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Abstract

A perturbation theory for the steady ¯ow of immiscible liquids is developed when the dispersed phase
is much more viscous than the continuous phase, as is the case in emulsions of highly viscous bitumen in
water and in water lubricated pipelines of heavy crude. The perturbation is nonsingular, but
nonstandard; the partitioning of the boundary conditions at di�erent orders is not conventional. At
zero-th order the dispersed phase moves as a rigid solid with an as yet unknown, to-be-determined,
pressure. The ¯ow of the continuous phase at zero-th order is determined by a Dirichlet problem with
prescribed velocities on a to-be-iterated interfacial boundary. The ®rst order problem in the dispersed
phase is determined from the solution of a Stokes ¯ow problem driven by the previously determined
shear strain on the as yet undetermined interfacial boundary. This Stokes problem determines the
unknown, to-be-determined, lowest order pressure distribution. At this point we have enough
information to test the balance of normal stresses at lowest order; by iterating the interface shapes we
may now complete the description of the lowest order problems. The perturbation sequence in powers of
the viscosity ratio has a similar structure at every order and all the problems may be solved sequentially
with the caveat that interface shape must be determined iteratively in each perturbation loop.

A perturbation solution for the wavy interfacial shapes on core-annular ¯ows of very viscous oil is
presented and the results are compared with experiments and a simpler approximation in which the core
moves as rigid, but deformable body with no secondary motions. The perturbation theory gives rise to
an accurate description of the bamboo waves observed in experiments when the holdup ratio measured
in the experiments is assumed in the theoretical calculation. The perturbation solution and the rigid
body approximation are in a relatively good agreement with errors of the order 10% in the ¯ow curves
and wave shapes; the error is associated with the neglect of the secondary motion in the rigid-deformable
core approximation. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Water-lubricated transport of heavy viscous oils is a technology based on a gift of nature in
which the water migrates into the region of high shear at the wall of the pipe where it
lubricates the ¯ow. Since the pumping pressures are balanced by wall shear stresses in the
water, the lubricated ¯ows require pressures comparable to pumping water alone at the same
throughput, independent of the viscosity of the oil (if it is large enough). Hence savings of the
order of the oil-to-water viscosity ratio can be achieved in lubricated ¯ows. Lubricated ¯ow in
an oil core is called core-annular ¯ow, CAF for short.
Typically, waves appear on the surface of the oil core and they appear to be necessary for

levitation of the core o� the wall when the densities are di�erent and for centering the core
when the densities are matched. We call these ¯ows wavy core-annular ¯ow (WCAF). Perfect
core-annular ¯ows (PCAF) of density matched ¯uids in horizontal pipes and, generally in
vertical pipes, are possible but are rarely stable (Preziosi et al., 1989; Chen et al., 1990; Joseph
and Renardy, 1993).
The science behind the technology of CAF has given rise to a large literature which has been

reviewed by Oliemans and Ooms (1986) and more recently by Joseph and Renardy (1993). This
literature has many facets, which include models for levitation, empirical studies of energy
e�ciency of di�erent ¯ow types, empirical correlations giving the pressure drop versus mass
¯ux, stability studies and reports of industrial experience.
Water lubricated pipelining of viscous materials like heavy crude oil is robustly stable and

has a high economics potential. Heavy crudes are very viscous and usually are somewhat
lighter than water, though crudes heavier than water are not unusual. Typical crudes might
have a viscosity of 1000 P and a density of 0.99 g/cm3 at 258C. Light oils with viscosities less
than 5 P do not give rise to stable lubricated ¯ows unless they are processed into water/oil
emulsions and sti�ened.
An important series of experiments on water lubricated pipelining were carried out in

Alberta, Canada by Russell and Charles (1959); Russell et al. (1959) and Charles (1963) and
especially by Charles et al. (1961). Glass (1961) found among other things that the lowest
pressure gradients were achieved when the water input rate was between 30 and 40%. Other
experiments on water lubrication in horizontal pipes we reported by Stein (1978) and Oliemans
et al. (1985). Arney et al. (1993) introduced and evaluated a correlation formula which
estimated the holdup fraction and friction factor for all available experimental data. A simple
theory was given which is based on the concentric core-annular ¯ow model and leads to a
Reynolds number and friction factor, which reduces a large body of experimental data on to
one curve.
Oil companies have had an intermittent interest in the technology of water-lubricated

