The numerical simulation for foamy oil flow in porous media
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1. Constitutive equations relating the dispersed gas fraction to the pressure
The time derivatives have amaterial derivative
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where a isthe porosity. The constitutive equations are written as follows;
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2. Dimensionless equations and governing parameters for one dimensional
problem

We introduce dimensionless variables as follows;
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Then, we can write equations (1-2), (1-3) and (1-4) asfollows;

oW oW OP _ 0P
JI T+ u=ly g i yu=—\l=p- 2-3
1{6T ax} 2{aT ax} sy (2-3)
1 fow, 0wl _oU (2.4
1+ | oT X | oX
o)
U=pn L oP _\1+W) ap 25

(P+1? 0X  (P+1)? X

3. Numerical method

To solve the fully implicit constitutive equations, We write again them as follows;
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where the superscript n indicates the time level and U’ is intermediate velocity. Before
solving Eq. (2-7), velocity is updated with the values at previous time step through Eq.(
2-6). The velocity is calculated again with the new value of W obtained from Eq. (2-8)
and used in Eq. (2-9) to calculate P with updated value of W. By calculating Eq. (2-5)
two times, we can get converged value for each time step more quickly.

The constitutive equations are discretized using a Galerkin method. The weak
formulations of the condtitutive equation are derived by multiply them by a
corresponding weighting function and integrating over the spatial domain of a problem.
On Eq. (2-7), the W* is used to linearize the continuity equation. The main iteration is the
loop of calculation for four-step equations (2-6), (2-7), (2-8) and (2-9) to get the
converged value of variables U, P and W at each time step. The converged vaue for W*

is obtained by iterating the EqQ. (2-6) in each main iteration.

4. Numerical result

In order to find the best fitting parameters J;, J, and m to fit the experiments of
Maini and Sarma, we tried several cases for various values of three parameters by solving
the three constitutive equations with the method described on the previous section. The
pressure profile and accumulating oil production at outlet is obtained from the both

steady and unsteady simulation for various J;, J, and m. The results are compared with



the experiments data. Through our simulation, the parameters which give a best fit to
experiments data are obtained as J; = 200, J, =-18 and m= 9.

The following figures 4-1 and 4-2 shows the comparison of the numerical result
for J; = 200, J, = -18 and m = 9 with the experiments result for steady state. The

boundary conditions for steady problem are given as follows;

P=1 ,¢=0 aXxX=0
P=p, /P ax=1

where p, isoutlet pressureand P is saturation pressure.
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Figure 4-1. Comparison of numerical and experimental pressure distribution at various
drawdown pressure. (a) is for p, = 30Mpsdi, (b) isfor p, = 10Mps and (C) is
for p, =7.5Mpsi.



Figure 4-1 shows the numerical pressure distribution for J; = 200, J, =-18 and m=9 and

experimental one at drawdown pressure p, = 30, 10 and 7.5Mpsi. Figure 4-2 shows the

numerical oil production rate in steady flow for J; =200, J, =-18, m=9and =34 a

various drawdown pressures p, — p.
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Figure 4-2. Comparison of numerical and experimental oil production rates at various

pressure drawdowns.

The boundary conditions and initial conditions for unsteady flows are given as

follows;

P=1 =0 for0<sX <1l whenT=0
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Figure 4-3. Comparison of numerical and experimental accumulating oil production for
unsteady flow.
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Figure 4-4. The numerical differential pressurein 6 segments at J; = 200, J, =-18, m=9
and S = 3.4 for the blowdown problem.



The numerical and experimental cumulative oil productions for unsteady flows are shown
in figure 4-3.The numerical result and experiments data of differential pressure in 6
segments defined by pressure taps is given in figure 4-4 and 4-5, respectively. The
numerical result for steady flows is comparatively close to experiments. Even if the
numerical results for unsteady flows do not give good fitting to experiments, the

parameters J; = 200, J, = -18 and m = 9 offers the best fit for both of cases.
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Figure 4.5: (Maini & Sarma, 1994). Change in the pressure drop across different core
segments with time during the blowdown experiment with the LIoydminster system.

Figure 4.6 shows the numerical result of average pressure for the various
depletion rates. For the numerical calculation, we used the same values for all parameter
as in Kumar, Pooladi-Darvish and Okazawa (2000). The initial pressure 620psi is higher
than the bubble point pressure of oil 575psi. We can not obtain the pressure overshoot
observed in depletion experiments performed on sand packs. Figure 4.7 shows the

average pressure vs. depletion for our numerical result and experimental and simulated



data in Kumar (2000). The initial pressure is used as the bubble point pressure of oil
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Figure 4.6. The average pressure vs. time for the various depletion rates of 0.3cc/hr,

3cc/hr and 10cc/hr.
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Figure 4.7. Comparison of the numerical and experimental data for average pressure vs.

depletion.



