114966.02 +−= GRc ; (XV.17)

c1= -0.000230Ln(RG) + 0.002919

c2 = -0.000115Ln(RG) + 0.001329
0
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Figure XV.6. Prefactors c1 and c2 as logarithmic functions of RG.

12002233.0)ln(01720815.01 −−= GRn ; (XV.18)
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Figure XV.7. Exponents n1 and n2 as logarithmic functions of RG.
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Figure XV.9. Exponent m2 as a logarithmic function of RG with the slopes and intercepts as functions of λ.

From figure XV.6–XV.9, we can see that c1, n1, c2 and n2 can be represented by logarithmic
functions of RG, while m1 and m2 are logarithmic functions of RG with slopes and intercepts as
functions of λ. Equation (XV.20) implies that for any λ, the logarithmic curve m1(RG,
λ = constant) passes through the point (m1=1.2, ln(RG)=15.2). Equation (XV.21) shows that such
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a point for m2(RG, λ) is (m2=1.201, ln(RG)=11.67). In figure XV.8 and XV.9, we can see the two
points.

In table XV.4, the bed load transport experiments with the corresponding RG and λ are listed.
Note that the proppant and fluid used in these experiments and their properties can be found in
the table XV.B2. c1, c2, m1, m2, n1 and n2 listed in table XV.4 are predicted by (XV.16)–(XV.21)
corresponding to RG and λ listed in the first and second columns. These c1, c2, m1, m2, n1 and n2
have been plotted in figure XV.6–XV.9, indicated by points.

RG λλλλ c1 c2 n1 n2 m1 m2

27.51 0.00396 0.002156 0.000999 -0.1771 -0.33101 1.04072 1.18938
162.2879 0.00396 0.001751 0.000781 -0.2074 -0.34528 1.064336 1.192695

172.895567 0.00396 0.001733 0.000772 -0.2087 -0.3459 1.065354 1.192838
25.8172784 0.002034 0.002171 0.001007 -0.176 -0.3305 0.987032 1.168948
107.151931 0.002034 0.001843 0.000831 -0.2005 -0.34202 1.012398 1.175391
643.994554 0.002034 0.001431 0.000609 -0.2313 -0.35655 1.044363 1.18351

648.07 0.000452 0.001429 0.000608 -0.2314 -0.3566 0.90401 1.057401
2818.38293 0.000452 0.001091 0.000426 -0.2567 -0.3685 0.953871 1.105684

3496.28 0.000452 0.001041 0.000400 -0.2604 -0.37025 0.961182 1.112763
8903.2 0.000452 0.000826 0.000284 -0.2765 -0.37781 0.992887 1.143466

15921.522 0.000452 0.000692 0.000212 -0.2865 -0.38252 1.012604 1.162559
12755.3536 0.000209 0.000743 0.00024 -0.2827 -0.38073 0.929031 1.070145
73483.2936 0.000209 0.00034 2.31E-05 -0.3128 -0.39491 1.011605 1.228776

Table XV.4: RG and λ for bed load transport experiments and the corresponding c1, c2, m1, m2, n1 and n2 predicted
by (XV.16)–(XV.21).

Inserting the analytical expressions (XV.16)–(XV.21) into (XV.14) and (XV.15), we get the
final form for the bi-power law correlations:
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We emphasize that equations (XV.22) and (XV.23) are explicit and predictive correlations for
proppant transport. By (XV.22) and (XV.23),  H1 and H2 can be predicted from the prescribed
parameters:  ρf, ρp, d,η, W, Qp, Qf.