transport of heavy oil since 1904. Isaacs and Speed (1904) in US Patent No. 759,374 were the
®rst to discuss water lubrication of lighter oils which they proposed to stabilize by centripetal
acceleration created by ri¯ing the pipe. For strati®ed ¯ow, Looman (1916) patented a method
of conveying oils by passing them over an array of water traps at the bottom of the pipe. An
extended history of patents is presented in Joseph and Renardy (1993). The patent history of
the subject as it is presently understood starts with the application of Clark and Shapiro (1949)
of Socony Vacuum Oil Company who used additives to reduce the density di�erences between
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the oil and water and anionic surfactants to reduce emulsi®cation of water into oil. Clifton and
Handley (1958) of Shell Development proposed to prevent the emulsi®cation of oil at pumps
by removing the water before pumping the oil and reinjecting it after. In fact, water-in-oil
emulsions can be pumped in a sheath of water despite the fact that the viscosity of the
emulsion can be orders of magnitude larger than the oil alone. In general, lubricated ¯ows are
more e�ective when the oil is more viscous; the water/oil emulsion is an `e�ective' thickened oil
whose density is closer to water. Keil (1968) of Exxon patented a CAF process for pumping
heavy oils and water-in-oil emulsions, surrounded by water, for fracturing subterranean
formations to increase oil and gas production. Ho and Li (1994) of Exxon produced a
concentrated water-in-oil emulsion with 7 to 11 times more water than oil, which they
successfully transported in CAF.

Syncrude Canada Ltd has undertaken studies of lubricated transport of a bitumen froth
which is obtained from processing of oilsands of Alberta for upgrading to Synthetic crude.
The oil (bitumen) is extracted from mined oilsands rather than pumped directly from the
reservoir. A hot water extraction process is used to separate bitumen as froth from sand and
the average composition of the froth is 60, 30 and 10 wt% bitumen, water and solids,
respectively. Internal studies led by Neiman (1986) and recent studies at the University of
Minnesota by Joseph et al. (in press) have shown that the produced bitumen froth will self
lubricate in a pipe ¯ow.

Probably the most important industrial pipeline to date was the 15.2 cm (6 inch) diameter,
38.6 km (24 mile) long Shell line from the North Midway Sunset Reservoir near Bakers®eld,
California, to the central facilities at Ten Section. The line was run under the supervision of
Veet Kruka for 12 years from 1970 until the Ten Section facility was closed. When lubricated
by water at a volume ¯ow rate of 30% of the total, the pressure drop varied between 6.2 and
7.58 MPa at a ¯ow rate of 24,000 barrels per day with the larger pressure at a threshold of
unacceptability which called for pigging. In the sixth year of operation the fresh water was
replaced with water produced at the well site which contained various natural chemicals
leached from the reservoir, including sodium metasilicate in minute 0.6 wt% amounts. After
that the pressure drop never varied much from the acceptable 6.2 MPa value; the CAF was
stable as long as the ¯ow velocity was at least 0.9 m/s. Industrial experience suggests that
inertia is necessary for successful CAF. Also Shell Oil has pioneered the development of
commercially viable pipelines. Maraven of PVSA (Petroleos de Venezuela Sociedad
Autonornia) has placed in operation a 60-km line to transport heavy crudes in the lubricated
mode. In general such lubricated lines become attractive when the lighter crudes are expensive
or locally in short supply.

A surprising property of core ¯ow is that the ¯ow in a horizontal line will lubricate with the
core levitated o� the wall even if the core is lighter or heavier than lubricating water. This
levitation could not take place without a hydrodynamic lifting action due to waves sculpted on
the core surface. In the case of very viscous liquids, the waves are basically standing waves,
which are convected with the core as it moves downstream. This picture suggests a lubrication
mechanism for the levitation of the core analogous to mechanisms, which levitate loaded slider
leavings at low Reynolds numbers. Ooms et al. (1984) and Oliemans and Ooms (1986) gave a
semiemperical model of this type and showed that it generated buoyant forces proportional to
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the ®rst power of the velocity to balance gravity. In this theory, the shape of the wave must be
given as an empirical input.
Consider water lubricated pipelining of crude oil. The oil rises up against the pipe wall

because it is lighter than the water. It continues to ¯ow because it is lubricated by waves.
However, the conventional mechanisms of lubrication cannot work. The saw tooth waves are
like an array of slipper bearings and the stationary oil core is pushed o� the top wall by
lubrication forces. If velocity were reversed, the core would be sucked into the wall, so the
slipper-bearing picture is obligatory if you want levitation.
Obviously the saw tooth waves are unstable since the pressure is highest just where the gap

is smallest, so the wave must steepen where it was gentle, and smooth where it was sharp. To
get a lift from this kind of wave it appears that we need inertia, as in ¯ying. Liu's (1982)
formula for capsule lifto� in a pipeline in which the critical lift o� velocity is proportional to
the square root of gravity times the density di�erence is an inertial criterion. It is likely that
inertial dynamics is also involved in lubricated oil and slurry lines. At high speeds the core
¯ows may literally `¯y' down the tube. In all of this, the position of the viscous points of
stagnation where the pressures are high is of critical importance.
Joseph in Feng et al. (1995) ®rst mentioned that the shape of the wave core from lubrication

