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XII Stability and turning point bifurcations of a single particle in Poiseuille
flow

Choi and Joseph 2001 performed simulations for single particle lift-off in Poiseuille flows at
much higher shear Reynolds numbers. They observed that the rise and other equilibrium
properties are not smooth functions of R. They found the existence of multiple steady states and
hysteresis. Figure XII.1 shows the plot of he/d vs. R at different values of angular velocity of the
particle. The particle density is 1.01 g/cc, W/d = 12, L/d = 22, η = 1 poise, d = 1 cm and ρf = 1
g/cc. The particle is initially placed close to the bottom wall. Simulations were performed in a
periodic channel with three different conditions on the angular motion of the particle: zero
hydrodynamic torque (free rotation), zero angular velocity (Ωp = 0) and zero slip angular
velocity (Ωs = 0). In each of these cases the equilibrium height shows a sharp rise after a critical
shear Reynolds number that is smallest for a non-rotating particle and is largest when the slip
angular velocity is suppressed. The sharp rise or ‘jump’ in the equilibrium height can be
explained in terms of turning point bifurcation to be discussed later. Choi & Joseph 2001
reported the freely rotating case shown in figure XII.1. The angular velocity of the particle is
seen to have little effect on the equilibrium height before the ‘jump.’ The greater the slip angular
velocity, the higher the particle rises after the ‘jump.’ Models for lift should account for this
effect of the slip angular velocity.
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Figure XII.1. Lift-off of a circular particle from a horizontal wall in a Poiseuille flow of a Newtonian
fluid (W/d = 12, L/d = 22, η = 1.0 poise, d = 1 cm, ρp = 1.01 g/cc).
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Figure XII.2.  Slip velocity vs. shear Reynolds number for the cases depicted in figure XII.1.

Figure XII.2 shows the plot of slip velocity vs. R for the case above. It is seen that the slip
velocity decreases before the ‘jump’ and increases sharply at the ‘jump’. The slip velocity does
not show a consistent trend with respect to the angular velocity of the particle. The slip angular
velocity also shows a sharp change at the ‘jump’ (figure XII.3). As expected, the slip angular
velocity is maximum for a non-rotating particle.
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Figure XII.3.  Slip angular velocity vs. shear Reynolds number for the cases depicted in figure XII.1.

In figure XII.4 we plot the rise of a neutrally buoyant particle to the equilibrium height as a
function of time for W/d = 12, L/d = 22, d = 1 cm, η = 1 poise, ρf = 1 g/cc and R = 5.4. The
simulations are performed in a periodic channel. We compare the rise of freely rotating and non-
rotating particles. A neutrally buoyant freely rotating particle rises to a Segré-Silberberg radius;
the non-rotating one rises more. A smaller lift is obtained when the slip angular velocity is
entirely suppressed (Ωs = 0) but the particle does rise. The greater the slip angular velocity the
higher the particle rises.
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Figure XII.4.  Rise vs. time for a neutrally buoyant particle (R = 5.4, W/d = 12, l/d = 22,
η = 1 poise, d = 1 cm).

Table XII.1 gives data for the results presented in figures XII.1-4. In the next section we
discuss the contribution to the hydrodynamic lift force from pressure and shear stress in a
Newtonian fluid.

To analyze the instability manifested in the jumps in rise heights and particle velocities found
by Choi and Joseph 2001 and shown in table XII.1 we may use another simulation method
introduced by Patankar, Huang, Ko and Joseph 2001. The motion is simulated in a periodic
channel in which the particle is free to rotate and translate in the axial (x-) direction. The height
of the particle center from the bottom wall of the channel is fixed so that it does not translate in
the transverse direction. There is no external body force in the axial direction and no external
torque is applied. Gravity acts in the negative y-direction. The particle is initially at rest and
eventually reaches a state of steady motion.
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Table XII.1. Data structure for a freely translating circular particle levitated by Poiseuille flow (W/d =
12, L/d = 22, d = 1 cm, ρf = 1 g/cc and η = 1 poise). Bold numbers are for freely rotating particles.
All the dimensional variables are given in CGS units.