We predict H1/W and H2/W by (XV.22) and (XV.23). In figure XV.10 and XV.11, we plot
the predicted values against the experimentally measured data. Ideally, all the points should be
on the straight-line y=x. It can be seen that the predicted values are in good agreement with the
experimental data.
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Figure XV.11. The predicted values of H2/W by equation (XV.23) versus the experimentally measured values for the
cases listed in table XV.4.
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To test this correlation, experiments were conducted in the slot which is 16 feet long and 4
feet high. (Note that the correlations are extracted from experiments conducted in the slot which
is 8 feet long and 1 foot high.) Following are the prescribed parameters for the experiments in the
16-foot-long slot: 20/40 Ottawa with water, ρf : 0.997gm/cc, ρp : 2.645gm/cc, d: 0.0548cm, η:
0.00998poise, W : 0.79375cm, RG: 2663.189, λ: 0.000452.

Rf Rp Predicted
H1/W

Predicted
H2/W

Predicted
H1(cm)

Predicted
H2(cm)

Measured
H1(cm)

Measured
H2(cm)

514437.8 14327.87 28.81 25.79502 22.86977 20.4748 24.5 24.30
570181.8 38207.65 24.73 20.14101 19.62663 15.98693 20.2 19.2

Table XV.5. The predicted H1 and H2 in comparison with the measured H1 and H2 in experiments conducted in the
slot which is 16 feet long and 4 feet high.

We can see that the agreement between predicted values and measured values is encouraging.
We believe that our correlation provides a promising way to predict transport of proppant.

3.4 Logistic dose curve fitting for H1/W and H2/W

The bi-power law correlation gives good prediction of H1/W and H2/W for the bed load
transport case. However, it is not compatible with the erosion case. When Rp approaches zero,
H1/W and H2/W tend to infinity. Therefore we need a different correlation to account for the
transition region from the erosion case to the bed load transport case.

We fit the data for H1/W and H2/W to a logistic dose curve (see Appendix A for details) to
determine a function valid in the transition region; this fitting effectively combines the power
law for the erosion case and the bi-power law for the bed load transport case. We seek to
determine the function:
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When Rp=0 (the erosion case), (XV.24) and (XV.25) reduce to:
1

1
1 M

fRC
W
H = ,  (XV.26)

2
2

2 M
fRC

W
H = .   (XV.27)

For the erosion case, H = H1 = H2; hence, C1=C2, M1=M2 and we recover the power law
correlation (XV.13) for the erosion case. When Rp>>T1 and Rp>>T2, (XV.24) and (XV.25)
reduce to:
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Therefore, we recover the bi-power law correlations (XV.14) and (XV.15) for the bed load
transport case.

Comparing (XV.28) and (XV.29) to (XV.14) and (XV.15), we observe that M1 and M2
should be functions of both RG and λ; hence, the exponent M1=M2 in the power law correlations
for the erosion case should be functions of RG and λ. However, most of the erosion experiments
were conducted using water at different temperatures and lead to a small range of λ (See table
XV.B1); we do not have enough data to find an analytical expression M1(RG, λ)=M2(RG, λ) .
However, we find that C1, M1, T1, N1, C2, M2, T2 and N2 can be reasonably approximated by
functions of a single variable RG; hence, the coefficients in (XV.24) and (XV.25) are functions of
RG only.

We do not have data for erosion and bed load transport with the same RG (See table XV.B1
and XV.B2) so that we use (XV.24) and (XV.25) to fit data from erosion and bed load transport
with different but close RG:

1:  Erosion case with RG=86 and bed load transport case with RG=109,
2:  Erosion case with RG=521 and bed load transport case with RG=648,
3:  Erosion case with RG=2290 and bed load transport case with RG=2761,
4:  Erosion case with RG=13363,14513 and bed load transport case with RG=12229.

The results of fitting erosion with RG=86 and bed load transport with RG=109 are presented
below:
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By (XV.30) and (XV.31), H1/W and H2/W are computed and tabulated in table XV.6.