theory never exists since high pressure in front of wave crests will deepen the shape. Then Bai
et al. (1996) con®ned their attention to the direct numerical simulation of axisymmetric core
¯ows. The shape of the interface and the secondary motions which develop in a `¯ying' core
¯ow have a natural explanation in terms of e�ects of inertia. Less intuitive is the existence of a
threshold Reynolds number corresponding to a change in the sign of the pressure force on the
core, from suction at Reynolds numbers below the threshold, as in the reversed slipper bearing
in which the slipper is sucked to the wall, to compression for Reynolds numbers greater than
the threshold as in ¯ying core ¯ow in which the core can be pushed o� the wall by stagnation
pressure.
In treating the ¯ow of two immiscible liquids with greatly di�erent viscosity, like bitumen

and water, certain simpli®cations arise when more viscous liquid is dispersed and not
attached to rigid boundaries. In this case the dispersed phase may move nearly as a rigid
body since the forces which arise from the motion of the continuous phases are not great
enough to drive large secondary motions in the dispersed phase. The water will move
bitumen dispersed in water more or less as a rigid body provided that the bitumen is not
anchored at some wall.
Here and henceforward we shall call the dispersed phase oil and the continuous phase water.

We search for simpli®ed mathematical descriptions as a perturbation of a rigid motion in the
limit in which the ratio of the water viscosity mw to the oil viscosity mo

e � mw

mo

40: �1�

Since water is located to the wall, drag reductions of the order of the viscosity ratio are
possible

mo=mw � 105: �2�
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In this paper we will con®ne our attention to the cases in which interfacial rheology, and
Maragnoni e�ects are neglected. These e�ects are greatly diminished by the high bulk viscosity
of the dispersed phase and in a later work we will look to describe exactly how diminished
these e�ects are. A preliminary version of the results given were presented in a conference
proceeding by Joseph and Bai (1999). Generally speaking, our work here is motivated by needs
of the heavy oil industry.

2. Governing equations

To keep the description simple, we consider the case when the oil is free to move in water as
in the case of sedimentation of a single drop of heavier-than-water oil or the core-annular ¯ow
studied by Bai et al. (1996).
In steady ¯ow the oil±water interface is given by

F�w�e�, e� � 0, �3�
where w(e) is the position of points on F � 0: The unknowns in our problem are

u�w, e�, c�w, e� in the oil

v�w, e�,f�w, e� in the water

w�e�

9=;, �4�

where u and v are velocities and

c � po � l � w� rog � w
f � pw � l � w� rwg � w

�
�5�

are `dynamic' pressures, p is pressure and l and g are constant vectors (g is the gravity; l � ezb
for the constant part of the pressure gradient which balances the pressure drop in core-annular
¯ow).
The equations of motion in the oil and water are

div u � 0
rou � ru � ÿrc� mw

e
r 2u

)
, �6�

and

div v � 0
rwv � rv � ÿrf� mwr 2v

�
: �7�

At the interface w � wo the velocity is continuous

u�wo� � v�wo� �8�
and the kinematic condition on the interface is

u�wo� � n � v�wo� � n � 0, �9�
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where n is the normal from oil to water. The shear stress is continuous

t �D�u�w� ÿ ev�w�� � n � 0, �10�
where D[u], the rate of strain, is the symmetric part of Hu and t is a unit tangent vector in the
interface, t � n � 0: The balance of normal stresses can be expressed as

ÿf�w� � c�w� ÿ �rw ÿ ro�g � w� 2mwn �D�vÿ u=e� � n � 2H�w�s, �11�
where H(w) is the mean curvature and s is interfacial tension.
The boundary conditions apply only to water, since oil is assumed not to touch the

boundary. For steady ¯ow the velocity of the boundary at w � wb is

v�wb� � V: �12�
V is the velocity of solid walls in a coordinate system centered on the falling drop or in a
coordinate system moving with the average velocity of the core in annular ¯ow.

3. Equations when ee4 0

Assuming now that all functions listed in Eq. (5) are bounded as e4 0, we ®nd that

uo�0� � 0,
div uo � 0,
r 2uo � 0,
uo�wo� � no � 0,
to �D�uo�wo�� � no � 0,
no �D�uo�wo�� � no � 0:

9>>>>>>=>>>>>>;
: �13�

The function

uo � 0

satis®es Eq. (13). Then, in the water we have

div vo � 0
rwvo � rvo � ÿrfo � mwr 2vo

vo�wo� � 0
vo�wb� � V

9>>=>>;: �14�

Equations (14) are a Dirichlet problem for vo(w ) and fo(w ) which can be solved when the
interface wo is given. No condition on v(w ) arises from the shear stress balance Eq. (10); and
shear stress arising from Eq. (13) is acceptable. The idea is to iterate wo, using the wo that will
reduce Eq. (11) to an identity. To do this iteration, more work is required.
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4. Perturbation equations at lowest order

Now we develop a solution in powers of e, to the lowest order

u�w, e� � eu1�w�
c�w, e� � co�w� � ec1�w�,
v�w, e� � vo�w� � ev1�w�,
f�w, e� � fo�w� � ef1�w�,
w�e� � wo � ew1