R/G RG R p he Up Uf Us Ωp Ωf Ωs

2.9725 9.81 5.40 0.90 0.6020 2.1250 3.0877 0.9627 0.0000 2.4291 2.4291
6.6881 9.81 8.10 1.35 0.8366 5.7950 6.3040 0.5090 0.0000 3.4853 3.4853
14.679 9.81 12.00 2.00 1.1130 11.960 12.117 0.1572 0.0000 4.8870 4.8870
18.578 9.81 13.50 2.25 1.2260 14.870 14.860 0.0100 0.0000 5.3708 5.3708
26.752 9.81 16.20 2.70 3.6200 40.260 40.953 0.6930 0.0000 3.2130 3.2130
39.963 9.81 19.80 3.30 4.0120 52.140 52.879 0.7389 0.0000 3.2802 3.2802
43.679 9.81 20.70 3.45 4.0830 55.070 55.761 0.6908 0.0000 3.3068 3.3068
74.312 9.81 27.00 4.50 4.4410 74.290 75.531 1.2414 0.0000 3.5077 3.5077
2.9725 9.81 5.40 0.90 0.6268 2.2960 3.2079 0.9119 1.5600 2.4180 0.8579
6.6881 9.81 8.10 1.35 0.8923 6.1420 6.6902 0.5482 2.8330 3.4477 0.6147
14.679 9.81 12.00 2.00 1.1100 11.740 12.088 0.3479 4.1220 4.8900 0.7680
18.578 9.81 13.50 2.25 1.1300 13.500 13.818 0.3185 4.6240 5.4787 0.8548
26.752 9.81 16.20 2.70 1.2110 17.410 17.638 0.2284 5.3200 6.4652 1.1452
36.413 9.81 18.90 3.15 1.2760 21.470 21.552 0.0820 6.0080 7.4403 1.4323
39.963 9.81 19.80 3.30 1.2900 22.720 22.796 0.0762 6.2140 7.7715 1.5575
43.679 9.81 20.70 3.45 3.2610 48.590 49.159 0.5688 3.9550 4.7248 0.7698
47.560 9.81 21.60 3.60 3.3800 51.790 52.444 0.6540 3.9490 4.7160 0.7670
74.312 9.81 27.00 4.50 3.8310 69.540 70.415 0.8747 4.1040 4.8803 0.7763
2.9725 9.81 5.40 0.90 0.6511 2.4530 3.3252 0.8722 2.4070 2.4070 0.0000
6.6881 9.81 8.10 1.35 0.9047 6.2120 6.7756 0.5636 3.4390 3.4393 0.0000
26.752 9.81 16.20 2.70 1.1990 17.190 17.483 0.2930 6.4810 6.4814 0.0000
43.679 9.81 20.70 3.45 1.2830 23.600 23.719 0.1186 8.1360 8.1368 0.0000
47.560 9.81 21.60 3.60 1.3080 25.010 25.173 0.1632 8.4460 8.4456 0.0000
52.991 9.81 22.80 3.80 3.2440 53.290 53.968 0.6784 5.2370 5.2364 0.0000
74.312 9.81 27.00 4.50 3.6520 67.790 68.595 0.8054 5.2830 5.2830 0.0000

∞ 0 5.4 0.90 4.9999 15.670 15.749 0.0800 0.0000 0.4500 0.4500
∞ 0 5.4 0.90 3.7530 13.780 13.928 0.1480 0.9580 1.0110 0.0530
∞ 0 5.4 0.90 3.6810 13.630 13.780 0.1500 1.0440 1.0440 0.0000

At steady state the particle translates in the axial direction at a constant velocity and rotates at
a constant angular velocity. At the prescribed height, these velocities are such that there is no net
hydrodynamic drag or torque. The flow field at steady state is independent of the particle density
since the particle acceleration is zero. Only the axial and angular motion equations of the particle
are solved in our simulations. The steady state translational and angular velocities as well as the
hydrodynamic lift force are independent of the particle densities used in our simulations. This
has been confirmed from our numerical results.