RG Rf Rp H1/W H2/W computed
H1/W

error computed
H2/W

error

86.83778 897.05 0 1.76378 1.76378 1.275422 0.238493 1.275422 0.238493
86.83778 1184.19 0 2.519685 2.519685 1.570219 0.901486 1.570219 0.901486
86.83778 3631.42 0 4.913386 4.913386 3.633766 1.637427 3.633766 1.637427
86.83778 14611.89 0 10.70866 10.70866 10.30601 0.162123 10.30601 0.162123
86.83778 25735.84 0 15.11811 15.11811 15.74579 0.393979 15.74579 0.393979

109.48 5202.438 570.7087 2.863739 2.301595 3.704969 0.707668 3.291238 0.979393
109.48 17341.46 1902.362 8.183906 7.060129 8.047953 0.018483 6.792796 0.071467
109.48 8670.73 95.1182 7.229334 6.502897 6.324757 0.818258 6.006224 0.246684
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(continued)
109.48 8670.73 142.6773 7.168748 6.437499 6.146838 1.044302 5.76016 0.458789
109.48 8670.73 285.3543 5.53511 4.795559 5.802219 0.071347 5.300052 0.254513
109.48 8670.73 570.7087 4.594431 3.846482 5.431254 0.700274 4.82475 0.957008
109.48 8670.73 951.1811 4.282596 3.528398 5.155187 0.761415 4.482455 0.910225
109.48 8670.73 1141.417 4.220726 3.464284 5.057626 0.700402 4.36363 0.808822
109.48 8670.73 1141.417 4.283718 3.527276 5.057626 0.598934 4.36363 0.699488
109.48 26012.19 1902.362 11.9804 10.57071 10.90282 1.161175 9.202417 1.872216

 Table XV.6: Data structure for the combination of erosion case with RG=86 and bed load transport case with
RG=109. H1/W and H2/W calculated by equation (XV.30) and (XV.31) are listed in comparison with the
experimentally measured values. The error is computed by (calculated value - measured value)2.

y = x

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16
Experimental H 1/W

C
al

cu
la

te
d 

H
1/W

σ2 = 0.951

Figure XV.12(a): Experimental H1/W vs. calculated H1/W using (XV.30).

y = x

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16
Experimental H 2/W

C
al

cu
la

te
d 

H
2/W

σ2 = 0.946

Figure XV.12(b): Experimental H2/W vs. calculated H2/W using (XV.31).
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We can see that the computed H1/W and H2/W are in good agreement with the experimentally
observed values. Cases 2, 3 and 4 are processed in the same manner and resultant coefficients C1,
M1, T1, N1, C2, M2, T2, N2 and σ-squared values are listed in table XV.7.

RG C1 M1 T1 N1 σσσσ2 C2 M2 T2 N2 σσσσ2

109.48 0.007846 0.748778 68.232 0.112 0.951 0.007846 0.748778 59.2391 0.155747 0.946
648.1 0.000856 0.923591 4.173 0.190 0.987 0.000856 0.923591 31.60245 0.319314 0.981

2761.9 0.000184 1.080253 3.332 0.234 0.964 0.000184 1.080253 9.694597 0.299927 0.929
12229 8.94E-06 1.361329 0.174 0.133 0.9453 8.94E-06 1.361329 5.008106 0.278326 0.9448

Table XV.7: The coefficients in the logistic dose curve fitting of H1/W and H2/W for the data from erosion and bed
load transport with close RG. We only list the RG of the bed load transport case in the first column.

     Next we obtain the functions C1(RG), M1(RG), T1(RG), N1(RG), C2(RG), M2(RG), T2(RG), and
N2(RG).
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Figure XV.13: The coefficient C1 = C2 as a function of RG.
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1248.0
21 4126.0 GRMM ==  .     (XV.33)

(σ2 = 0.9939)

 T 2 = 861.55R G
-0.5479

σ2 = 0.9758

T 1 = 14730R G
-1.1677

σ2 = 0.9302

0.1

1

10

100

10 100 1000 10000 100000
R G

T
1 a

nd
 T

2

T2
T1

Figure XV.15: The coefficient T1 and T2 as functions of RG.
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Figure XV.16: The coefficient N1 and N2 plotted against RG.