9>>>>=>>>>;: �15�

At this interface, we have

v�w�e�, e� � vo�wo� � ev1�wo� � ew1 � rvo�wo�, �16�

f�w�e�, e� � fo�wo� � ef1�wo� � ew1 � rfo�wo�: �17�
Since

u�w�e�, e� � eu1�wo� � e2u�wo� � e2w1 � ru1�wo�, �18�
but

c�w�e�, e� � co�wo� � ec1�wo� � ew1 � rco�wo�: �19�
Moreover, since the shape of drop changes with

n�w� � no � en1

t�w� � to � et1

�
: �20�

After inserting (15) through (20) into the basic Eqs. (6) through (11) we ®nd ®rst that

div u1 � 0,
rco � mwr 2u1,
u1�wo� � no � 0,
to �D�u1�wo� ÿ vo�wo�� � no � 0:

9>>=>>;: �21�

This problem may be solved for u1(w ), and co(w ) and wo is given. The slow motion in the oil
core is driven by the shear rate in the water

to �D�vo� � no � @vt�wo�=@yn�def
_g�wo�, �22�

where vt(wo) is the velocity component tangent to the interface and yn is normal at w � wo:
The normal stress balance Eq. (11) now becomes

ÿfo�wo� � co�wo� ÿ �rw ÿ ro�g � wo ÿ 2mwno �D�u1�wo�� � no � 2H�wo�s: �23�
We may write

no �D�u1�wo�� � no � @u1n=@yn,

R. Bai, D.D. Joseph / International Journal of Multiphase Flow 26 (2000) 1469±1491 1475



where u1n is the normal component of u1 at the interface point w � wo: In deriving Eq. (23) we
used an easily proved result which says that

no �D�v�wo�� � no � 0,

when vo(wo) is the ¯uid velocity at the boundary of a rigid body. Eq. (23) selects wo which until
now was arbitrary.
The perturbation equations at higher order were presented by Joseph and Bai (1999).

5. Core-annular ¯ow

Here we shall revisit the problem of waves on core-annular ¯ow considered by Bai et al.
(1996). They treated a steady ¯ow in which the holdup ratio co/cw of average velocities co �
Qo=pR2

11�Qo � eQ1�=pR2
1 and cw � Qw=�R2

2 ÿ R2
1 � is prescribed. Here Qo and Qw are the

volume ¯ux of oil and water, R2 is the outer radius of the pipe and R1 is the mean radius of
the core. In the approximation carried out by them, the core is rigid. The analysis of the steady
¯ow of water is carried out in a coordinate system in which the core is stationary; secondary
motions in the core were not treated. The shape of the interface was computed using the
normal stress condition under the assumption that the pressure in the core is uniform apart
from a constant pressure gradient b along the pipe axis z (see Fig. 1).
The problem of core-annular ¯ow may be treated in the framework of perturbation theory

described in Section 3 and 4 with l � w in (5) equation to ÿbez � z where b is a constant
gradient. The governing equations at zero-th order are essentially Eq. (14).

rwv � rv � bez ÿ rpw � mwr 2v,
v � 0 on r � f�z�,
v � ÿcez on r � R2

9=;, �24�

Fig. 1. The wave core-annular ¯ow is periodic L. The mean radius is R1 where R 2
1 � 1=L

� L
0 f 2�z�dz: The core moves

backward with velocity c and the wall is stationary; here the core has been put to rest and the wall moves forward.
Let Ow be the domain occupied by water 0 R z R L, f(z )R rR R2 and Oo is the domain occupied by oil 0 R z R L,
0R r< f(z ).
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where r � f�z� gives the shape of the interface and f(z ) was determined by Bai et al. (1996)
using the normal stress condition

s

f�1� f 2 0 �1=2 ÿ
sf 00

�1� f 2 0 �3=2 � Cÿ pw: �25�

The ratio of the average oil to water velocity h � c=cw, is given by

h � Qo=Qw

R2
1=�R2

2 ÿ R2
1 �
� pcR2

1

pc� f 2 ÿ R2
1 � � 2p

�R2

f

rvdr

R2
2 ÿ R2

1

R2
1

: �26�

Though f depends on z, h is a constant, independent of z; h � 2 for perfect core ¯ow without
waves and h � 1 when the water is trapped between wave crests touching the pipe wall. For
wavy ¯ow 1 < h < 2; h � 1:4 occurs frequently in experiments; the selection mechanism is
related to stability and is not understood. Bai et al. (1996) prescribed h � 1:4, ensuring waves.
Going further now than Bai et al. (1996) we consider now the problem (21) for the ¯ow u �

u1 in the oil core

div u � 0
ÿbez � rpo � mwr 2u

�
, �27�

where on r � 0, we have

ur � 0,
@uz
@r
� 0,

and on r � f�z�, we have

u�r, z� � n � 0 �28�
and

t �D�u� � n � _g�r, z�, �29�
where the shear rate

_g� f�z�, z� � t �D�vo� � n �30�
is evaluated on the solution vo of Eqs. (24±26). The constant b and _g�r, z� are prescribed.
After computing vo and pw from the problem (24) and u and po from the problem (27±30),

