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1. Constitutive equations relating the dispersed gas fraction to the pressure

The time derivatives have a material derivative
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where α is the porosity. The constitutive equations are written as follows;
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2. Dimensionless equations and governing parameters for one dimensional
problem

We introduce dimensionless variables as follows;
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and find that if

pL ~/ 0
2 λα=ΘΘΘΘ . (2-2)

Then, we can write equations (1-2), (1-3) and (1-4) as follows;

ΨΨΨΨΨΨΨΨΨΨΨΨ β−=
�
�
�

�
�
�

∂
∂+

∂
∂+

�
�
�

�
�
�

∂
∂+

∂
∂ PPUPU

XT
J

XT
J 21 (2-3)

XXT ∂
∂=

�
�
�

�
�
�

∂
∂+

∂
∂

+
UU ΨΨΨΨΨΨΨΨ

ΨΨΨΨ1
1 (2-4)

( ) ( ) XX

m

∂
∂

+

�
�

�
�
�

�

+=
∂
∂

+
= P

P
P

P
U 22 1

1
1

1
1 ΨΨΨΨΛΛΛΛ . (2-5)

3. Numerical method

To solve the fully implicit constitutive equations, We write again them as follows;
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where the superscript n indicates the time level and U’ is intermediate velocity. Before

solving Eq. (2-7), velocity is updated with the values at previous time step through Eq.(

2-6). The velocity is calculated again with the new value of ΨΨΨΨ obtained from Eq. (2-8)

and used in Eq. (2-9) to calculate P with updated value of ΨΨΨΨ. By calculating Eq. (2-5)

two times, we can get converged value for each time step more quickly.

The constitutive equations are discretized using a Galerkin method. The weak

formulations of the constitutive equation are derived by multiply them by a

corresponding weighting function and integrating over the spatial domain of a problem.

On Eq. (2-7), the ΨΨΨΨ* is used to linearize the continuity equation. The main iteration is the

loop of calculation for four-step equations (2-6), (2-7), (2-8) and (2-9) to get the

converged value of variables U, P and ΨΨΨΨ at each time step. The converged value for ΨΨΨΨ*

is obtained by iterating the Eq. (2-6) in each main iteration.

4. Numerical result

In order to find the best fitting parameters J1, J2 and m to fit the experiments of

Maini and Sarma, we tried several cases for various values of three parameters by solving

the three constitutive equations with the method described on the previous section. The

pressure profile and accumulating oil production at outlet is obtained from the both

steady and unsteady simulation for various J1, J2 and m. The results are compared with
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the experiments data. Through our simulation, the parameters which give a best fit to

experiments data are obtained as J1 = 200, J2 = -18 and m = 9.

The following figures 4-1 and 4-2 shows the comparison of the numerical result

for J1 = 200, J2 = -18 and m = 9 with the experiments result for steady state. The

boundary conditions for steady problem are given as follows;

P = 1 , φ = 0 at X = 0

P = ppL
~ at X = 1

where Lp  is outlet pressure and  p~ is saturation pressure.
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Figure 4-1. Comparison of numerical and experimental pressure distribution at various

drawdown pressure. (a) is for Lp  = 30Mpsi, (b) is for Lp  = 10Mpsi and (c) is
for Lp  = 7.5Mpsi.
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Figure 4-1 shows the numerical pressure distribution for J1 = 200, J2 = -18 and m = 9 and

experimental one at drawdown pressure Lp = 30, 10 and 7.5Mpsi. Figure 4-2 shows the

numerical oil production rate in steady flow for J1 = 200, J2 = -18, m = 9 and β = 3.4 at

various drawdown pressures ppL
~− .
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Figure 4-2. Comparison of numerical and experimental oil production rates at various
pressure drawdowns.

The boundary conditions and initial conditions for unsteady flows are given as

follows;

P = 1, φ = 0 for 10 ≤≤ X when T = 0

0=
∂
∂
X
P at X = 0

P = ppL
~ at X = 1
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Figure 4-3. Comparison of numerical and experimental accumulating oil production for
unsteady flow.
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Figure 4-4. The numerical differential pressure in 6 segments at J1 = 200, J2 = -18, m = 9
and β = 3.4 for the blowdown problem.
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The numerical and experimental cumulative oil productions for unsteady flows are shown

in figure 4-3.The numerical result and experiments data of differential pressure in 6

segments defined by pressure taps is given in figure 4-4 and 4-5, respectively. The

numerical result for steady flows is comparatively close to experiments. Even if the

numerical results for unsteady flows do not give good fitting to experiments, the

parameters J1 = 200, J2 = -18 and m = 9 offers the best fit for both of cases.
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Figure 4.5: (Maini & Sarma, 1994). Change in the pressure drop across different core
segments with time during the blowdown experiment with the Lloydminster system.

Figure 4.6 shows the numerical result of average pressure for the various

depletion rates. For the numerical calculation, we used the same values for all parameter

as in Kumar, Pooladi-Darvish and Okazawa (2000). The initial pressure 620psi is higher

than the bubble point pressure of oil 575psi. We can not obtain the pressure overshoot

observed in depletion experiments performed on sand packs. Figure 4.7 shows the

average pressure vs. depletion for our numerical result and experimental and simulated
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data in Kumar (2000). The initial pressure is used as the bubble point pressure of oil

575psi
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Figure 4.6. The average pressure vs. time for the various depletion rates of 0.3cc/hr,
3cc/hr and 10cc/hr.

                
Voulme (cc)

Av
er

ag
e

Pr
es

su
re

(p
si

)

0 10 20 30
420

520

620

experimental data -- 0.37 cc/hr
experimental data -- 3 cc/hr
experimental data -- 12 cc/hr
Kumar' s simulated data
our simulation -- 0.3 cc/hr
our simulation -- 3 cc/hr
our simulation -- 10 cc/hr

Figure 4.7. Comparison of the numerical and experimental data for average pressure vs.
depletion.