We use a natural cubic spline to interpolate N1(RG) and N2(RG) and the results are plotted in
figure XV.17. Because we do not have enough data, the spline interpolation is not reliable and
could be siginificantly changed when more data become available.
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Figure XV.17. Use natural cubic spline to interpolate N1(RG) and N2(RG).

The resultant expressions of the spline interpolation are:
3

1
2

1111 GGG RDRCRBAN +++=     (XV.36)

where the values of A1, B1, C1, D1 are listed in the following table:
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Range 109.48—648.1 648.1—2761.9 2761.9—12229
A1 9.4344824626E-02 7.9038758235E-02 3.2815903993E-01
B1 1.5713752027E-04 2.2798800770E-04 -4.2608636465E-05
C1 1.4612470982E-08 -9.4707834681E-08 3.2669847295E-09
D1 -4.4490532619E-11 1.1735517774E-11 -8.9050201147E-14

Table XV.8: The coefficients in the spline intopolation for N1(RG).
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where the values of A2, B2, C2, D2 are listed in the following table:

Range 109.48—648.1 648.1—2761.9 2761.9—12229
A2 1.1903363556E-01 7.9383985185E-02 7.6244366512E-01
B2 3.3261384535E-04 5.1614872518E-04 -2.2579671537E-04
C2 3.7393518981E-08 -2.4579562890E-07 2.284026181E-08
D2 -1.1385189939E-10 3.1799059083E-11 -6.2257098948E-13

Table XV.9: The coefficients in the spline intopolation for N2(RG).

The final correlations:
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where N1(RG) and N2(RG) are expressed in (30) and (31).

Correlations (XV.38) and (XV.39) can be used to predict H1/W and H2/W with the prescribed
parameters W, ρf, ρp, d η, Qf and Qp. These correlations are compatible with both the power law
for the erosion case and the bi-power law for the bed load transport case.

We developed the logistic dose curve by fitting the data for erosion and bed load transport
using equation (XV.24) and (XV.25). The curve should depend on RG and λ but we do not have
enough data to determine how it depends on λ. This fitting using the dose curve is independent
of the previous power law and bi-power law correlations and the resultant equation (XV.38) and
(XV.39) do not reduce precisely to equation (XV.13), (XV.22) and (XV.23) at the respective
limits. We emphasize that the logistic dose curve represents a correlation for transition situations
between erosion and bed load transport; it is not as accurate as the power law (XV.5) for erosion
or the bi-power law (XV.22) and (XV.23) for bed load transport.

� Summary

We believe that research leading to optimal techniques of processing data for correlations
from real and numerical experiments is founded on the far from obvious property of self
similarity (power laws) in the flow of dispersions. The basis for this belief are the excellent
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correlations of experiments on fluidization and sedimentation done by Richardson & Zaki and
the correlations for sediment transport in horizontal channels obtained from our numerical
simulations and the analysis of the experimental data from STIM-LAB.

Results of two dimensional simulations of solid-liquid flows give rise to straight lines in log-
log plots of the relevant dimensionless Reynolds numbers. Power laws are also obtained from the
analysis of experimental data. The extent and apparent universality of this property is remarkable
and shows that the flow of these dispersions are governed by a hidden property of self similarity
leading to power laws. These power laws make a powerful connection between sophisticated
high performance computation, experiments and the world of engineering correlations.

The correlations obtained can be used as predictive tools or as a basis for models for
sediment transport in simulators used for design purposes.