we may complete the perturbation cycle by forming the normal stress balance corresponding to
Eq. (23). This balance replaces Eq. (25) with

d2f

dz2
ÿ 1� �df=dz�2

f
� 1

s

 
1�

�
df

dz

�2
!3=2

�Cp � po�z� ÿ pw�z� � 2mwn �D�u� � n� � 0: �31�

Equation (31) cannot be satis®ed for arbitrarily selected functions r � f�z� and wavelength L.
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These parameters are iterated at each perturbation cycle until Eq. (31) balances and holdup
ratio Eq. (26) is met, giving rise to converged values of f(z ) and L.

6. Numerical method and procedure

The numerical method follows along lines introduced by Bai et al. (1996). Axisymmetric
core-annular ¯ow is governed by Eq. (24) at zero-th order and by Eq. (27) at ®rst order subject
to the normal stress condition speci®ed by Eq. (28), the shear stress condition speci®ed by Eq.
(29) and Eq. (30) and the normal stress balance is given by Eq. (31). For each prescription of
three control parameters (c, R1, h ), ¯uid properties r, m, s and the pipe radius R2, the
computational solution is carried out ®rst for the ¯ow ®eld in the water and then in the
perturbed core; the pressure gradient driving the ¯ow, the pressure distributions and the wave
shape are computed. The computation involves iteration between the ¯ow ®elds at zero-th
order in the water and at ®rst order in the core, and the calculation of the free surface.
Equation (24) is a Dirichlet problem for the Navier±Stokes equations which gives the ¯ow of

water at zero-th order. The control volume method of Patankar (1980) is used for the
numerical solution. The force due to the pressure di�erence in one wavelength is balanced by
the force due to the shear stress on the pipe wall:

pR2
2Lb � 2pR2

�L
0

 
m2

du

dr

����
r�R2

!
dz: �32�

Further details are given by Bai et al. (1996).
The perturbed ¯ow ®eld in the core is governed by Eq. (27). These equations de®ne a

Dirichlet problem for Stokes equations. The core is de®ned by the same prescribed wave shape
f and the ¯ow of oil in the core is driven by a prescribed shear strain (29) and pressure
gradient b determined by the ¯ow of water at zero-th order. The zero-th and ®rst order
problems are decoupled.
The computation of the wave shape involves an iterative solution of the normal stress

balance Eq. (31) using values for the pressure jump and the jump in the viscous part of the
normal stress from solutions at zero-th and ®rst order. In general, the normal stress balance
will not be satis®ed, so that an iterative procedure in which the shape function f(z ) is changed
must be implemented.
The discretized form of Eq. (31) is generated as follows. The unknown shape f(z ) is

represented by discrete values of f at the same z locations used in the calculation of the ¯ow of
water. The equations for these values of f(z ) are constructed by integrating (31) over the main
control volumes in the z-direction. The last term in the equation is treated explicitly as a source
term and is assumed to be constant over the control volume. The resulting equation has the
following form.

aifi � bifi�1 � cifiÿ1 � SDzi, �33�
where
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bi � 1

zi�1 ÿ zi
, ci � 1

zi ÿ ziÿ1
, ai � bi � ci � 1� �df�i =dz�2

f�2i
Dzi,

Si � 1

s

 
1�

�
df�i
dz

�2
!3=2

�Cp � p��oi ÿ p��wi � 2mw�n �D�u� � n�i �,
�34�

and

Dzi � �zi�1 ÿ ziÿ1�=2:

As in the calculation of the ¯ow, the periodicity of fi is accounted by recognizing that in the
equation for fN, fN + 1 is replaced by f1 while in the equation for f1, the f1ÿ1 is replaced by fN.
The single � in Eq. (33) marks the variables that are updated within the inner iteration for
determining the free surface shape while the decpuple �� on pi denote that these values are kept
constant during the free surface calculation and are updated only in the outer iteration.
The unknown pressure jump Cp and the wavelength L provide the two degrees of freedom

necessary to determine the free surface shape consistent with speci®ed values of the average
plug radius R1 and holdup ratio h. After each iteration, during calculation of the fi, the value
of Cp is increased or decreased according to whether the available fi values imply a value of R1

larger or smaller than that desired. Similarly, the wavelength L is increased or decreased if the
current value of the holdup ratio h is larger or smaller than its prescribed value. The amount
of adjustment in the values of Cp and L is determined using the secant method. It uses the
predictions from the last two iterations to determine the sensitivity of R1 and h to changes in
Cp and L. The sensitivity coe�cients are then used for inferring the changes in Cp and L to be
made in the next iteration. At convergence, this procedure provides a free surface shape and
location having the desired R1 and h for the surface pressure variation determined from the
¯ow ®eld calculation.
The overall solution method involves iteration between the ¯ow of water, oil core and the

determination of the free surface. The iterations are decoupled but the overall solution is
coupled and related. The steps in the iteration are:

1. Prescribe the values of wave speed c, average core radius R1, and the holdup ratio h.
2. Assume a free surface shape. Calculate the velocity and pressure ®elds in the water for the

speci®ed wave speed c. During each iteration of the ¯ow, the pressure gradient b is adjusted
to satisfy the force balance on the wall.