The hydrodynamic lift force L on the particle in the transverse direction depends on the
height of the particle and the shear Reynolds number for a Newtonian suspending fluid and given
channel and particle dimensions. We can select a particle of density ρp given by

gV
Lρρ
p

fp += , (XII.1)

such that the lift just balances the buoyant weight.
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Figure XII.5 shows the plot L as a function of the height of its center at different values of
shear Reynolds number. The suspending fluid is Newtonian, L/d = 22, W/d = 12 and d = 1 cm.
The fluid density is 1 g/cc and its viscosity is 1 poise. This plot can be used to find the
equilibrium height of a particle of given density at different values of R.
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Figure XII.5.  The hydrodynamic lift force on the particle as a function of the height of its center from the
bottom wall at different shear Reynolds numbers. The bottom wall is h = 0 cm and the channel
centerline is h = 6 cm.

A particle of density ρp will be in equilibrium at a height where L = (ρp - ρf)gVp. As an
example we consider a particle of density 1.01 g/cc. This particle will be in equilibrium when
L = 7.705 dyne/cm. The equilibrium heights at a given shear Reynolds number are identified as
the points of intersection between the curve of L vs. h and L = 7.705 in figure XII.6. The
intersection points where the slope of the L vs. h curve is positive are unstable equilibrium points
whereas a negative slope represents a stable equilibrium point (figure XII.6). Figure XII.7 shows
the plot of equilibrium height of the particle of density 1.01 g/cc vs. R. We reproduce the
bifurcation diagram given by Choi & Joseph 2001. They obtained this diagram by performing
dynamic simulations where the particle was free to move in the transverse direction as well. Our
results are in good agreement with theirs. In fact, we are also able to plot the unstable branch for
the equilibrium height, which was not obtained from the dynamic simulations. From figure XII.7
we identify the nature of instability of the equilibrium height; it may be described as a double
turning point bifurcation. The change of stability at a turning point is not really a bifurcation
because a new branch of solutions does not arise at such a point (see, Iooss & Joseph 1990). The
two turning points give rise to a hysteresis loop depicted in figure XII.7. Similarly, we can plot
the equilibrium height diagrams for particles of different densities using figure XII.5.

Implications of multiple steady states for single particle lifting and on models of lift-off
in slurries should be a subject of future investigation.
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Figure XII.6.  Finding the equilibrium height of a particle of a given density at different values of shear
Reynolds number.
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Figure XII.7. Equilibrium height as a function of shear Reynolds number for a particle of density
1.01 g/cm3.
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� Pressure lift and shear lift

Numerical simulation can be used to analyze the forces which enter into the lift balance
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where the buoyant weight is balanced by the sum of the pressure lift Lp and the shear lift Ls. It is
well known that only the tangential (or shear) component of 2ηD[u]•n is non-zero on a rigid
surface. We define lift fractions
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(XII.9)

In figure XII.8 we plot the lift fraction vs. R for cases shown in figure IX.4a; the figure
shows that the pressure lift is greater than the shear lift and that the pressure lift fraction is
greater for heavy particles. Figure XII.9 shows the plot of lift fraction vs. R for cases in figure
XII.1. For a freely rotating particle the pressure lift is higher than the shear lift at lower shear
Reynolds numbers but after the ‘jump’ they are of the same order. A non-rotating particle always
has a greater contribution to lift from pressure.