In a sense our results here realize the opportunity which is presented by digital technology
for implementing the old tried and true method of correlations to big data sets. Our mantra is “the
secrets are in the data.” The same method works well for data from numerical and from real
experiments. We have used the following procedure not only for this but also for other
multiphase flow processes. First we propose candidates for controlling dimensionless parameters
and list the data required to form these numbers in a spreadsheet. Then we identify two
parameters and plot the results of the experiments for those two in log-log plots under conditions
in which other parameters are fixed. We have a good choice when the plots come up as straight
lines in the log-log plot. Here and elsewhere we have had excellent results in this search using
the parameters suggested by making the governing sets of PDE’s dimensionless. The results of
this kind of power law processing is that the slopes and intercepts of the straight lines in log-log
plots, or the prefactors and exponents of the power laws these lines imply, depend on the
parameters we have fixed. When we look at the variation of these parameters, the prefactors and
exponents sometimes are expressible as power laws and sometimes they are not. In any case we
may and do implement curve-fitting procedures for the prefactors and exponents to present
explicit formulas in analytic form for the prediction of future events.

We might add that the search for the governing dimensionless numbers in multiphase flow is
a way to achieve a deep understanding of the underlying physics. The method of correlations is
an excellent procedure to guide the research because the data doesn’t lie.
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� Appendix A (contribution of B. Baree)

Fitting power-law data with transition regions by a continuous function: General framework
and application to the Richardson-Zaki correlation

Many data sets representing naturally occurring phenomena can be described using a
Sigmoidal distribution function. One such function that is particularly useful in fitting physical
data is the logistic dose response curve given by:
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In this equation each of the constant terms or coefficients (a, b, c, d and t) have readily
apparent physical significance, which allows data modeling to be accomplished almost by
inspection.
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Figure XV.A1. A typical logistic dose response curve.

Figure XV.A1 shows the dose-response function for a = 1, b = 1000, c = 2, d = 1, and t = 10.
As can be seen, the coefficients a and b represent the values of the lower and upper plateaus of
the function, respectively, or its range. The coefficient t defines the value of the independent
variable (x) where the function deviates from the constant first plateau value. The sharpness of
curvature during the deviation from the first plateau is determined by the coefficient c. The slope
of the power-law straight line in transition from the first plateau to the second plateau is
determined by the product of coefficients c and d. The slope in this example is negative because
both exponents are positive in the denominator of the rational fraction.
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Figure XV.A2. Effects of changing signs of coefficients c and d in the logistic dose response curve.

The effects of changing the signs of the exponents can be examined (figure XV.A2). If the
sign of coefficient c is changed, the plot is essentially rotated about a line parallel to the y-axis
through the transition value t (compare curves A and B in figure XV.A2). If the sign of the
coefficient d is changed, the plot is rotated about a line parallel to the x-axis through the upper
bound b (compare curves A and C in figure XV.A2). These relationships allow construction of a
transition function in any general form. Another useful property of this function is that the bound
corresponding to the coefficient a can be eliminated by setting its value to zero. With a = 0 the
function yields a horizontal line at the upper bound value b and a power-law line of slope c×d
which extends to infinity (Curve A, figure XV.A2). Various functions can then be modeled by
products of functions with specified power-law slopes and transition points (figure XV.A3). For
curve A in figure XV.A3 c1 = 2, d1 = 1 and for curve B c2 = 1.6, d2 = –1. The final power-law
slope in the product is then c1×d1 + c2×d2.
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Figure XV.A3. Obtaining a curve from the product of two different logistic dose response curves.

Combinations of these functions can be used in various forms to model many commonly
observed phenomena. The logistic dose response curve can also be multiplied by a linear power
law function to impose an overall slope to the function. Quite complex systems can be modeled
by combining rational fractions or products of multiple functions.

This method has been used to model the Richardson-Zaki correlation that relates bed
fluidization velocity to the solids volume-fraction of particles in suspension. The Richardson-
Zaki correlation is given by (XV.1). Specifically, the various functions representing the exponent
n are (Richardson & Zaki, 1954)
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In these relations d is particle diameter, and D is the diameter of the fluidization column.
Note that in (XV.A2) the value of n at the transition points is not unique. Nevertheless, these
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functions can be replaced with a single continuous form of the logistic dose response curve
where R0 is the independent variable and n is the dependent result (figure XV.A4).
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Figure XV.A4. A continuous logistic dose response curve for the Richardson-Zaki exponent n for d/D = 0.