3. Use a same free surface shape as in step 2, calculate the velocity and pressure ®eld in the oil
using results from the water solution in step 2.

4. The shape of the free surface is determined by satisfying the normal stress balance from the
pressure and velocity ®elds determined in steps 2 and 3. The wavelength and the pressure
constant are adjusted in each iteration so that at convergence the free surface shape is
determined for the prescribed average core radius R1 and holdup ratio h.

5. The new free surface is now used in determining the ¯ow ®eld in step 2 and step 3. Thus,
steps 2, 3 and 4 are repeated till convergence to obtain a self-consistent ¯ow of water, oil in
which the surface balances are satis®ed for the prescribed values of the parameter triplet (c,
R1, h ).
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The overall solution method correctly predicted the perfect core ¯ow and our solutions
always converged to the same wavy core ¯ow, independent of the guess of initial surface shape,
for a given set of parameters. These results and the good agreements with experiments indicate
that the numerical solutions of the perturbation equations lead to valid representations of
steady wavy core ¯ow.

7. Dimensionless equations

Analysis of this simulation is most useful when carried out in terms of dimensionless
variables in Eqs. (14) and (21) with

�vo � vo

U
, �u1 � u1

U
, �fo �

fo

r2U 2
, �co �

co

r2U 2
, �r, �z, �f, �L � r

R2
,

z

R2
,

f

R2
,
L

R2
,

R2
1 �

1

L

�L
0

f 2dz � R2
2

L

� �L

0

�f
2
d �z, Z2 � R2

1

R2
2

� 1

L

� �L

0

�f
2
d �z, R � rwR2U

mw

� rw�R2 ÿ R1�c
mw

:

The relationship between U and c is

c � UR2

�R2 ÿ R1� �
U

1ÿ Z
: �35�

We may de®ne a dimensionless wall speed

�c � c

U
� 1

1ÿ Z
: �36�

Therefore, at the boundary

�vo� �vro, �vzo� � �0, �c�, at �r � 1:

�u � � �ur, �uz�,

�ur � 0,
@ �uz
@ �r
� 0 at �r � 0:

At the interface, the normal stress balance with pressure jump becomes

S

�f

�������������������������
1� �d �f=d �z�2

q ÿ S�d2 �f=d �z2�
�1� �d �f=d �z��3=2 ÿ 2

n �D� �u� � n
R

� �� �P��, �37�

where

S � s
rwU

2R2
� J

R
,
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and

J � rwR2s
m2

w

:

The dimensionless oil ¯ow rate

�Qo �
Qo

UR2
2

� p �c

�L

� �L

0

�f
2
d �z � p �cZ2 � pZ2

1ÿ Z2
, �38�

is determined if Z is given.
The dimensionless water ¯ow rate may be expressed by holdup ratio h and Z as

�Qw �
Qw

R2
2U
� 1

R2
2U

�R2

R1

2prcwdr � 2p
h

�1
Z

�c�rd�r � p�1ÿ Z2�
�1ÿ Z�h �

p�1� Z�
h

: �39�

Four parameters are required for a complete description of our problem:

R, Z, J and h:

All possible problems of scale up can be solved in this set of parameters.
In our computation we choose J � 13� 104 corresponding to the actual physical parameters

in wavy core ¯ow in water �m2 � 0:01 P r � 1:0g=cm3, s � 26dyn=cm� ¯owing in pipe of radius
R2 � 0:5: For the plots in Section 8 we use the dimensionless pressure

�p � p

r2U 2
� p

R2

r2R
2
2

m2
� p�

R2
, �40�

p� � p

m2
2

rR2
2 �41�

and pressure gradient

b� � b
m2
2

rR2
2 �42�

The dimensionless viscous part of the normal stress is

N� � 2n �D�u� � nR: �43�
We prefer to use a Reynolds number

R � r�R2 ÿ R1�c
m2

�44�

based on the gap size instead of R in the presentation of the results given below.
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8. Numerical results

Here we give results for the perturbation theory and compare them with the rigid
deformable core approximation computed by Bai et al. (1996).
Figure 2 gives the pressure distributions and the viscous contribution to the normal stress

along the wavy interface; the pressure in the core and the viscous contribution to the normal
stress are relatively small.
Figure 3 compares wave shapes given by the perturbation theory and the rigid

approximation when �Z, h, R, J � � �0:8, 1:4, 600, 13� 104�: The wave shapes are slightly
di�erent because of the small additional contribution to the normal stress due to the secondary
motion in the core. The perturbed wavelength is also slightly longer.
Figure 4 shows that the wavelength decreases with R and the pressure gradient increases

linearly with R for ®xed values of �Z, h, J � � �0:8, 1:4, 13� 104�; the values of the pressure
gradient are identical, but the wave length given by perturbation theory is greater than the
wavelength given by the rigid core approximation.
Figure 5 shows how the wavelength and pressure gradient vary with holdup ratio h when �Z,