Stability and turning point bifurcations of a single particle in Poiseuille flow

Printed 03/11/02 144 • Interog-5.doc

0

0.2

0.4

0.6

0.8

1

0 1 0 2 0 3 0 4 0 5 0 6 0

R
G
 = 0.981

R
G
 = 9.81

R
G
 = 392.4

Fp

Fs

L
if

t 
fr

a
c
ti

o
n

R

Lift 0ff

Figure XII.8.  Lift fractions due to the pressure and the viscous shear stress (W/d = 12). The pressure lift
dominates.
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Figure XII.9.  Lift fraction vs. shear Reynolds number for the cases shown in figure XII.1. Lift fractions
for a freely rotating and a non-rotating particle are shown.
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Figure XII.10 shows the pressure and the viscous shear stress distributions around the
particle at different shear Reynolds numbers and particle rotations. The particle velocity lags the
undisturbed fluid velocity (figure XII.11). The curvature of the undisturbed velocity profile
creates a higher velocity of the fluid relative to the particle on the bottom half (figure XII.11).
This was recognized by Feng, Hu and Joseph 1994b. The stronger relative flow on the bottom
half results in a larger viscous shear stress at the bottom i.e. at θ = 180o (figures XII.10a, b, e).
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Figure XII.10(a).  Distributions of pressure and viscous shear stress on the surface of a freely rotating
circular particle in a Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf =
1.01, R = 8.1 (before bifurcation).
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Figure XII.10(b).  Distributions of pressure and viscous shear stress on the surface of a freely rotating
circular particle in a Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf =
1.01, R = 27 (after bifurcation).
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Figure XII.10(c).  The distribution of lift forces on the surface of a freely rotating circular particle in a
Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf = 1.01, R = 8.1 (before
bifurcation).
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Figure XII.10(d).  The distribution of lift forces on the surface of a freely rotating circular particle in a
Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf = 1.01, R = 27 (after
bifurcation).
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Figure XII.10(e). Distributions of pressure and viscous shear stress on the surface of a non-rotating
circular particle in a Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf =
1.01, R = 27 (after bifurcation).

q (deg)

L
if

t
fo

rc
e
s

0 100 200 300

›40

›30

›20

›10

0

10

20

30

40

50

Lift due to pressure

Lift due to viscous shear stress

L
p

= 3.993dyne/cm
L

s
= 3.855 dyne/cm

q

Wall

Flow

Figure XII.10(f).  The distribution of lift forces on the surface of a non-rotating circular particle in a
Poiseuille flow of a Newtonian fluid. W/d = 12, L/d = 22, d = 1.0 cm, ρp/ρf = 1.01, R = 27 (after
bifurcation).
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Figure XII.11. Cartoon depicting the fluid velocity and the streamlines relative to a particle in a plane
Poiseuille flow. The fluid approaches the particle with higher velocity in the bottom half of the
particle. Consequently, the pressure P1 (in bold) is greater than P2 and the viscous shear stress S1 (in
bold) is greater than S2.

The analysis of the action of pressure and shear in levitating heavier than liquid particles may
be carried out in the laboratory frame or in a frame fixed on the particle. In the laboratory frame
we note that the forward motion of the particle pushes the fluid nearer the wall forward, inducing
a return flow or vortex there. The high pressure on the bottom of the front face of the moving
sphere near the stagnation point induces a high lift. This mechanism can also be described in the
particle frame of reference.

Figure XII.11 shows the streamlines around the particle. The fluid velocity incident on the
bottom half gives rise to the high pressure P1 (in the third quadrant) that pushes the particle up.
The incident fluid moves up, as shown by the streamline in figure XII.11, giving rise to the
viscous shear stress S1 at θ = 270o in the upward direction. Similarly, pressure and shear forces,
P2 and S2 respectively, act on the particle due to the velocity incident on the top half as shown in
figure XII.11. Since the incident velocity on the bottom half is more, the lift due to P1 and S1
dominates giving rise to a net upward force on the particle. This is consistent with the
observations in figures XII.10c, d and f. The regions of low pressure on the particle surface are
seen to be less important in determining the lift on the particle as compared to the regions of high
pressure.

The viscous shear stresses near  θ = 90o and θ = 270o are smaller for a non-rotating particle.
We see from figure XII.11 that the magnitudes of S1 and S2 would decrease for a non-rotating
particle due to smaller relative velocities between the fluid and the particle surface at  θ = 90o

and θ = 270o. The plot of viscous shear stress distribution is therefore shifted in the positive
direction for a non-rotating particle (figure XII.10e) giving a greater lift as compared to a freely
rotating particle at the same equilibrium height; a non-rotating particle is seen to rise more.
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