Figure XV.A4 shows a continuous curve for the Richardson-Zaki exponent n. The
continuous form of the function is formed assuming that n should not decrease below a value of
2.39 for any value of Re. The continuous form is generated by the equation
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This function sets a minimum value of n = 2.39 and a maximum that is a function of the ratio
of particle size to vessel diameter (first of (XV.A2)). The transition value T is also a weak
function of the diameter ratio d/D, and is given by
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The final calculation of n is then given by a combination of (XV.A3) and (XV.A4). Rowe
1987 obtained an empirical equation for the Richardson-Zaki exponent by using the logistic
curve for d/D = 0. We verified that there is good quantitative agreement between (XV.A3) (for
d/D = 0) and Rowe’s equation.
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� Appendix B

Following tables give description to the proppant and fluid used in the erosion and bed load
transport experiments.

Proppant Fluid ρρρρf

(gm/cc)
ρρρρp

gm/cc)
d

(cm)
ηηηη

(poise)
W

(cm)
RG λλλλ

60/4 Brady  water 0.999 2.65 0.0342 0.01115 0.79375 521.1554 0.000504
20/4 Ottawa   water 0.999 2.65 0.056 0.01115 0.79375 2290.846 0.000504

20/4 Light Beads  water 0.999 1.05 0.06 0.01115 0.79375 86.83778 0.000504
16/30Banrite   water 0.999 3.45 0.0884 0.01115 0.79375 13363.8 0.000504
12/20Badger  water 0.998 2.65 0.109 0.01015 0.79375 20342.67 0.000459

16/20 Carbolite  water 0.998 2.73 0.0949 0.01 0.79375 14513.68 0.000452
16/20 Carbolite   180 °F water 0.972 2.73 0.0949 0.00378 0.79375 100415.5 0.000176

Table XV.B1: Proppant and fluid parameters in erosion experiments.

Proppant Fluid ρρρρf

(gm/cc)
ρρρρp

gm/cc)
d

(cm)
ηηηη

(poise)
W

(cm)
RG λλλλ

20/40 sand  10cp glycol 1.11 2.645 0.0548 0.1 0.79375 27.50692 0.004067
16/30 ceramic  10cp glycol 1.14 2.73 0.097 0.1 0.79375 162.2879 0.003960

12/20 sand  10cp glycol 1.14 2.645 0.1009 0.1 0.79375 172.8956 0.003960
40/60 Sand  5cp glycol 1.11 2.645 0.0338 0.05 0.79375 25.81728 0.002034
20/40 sand  5cp glycol 1.11 2.73 0.097 0.05 0.79375 643.9946 0.002034
20/40 sand  5cp glycol 1.091 2.65 0.0548 0.05 0.79375 109.4829 0.002069
40/60 sand  water 0.997 2.65 0.0338 0.0098 0.79375 648.0661 0.000444
20/40 sand  water 0.997 2.65 0.0548 0.0098 0.79375 2761.919 0.000444
20/40 sand  water 1 2.65 0.06 0.01 0.79375 3496.284 0.000451

20/40 Bauxite  water 0.997 3.45 0.0709 0.0098 0.79375 8903.244 0.000444
16/30 Ceramic  water 1 2.71 0.09 0.01 0.79375 12229.05 0.000451
16/30 Ceramic  water 1 2.73 0.097 0.0098 0.79375 16127.91 0.000442

20/40 Sand  150 oF water 0.981 2.645 0.0548 0.004545 0.79375 12755.35 0.000209
16/30 Ceramic  150 oF water 0.981 2.73 0.097 0.004545 0.79375 74352.82 0.000209

Table XV.B2: Proppant and fluid parameters in bed load transport experiments.
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