R, J � � �0:8, 1:4, 13� 104�; they both decrease with h. The di�erence between the wavelengths
from perturbation theory and rigid core approximation is bigger when the holdup ratio h is
smaller. The pressure gradients from both approaches are essentially the same.
Figure 6 shows how the wavelength and pressure gradient vary with the core diameter Z

when �h, R, J � � �1:4, 600, 13� 104�: The pressure gradients increase with Z and the
wavelengths decrease linearly with Z:

Fig. 2. The pressure distributions and viscous contribution normal stress along the wave interface when
�Z, h, R, J � � �0:8, 1:4, 600, 13� 104�:
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Fig. 3. Wave shapes from perturbation theory and rigid approximation when �Z, h, R, J � � �0:8, 1:4, 600, 13� 104�:

Fig. 4. (a) Dimensionless wavelength �L vs. Reynolds number R for the perturbation theory and for the rigid core
approximation solution when �Z, h, J � � �0:8, 1:4, 13� 104�; (b) Pressure gradient b � vs. R under the same
conditions.
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Fig. 5. (a) Dimensionless wavelength �L vs. holdup ratio h when �Z, R, J � � �0:8, 600, 13� 104�; (b) Pressure gradient

b � vs. h under the same conditions.

Fig. 6. (a) Dimensionless wavelength �L vs. core diamer Z when �R, h, J � � �600, 1:4, 13� 104�; (b) Pressure gradient
b � vs. Z under the same conditions.

R. Bai, D.D. Joseph / International Journal of Multiphase Flow 26 (2000) 1469±14911484



�Lp�Z� � a1 ÿ bZ from perturbation,

and

�LR�Z� � a2 ÿ bZ from rigid core approximation:

Figure 7 shows that the e�ect of surface tension is to smooth the waves and increase the
wavelength. The wavelength computed by perturbation theory is slightly greater than the
wavelength computed with the approximation theory.
Figure 8 gives streamlines for the rigid core approximation and the perturbation when �Z, h,

R, J � � �0:8, 1:4, 600, 13� 104�: Figure 8(a) shows the streamlines in the water when the core
is rigid while Fig. 8(b) shows the streamlines for the perturbed theory. The streamlines in the
water in the two cases are nearly the same. The streamlines in the core are monotone without
eddies. The normal stress at ®rst order is the seem of a ®rst order contribution to the pressure
and a contribution to the viscous part of the normal stress. The normal stress at zero-th order
is only from the pressure and it is much larger than the normal stress at ®rst order. The shape
of the interface is mainly determined by the pressure at zero-th order. The secondary motion in
wave trough is caused by the friction between the core and wall. The high pressure not only
sharpens the wave front, but also produces a levitation force which pushes the core away from
the wall.

Fig. 7. Dimensionless wavelength �L vs. interfacial tension J when �Z, h, R� � �0:8, 1:4, 600�:
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9. Comparison with experiments

Bai et al. (1992) did experiments and calculated stability results for vertical axisymmetric
core ¯ow in the case when the buoyant force and pressure force on the oil are both against
gravity (up ¯ow). They observed `bamboo' waves for their oil ro � 0:905 g/cm3 and mo � 6:01
P in water with rw � 0:995 g/cm3 and mw � 0:01 P. Bai et al. (1996) simulated the same ¯ow,
with the same parameters except that the core was assumed to be in®nitely viscous. Here we
shall show that the computed wave shapes and other features of the ¯ow are in better
agreement with experiments when the motion in the core is not suppressed. The equations for

Fig. 8. Streamlines and secondary motion for (a) rigid core and (b) pertubation theory when
�Z, h, R, J � � �0:8, 1:4, 600, 13� 104�:
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Table 1
Comparison of computed and measured values of the wave speed c and wave length L. The holdup h= 1.39 in all

computations and in the experiments

No.

Input ¯owrate I Perturbation theory Experiments II Rigid core III Stability theory

Qo Qw L (cm) c (cm/s) L (cm) c (cm/s) L (cm) c (cm/s) L (cm) c (m/s)

(1) 25.38 13.17 1.16 55.59 1.21 57.7 1.32 55.59 0.79 52.02
(2) 18.19 13.17 1.31 46.45 1.31 43.28 1.66 46.45 0.96 42.54
(3) 11.01 13.17 1.64 37.30 1.41 35.65 1.70 37.30 1.22 33.51

(4) 7.42 13.17 2.19 32.73 1.22 27.81 1.33 32.73 1.33 29.42
(5) 7.42 6.46 1.38 20.88 1.374 19.16 1.77 20.88 1.25 17.94
(6) 11.01 6.46 1.36 25.45 1.79 22.90 1.66 25.45 1.16 22.17
(7) 14.60 6.46 1.18 30.02 1.34 28.22 1.39 30.02 1.02 26.68

(8) 18.19 6.46 1.04 34.59 1.17 31.06 1.15 34.59 0.87 31.33
(9) 21.78 6.46 0.91 39.17 0.90 36.25 0.96 39.17 0.79 35.71

Fig. 9. Comparison of theory and experiment when �Qw,Qo� � �200, 429� cm3 minÿ1: (a) Rigid core computation and

(b) experiment from Bai et al. (1996), (c) perturbation theory of this paper.
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vertical ¯ow are given in Section 2 with Eq. (5) replaced by

c � po � l � w� rog � wÿ rcg � w
f � pw � l � w� rwg � wÿ rcg � w

�
�45�

where rc, is the composite density of the mixture

rc � roZ
2 � rw�1ÿ Z2�: �46�

We compared wavelengths, wave speeds and wave shapes from our computation with
experiments and the linear theory of stability given by Bai et al. (1992). In our comparison, the
¯ow parameters are based on the experimental information, such as ¯ow rates of oil and water,
oil volume ratio and holdup ratio. Bai et al. (1992) found the holdup ratio is very nearly a
constant 1.39 in experiments for a wide range ¯ow rates.
The comparison of computed and measured values of the wave speed c and wave length L

of bamboo waves is given in Table 1. Column I gives the values of c and L from the
perturbation theory presented in this paper. Column II presents results for the rigid deformable
core computed by Bai et al. (1996). Column III give results from the linear theory of stability
of perfect core ¯ow given by Bai et al. (1992). These calculations were done for prescribed
values Qo of the oil ¯ow and measured values h � 1:39 of the holdup ratio; the values c and L

Fig. 10. Comparison of theory and experiment when �Qw,Qo� � �200, 825� cm3 minÿ1: (a) Rigid core computation

and (b) experiment from Bai et al. (1996), (c) perturbation theory.
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belong to the wave with the maximum growth rate. The values of Z and R in all computations
correspond to the given values of Qo and Qw for h � 1:39 and s � 22:5 (dyn/cm)
�J � 11:2� 104). The values (Z, R ) are 1 (0.76, 661), 2 (0.7, 683), 3 (0.61, 722), 4 (0.54, 758), 5
(0.67, 342), 6 (0.74, 328), 7 (0.79, 320), 8 (0.82, 314) and 9 (0.84, 310).
It is apparent from comparison of the experimental values with computed ones that our

perturbation theory gives rise to the most accurate results, as expected. The results from the
liner theory of stability of perfect core ¯ow are less accurate, but actually rather good
considering that the observed ¯ows can hardly be described as a small perturbation of perfect
core ¯ow.
Computed and observed shapes of bamboo waves on motor oil in water in a vertical pipeline

are compared in Fig. 9±11 (ro � 0:905 g/cm3, mo � 6:01 P) and water �rw � 0:995 g/cm3, mw �
0:01 P). The pressure gradient and buoyant force on the oil are both against gravity; the core
is `stretched' by buoyancy. The water ¯ow rate is ®xed at 200 cm3/min while the oil ¯ow rate is
429, 825 and 1216 cm3/min.

10. Conclusion

We have presented a perturbation theory for the steady ¯ow and interface shapes of a highly

Fig. 11. Comparison of theory and experiment when �Qw,Qo� � �200, 1216� cm3 minÿ1: (a) Rigid core computation
and (b) experiment from Bai et al. (1996), (c) perturbation theory.

R. Bai, D.D. Joseph / International Journal of Multiphase Flow 26 (2000) 1469±1491 1489



viscous dispersed phase. The theory is based on a regular expansion in powers of the viscosity
ratio and it generates a series of uncoupled Dirichlet problems in the water and, Stokes ¯ow in
the core, in which the shape of the interface is iterated with the normal stress balance. The
theory was applied to the problem of core-annular ¯ow and compared with an earlier
approximate theory in which the relative motion in the core and the pressure variations there
were neglected. The approximate theory gives rise to small errors which are put right by the
present theory; satisfactory agreements of the lowest order exact theory with experiments are
exhibited and even better agreements might be expected the higher order theory.
The computations given in the paper all prescribe the value h � 1:39 of the holdup ratio

which was observed in the experiments of Bai et al. (1992) for bamboo waves in up ¯ow in a
wide variety of circumstances. In fact h is a functional of the solution of the initial value
problem which was not solved here. Presumably, the value of h (11.39) which occurs in up
¯ow experiments would arise from a stability analysis of di�erent steady solutions
corresponding to di�erent values of h. The mechanism of selection of a holdup value for given
values of the volume ¯ow rate of oil and water needs further elucidation.
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